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1. INTRODUCTION 

Cooperation between mobile robots and people is playing a 
significant role in the modern economy while its demand is 
increasing worldwide, aided also by the growing use of 
autonomous and smart mobile robots. In particular, co-bots can 
increase human resources while reducing physical and mental 
load, increasing operational safety and productivity, in industrial 
environments. In this context, the human-following function, 
called “follow-me”, is crucial. It consists of identifying and 
following the assigned operator even in unstructured 
environments. 

There are different approaches to achieve such a task. The 
most commonly used technologies for tracking include vision [1], 
[2], time-of-flight (TOF)-Camera [3], LiDAR [4], light-emitting 
device (LED) [5] and UWB transceivers [6]-[131]. 

For each of these technologies, there are several advantages 
and disadvantages. LiDAR technology, while faster and more 
accurate than TOF camera, is much more expensive and not 
used unless strictly necessary. With the LED detection method 

there are few applications from the literature because of the low 
robustness due to the robot’s inability to detect the light-emitting 
device frequently.  

The best candidates for tracking operations with low cost are 
still 3D vision and UWB systems. The main literature 
contributions use them independently to solve the “follow-me” 
task in unstructured environments without solving their 
disadvantages. For example, the disadvantage of traditional 
vision systems is the limited field of view (FoV) compared to 
UWB systems and lighting influence, especially outdoor. In 
contrast, UWB can be applied both indoor and outdoor but 
suffers from higher uncertainties especially for measurements of 
less than one meter and in the presence of obstruction by people 
between the transceivers [9], [10]. However, UWB systems 
measurements can be made up to 80 m, in contrast to TOF 
cameras where after 10 m there is mostly noise while are more 
precise than the UWB below. Furthermore, the shape of the 
uncertainties of the two systems is different but complementary. 

With this work, we overcome the disadvantages of these 
technologies by combining them to improve the robustness and 
reduce the uncertainty of the measurement result. 
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solve two crucial functions of autonomy: operator identification, and tracking. These tasks are necessary to enable an AGV to follow the 
selected operator along his path. This paper presents an innovative, accurate, robust, autonomous, and low-cost operator real-time 
tracking system, leveraging the inherent complementarity of the uncertainty regions (2D ellipses) between ultra-wideband (UWB) 
transceivers and cameras. The test campaign shows how the UWB system has higher uncertainty in the angular direction. In contrast, in 
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The only literature works that apply Sensor Fusion between 
UWB and vision systems work in structured environments with 
fixed UWB transceivers [11], [12] or with both fixed UWB and 
vision systems [13]. Their solutions are not dynamic to changes, 
are more expensive because of the number of devices to be used, 
and must be calibrated for each environment. 

This work is organized as follows. An overview of the 
involved measurement systems is provided in the next section. 
The human identification algorithms to define which operator to 
follow are provided in Section 3; Section 4 describes the 
uncertainties models of the UWB and vision systems. The 
operator localization results through Sensor Fusion approach are 
discussed in Section 5 followed by conclusions in Section 6. 

2. MEASUREMENT SYSTEMS  

For our application, we used Decawave’s UWB development 
board DWM10011 [14]. It has the advantages of low cost, low 
power consumption, and strong penetration. The receivers were 
programmed with a two-way ranging (TWR) architecture [15] 
that allows them to work in an unstructured environment, with 
two anchors on the robot, one master and one generic, and a tag 
for the tracked operator, Figure 2. The tag communicates first 
with the generic anchor to calculate the distance d1, i.e. the 
distance between the tag and the generic anchor. Then with the 
master anchor to obtain the distance d2, i.e. the distance between 
the tag and master anchor. Successively the generic anchor will 
send the estimated distance d1 to the master, and finally, the 
master shares the two distances d1, d2 to the computer within a 
total time of 9 ms. The distance between the two anchors d3 is 
fixed and constant. The position of the tag in the environment 
using only the UWB system is ambiguous because the two radii 
d1 and d2 of the circumferences can intersect at two different 
points. To solve this problem, the robot is equipped with a 
camera, which determines the uniqueness of the measurement 
(i.e., whether the operator is in front of the robot or not). 

The selected camera is the Intel RealsenseTM Depth Camera 
D4552 [16]. The device includes an RGB camera, two infrared 
(IR) cameras, a laser projector, and an inertia measurement 
system (IMU). The vision system can extract both a 3D point 
cloud of the scene and a traditional RGB image. The RGB is used 
to apply artificial intelligence (AI) algorithms that perform 
human skeleton detection, while the point cloud allows localizing 
the key points of the skeleton in 3D. 

Figure 1 shows the designed system. In particular, the UWB 
and vision systems onboard the mobile robot for operator 
identification and tracking. 

3. HUMAN IDENTIFICATION 

Human detection and human pose estimation are done by 
applying a neural network provided by Intel in the 
OpenVINOTM toolkit, called human-pose-estimation-0001. The 
toolkit enables Convolution Neural Networks (CNN)-based 
deep learning inference and contains an optimized version of 
OpenCV libraries for Intel hardware [17]. This network is based 
on OpenPose [18] approach with tuned MobileNet v1 [19] as a 
feature extractor. This network results in two different outputs. 
The first is composed of 18 probability maps, called heat-maps, 
that provide all the key-points on the image: ears, eyes, nose, 
neck, shoulders, elbows, wrists, hips, knees, and ankles, Figure 
3a. The second is 19*2 layers called part affinity fields, and it 
gives us information on how to match the key-points that 
correspond to a single person, Figure 3b. Heat-maps provide the 
probability for each pixel to be at the position of a key-point. 
Performing a threshold on the heat-maps it is possible to select 
the pixels with a probability higher than 50 %, from which it is 
possible to evaluate for each cluster of pixels the average point 
and the covariance matrix referring to each key-point location, 
Figure 3a. From these covariance matrices, the average 
uncertainty of each pixel was calculated as three pixels. 

The image resolution was set at 848 × 480 (CxR), and the 
network for the human-pose-estimation-0001 as INT8 running on 
the CPU extracts each frame up to 18 key-points per person. The 
resolution was chosen as a good trade-off between resolution of 
the image, and so linked to the uncertainty for the human 
positioning, and the speed of execution of the network. The net 
is available in three different resolutions, i.e. INT8, FP16, and 
FP32. There is no difference in performance in our test when 
running on the CPU, but the INT8 version is slightly faster than 
the others for this estimation. 
Only the operator, entitled to use the robot, must be tracked. To 
reach this, we introduced face identification. The steps to identify 
the operator are two: find all the faces within the RGB frame and 
then detect the operator among them. For these steps, we used 
two CNN available on the OpenVINOTM toolkit. The face 
detection CNN used is face-detection-retail-0005 and to extract the 
features of each face and compare them with the operator 
features stored in a database we use face-reidentification-retail-0095. 
The matching is made through the cosine similarity, equation (1), 
which is defined as the cosine of the angle θ between two 
features’ vectors A and B on dimension Rn. Where A is the 
features’ vector acquired in real-time and B is the one stored as 
ground truth. The lower the cosine, the higher the probability 
that the features vector are similar. 

 
 

Figure 1. Real system with mobile robot and operator. 

 

Figure 2. System configuration (Top view). 
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The operator, once identified, turns on the spot, and the 
software saves all the features again with a neural network, called 
person-reidentification-retail-0031, for different poses. As previously 
stated, the correspondence is made with the cosine similarity 
between the feature vectors of people’s bodies in the frames. 

Table 1 shows the overall times for each network inference 
calculated on an Intel CPU i7-7700HQ with 16 GB of RAM. 

4. HUMAN LOCALIZATION: 2D UNCERTAINTY MODELING  

From UWB and vision system are extracted the same 
information about the operator’s position with two 
measurements systems that are both referred to the robot base 
but whose uncertainty regions are complementary as explained 
in this section. 

4.1. UWB system  

To maintain consistency with the information received from 
the vision system, the reference frame of the UWB is fixed on 
the camera and the anchors are placed at its sides with equal 
distance d3/2, Figure 2. In particular, the X coordinate is related 

to the lateral axis, the Z coordinate to the depth, and the Y 
coordinate to the vertical axis. For the localization of the 
operator in the space, we are interested only in the X and Z 
coordinates, since we project everything on the ground floor. 
The equations of the circumferences from the UWB devices 
become: 

(𝑥 −
𝑑3
2
)
2

+ 𝑧2 = 𝑑1
2, (2) 

(𝑥 +
𝑑3
2
)
2

+ 𝑧2 = 𝑑2
2 , 

(3) 

From equations (2) and (3), we obtain the closed-form 
solution for the tag position: 

𝑥 =
𝑑2
2 − 𝑑1

2

2𝑑3
 , (4) 

𝑧 = ±
1

2
√−

(𝑑1
2 − 𝑑2

2)2

𝑑3
2 − 𝑑3

2 + 2(𝑑1
2 + 𝑑2

2) . (5) 

As discussed in Section 2, we only keep the positive value for 
the Z-coordinate because it is guaranteed by the vision system. 

The covariance matrix of the coordinates of the tag position 
with the UWB system is equal to: 

𝐶UWB = 𝐽dist · 𝐶dist · 𝐽dist
𝑇  , (6) 

where Cdist is the covariance matrix of the measured distances d1, 
d2, and d3, (Figure 2), with their standard deviations σ1, σ2, and σ3 

𝐶dist = (

𝜎1
2 0 0

0 𝜎2
2 0

0 0 𝜎3
2

) . (7) 

The UWB devices used to test the overall system were 
calibrated in different indoor and outdoor scenarios to find the 
corresponding systematic offset at different distances and the 
related uncertainties. Furthermore, the master and generic 
anchors were calibrated independently because, although the de- 
vice type is the same, their internal crystals and thus their 
responses are not the same. In particular, we carried out 
measurements from 1 m to 20 m every 0.5 m with random order 
both indoor and outdoor. We collect data at 52 Hz for three 
minutes. Between different distances, we wait three minutes with 
all the devices turned off. The tests were performed for each 
distance, one with the line of sight (LOS) between the devices 
free (Figure 4a) and the other two with noise elements: in one 3-
4 people simultaneously walked randomly back and forth 
between the devices throughout the test time (Figure 4b), in the 
other large static metal elements were placed in random positions 
between the devices (Figure 4c). This was done to understand 
how much these scenarios affect the measurements. 

Figure 5a shows an example of the box-plot result for an 
indoor test at 7 m in different scenarios. In particular, in all the 
tests done, the standard deviation of the measurements made 
with the walking people is significantly higher than the ones with 
free LOS and metal objects. The data acquired with walking 
people generate an overestimation, possibly because the 
occlusion of the LOS causes the reflected radio waves to be 
caught as the free LOS. 

From the tests, the standard deviations d1 and d2 were 

calculated at 0.05 m outdoor with free LOS. This value was used 

Table 1. Overall times. 

Network 
Image 

resolution 
Net 

resolution 
Inference 
time (ms) 

face-detection-retail-0005 848 × 480 INT8 9.42 

face-reidentification-retail-0095 848 × 480 FP16 5.38 

person-reidentification-retail-0031 96 × 48 FP16 6.50 

human-pose-estimation-0001 848 × 480 INT8 115 

 
(a)  

 

 

(b)  
 

Figure 3. Heat-maps with covariances of key-points (a) and affinity map (b) of 
848x480 image from Camera D455 with operator at two meters. 
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± 

and set in our application; instead, the standard deviation for d3 
was set at 0.01 m to take into account human error during fixing. 

About the offset between the measured distances with UWB 
devices and the real distances, the values were modeled from the 

outdoor tests in free LOS, Figure 5b. All the real distances, taken 
as ground truth, were measured with a laser meter type Fervi 
ML80 [20], able to measure distances from 0.05 m to 80.00 m 
with an accuracy of 0.02 m. 

The generic anchor and the tag were powered by a Varta 
power bank type 57962, while a USB cable powered the master 
anchor from the PC. From that USB cable was possible to 
communicate in serial and save the estimated distances from the 
two anchors. 

Previously we saw how the free outdoor LOS was chosen as 
the reference environment for the offset and standard deviation 
values. To take into account also other scenarios each time we check 
the Channel Impulse Response (CIR) [21] provided by the UWB 
modules. In case of some human obstruction, this parameter 
decreases, and we do not update the distance information waiting 
for a reasonable value of CIR. 

 
The jacobian matrix Jdist with respect to the distances is: 

𝐽dist =

(
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with: 
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Equation (6) becomes: 

𝐶UWB =
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with: 
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                              (a)                                                                 (b)                                                                      (c)                                                                   (d)                                                                

 

Figure 4. Indoor scenarios: free LOS (a), people walking (b), metal objects (c); Outdoor scenarios (d). 

 
 

(a) 
 

 
 

(b) 
 

Figure 5. (a) Box-plot of data at 7 m indoor in different scenarios; (b) Offset 
model of master and generic anchors outdoor in free line of sight (LOS). 
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Noting that the elements of Equation (9) have at the 

denominator the measure d3, we can say that the more distant the 
anchors are from each other, the more accurate the position 

measurement is. Another note is that the off-diagonal terms are 

zero if and only if the measures d1 and d2 are equal (considering 

also σ1 = σ2). In this case, Equation (9) becomes: 

𝐶UWB =

(

 
 

2 𝑑1
2 𝜎1

2

𝑑3
2 0

0
2 𝑑1
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 , (10) 

Under these conditions, Figure 6 shows the behaviour of the 
standard deviations’ values of each eigenvalue in the two 
principal directions X and Z with respect to the Z distance of the 
tag from the anchors, square roots of CUWB(1, 1) and CUWB(2, 2) 

respectively. 
As can be seen from the behaviour of the eigenvalues in Figure 

6 and shapes of the covariances in Figure 7 at the beginning (Z = 
0 m) the covariance is a tight ellipse stretched in the radial 
direction (CUWB(1, 1) < CUWB(2, 2), tag A in Figure 7), then when 
the distances d1 and d2 are orthogonal to each other it becomes a 
perfect circle (CUWB(1, 1) = CUWB(2, 2), tag B in Figure 7) and 
lastly with a higher Z distance value  it becomes stretched in the 
angular direction (CUWB(1, 1) > CUWB(2, 2), tag C in Figure 7). If 
d1 and d2 are different, tag D in Figure 7, the quadratic 

approximation of the probability ellipse will be rotated. 

4.2. Vision system  

The model used to study the variance for the depth 
coordinate Z of the selected camera is a pinhole model. Two-IR 
sensors of the camera are used to evaluate the depth through a 
disparity matching algorithm, an RGB sensor is used instead to 
calculate the 2D image, all of them are co-planar and aligned. The 
common reference frame of the two-IR sensors is set at the same 
focal length of the two- IR sensors and translated by overlapping 
the reference frame of the right sensor above the left sensor by an 
amount equal to the baseline b, Figure 8. The charge-coupled 
device (CCD) resolution for each sensor is 848 pixels in columns 
(c) and 480 pixels in rows (r) for a total of 848 × 480 (C × R) 
pixels. 

The expression of the depth coordinate z is: 

𝑧 = 𝑓𝑐 ⋅
𝑏

|𝑐𝑄1 − 𝑐𝑄2|
= 𝑓𝑐 ⋅

𝑏

𝑑
 , (11) 

where fc is the focal length in X direction, b the baseline, and d 

the disparity, Figure 8. 
From equation (11) is possible to evaluate the error in the 

depth estimation from the model with respect to the disparity d, 
assuming all the other parameters as known and constant values: 

𝜎𝑧 =
𝜕𝑧

𝜕𝑑
=
𝑏 ⋅ 𝑓𝑐
𝑑2

⋅ 𝜎𝑑  , (12) 

Equation (12) can be rewritten as function of the Z distance, 
for better understanding, by substituting the value of the disparity 
d with a formulation obtainable from equation (11): 

𝜎𝑧 =
𝑧2

𝑏 ⋅ 𝑓𝑐
𝜎𝑑 , (13) 

where the focal length f in pixel is: 

 

Figure 6. Standard deviation (std) of each eigenvalue in the two principal 
direction X and Z for UWB system from 0 m to 10 m with the off-diagonal 
terms of covariance matrix CUWB equal to 0. 

 

Figure 7. UWB system uncertainty ellipses for different tag positions. 

 
 

Figure 8 Stereo pin-hole model. 
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𝑓𝑐 = 0.5
𝐶

tan(𝐻𝐹𝑂𝑉/2)
 , (14) 

𝑓𝑟 = 0.5
𝑅

tan(𝑉𝐹𝑂𝑉/2)
 , (15) 

HFOV is the horizontal field of view and VFOV is the vertical 
field of view, in our case are 87° and 58° respectively. By varying 
the resolution, the focal length changes and so does the distance 
uncertainty. 

The disparity standard deviation σd for the Camera D455 is 
declared to be 0.08 pixel by the manufacturer. Since many 
interfering effects increase this value, we calibrated the camera to 
check if the declared model equation (13) fits the real data and if so, 
to obtain the real standard deviation σd. We made 400 consecutive 
depth acquisitions of a chessboard from 1 m to 10 m at random 

steps of one meter, Figure 9a. , Figure 9b shows the theoretical 

and the obtained σz as a function of Z distance for the image 

resolution C of 848 pixels. As can be seen in Figure 9b the 
behaviour of the experimental found model is higher than the 
theoretical one. The new experimental value for σd found by 
applying the least absolute residual robust (LAR) method is 
0.4 pixel. 

To evaluate the coordinates in X and Y dimension we use 
the Brown-Conrady distortion calibration model [22] with the 
intrinsic constant coefficients (k1, k2, k3, p1, p2) of the specific 
selected camera: 

𝑢𝑥 = �̂� ⋅ 𝑓 + 2 ⋅ 𝑝1 ⋅ �̂��̂� + 𝑝2(𝑟 + 2�̂��̂�) , (16) 

𝑢𝑦 = �̂� ⋅ 𝑓 + 2 ⋅ 𝑝2 ⋅ �̂��̂� + 𝑝1(𝑟 + 2�̂��̂�) , (17) 

with: 

�̂� =
𝑐 − 𝐶/2

𝑓𝑐
=
𝑥𝑝

𝑓𝑐
 

�̂� =
𝑟 − 𝑅/2

𝑓𝑟
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𝑦𝑝

𝑓𝑐
 

𝑟 = �̂�2 + �̂�2 

𝑓 = 1 + 𝑘1 ⋅ 𝑟 + 𝑘2 ⋅ 𝑟
2 + 𝑘3 ⋅ 𝑟

3
 

The new expression of the X and Y position becomes: 

𝑥 = 𝑢𝑥 ⋅ 𝑧 , (18) 

𝑦 = 𝑢𝑦 ⋅ 𝑧 , (19) 

As for the UWB system, we are interested only in the X and 
Z coordinates for the localization of the operator in the space. 

The covariance matrix of the coordinates of the operator with 
camera system is equal to: 

𝐶cam = 𝐽cam ⋅ 𝐶σ ⋅ 𝐽cam
𝑇  , (20) 

where: 
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with: 

𝑎1 = 𝑘1  𝑎2 + 𝑘2  𝑎2
2 + 𝑘3 𝑎2

3 + 1 

𝑎2 =
𝑥𝑝2

𝑓𝑐
2 + 𝑎3 

𝑎3 =
𝑦𝑝2

𝑓𝑟
2  . 

Ccam depends on the focal length f, on the baseline b, and on 
the standard deviations of disparity σd and pixels σc, σr. 

Once the depth frame and the RGB one are aligned, it is 
possible to estimate the distance to any pixel and thus project the 
operator’s skeleton in space. Sometimes, key-points can have an 
incorrect distance value, i.e., the Z-coordinate, especially when 
the pose is very close to the viewing system. It is due to distortion 
caused by camera lenses and imperfect image realignment. To 
overcome this problem, we extract an average position of key-
points with the median. In this case, if a key-point is projected 
too far from the other or too near, it will have no impact on the 
final operator position. 

The off-diagonal terms of equation (20) are zero if and only 

if xp = 0, yp = 0. In this case equation (20) becomes: 

 
(a)  

 
(b)  

Figure 9. (a) Camera calibration test with chessboard; (b) standard deviation 
results on Z distance with stereo camera D455 for resolution C of 848 pixels. 
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𝐶cam = (

𝑧2𝜎𝑐
2

𝑓𝑐
2

0

0 𝜎𝑧2
) , (23) 

Figure 10 shows the standard deviations’ values of each 
eigenvalue in the two principal directions X and Z of equation 
(23) with the covariances’ shapes in Figure 11 as previously done 
for UWB system. As can be seen in Figure 10, after 30 cm, the 
radial coordinate in the Z direction is always greater than the 
angular one in the X direction (Ccam(1, 1) < Ccam(2, 2) i.e. the 

ellipse is stretched in the radial direction. 

5. SENSOR FUSION 

Sensor fusion was done between the position estimated by the 
UWB system and the position estimated by the vision system to 
reduce the uncertainty and improve the estimation of the 
operator’s position in space. Figure 12 shows two examples in two 
different tag positions where the uncertainties of the position 
estimation through the UWB system are more significant along 
the angular direction (X-coordinate), centring the reference 
system on the origin of the camera. Notice that in the case of the 
vision system, the uncertainties are predominant along the radial 
direction (Z-coordinate). By fusing the information with Bayes’ 
theorem [23], it is possible to reduce their uncertainties in both 
directions. 

We can summarize the fused information shown in Figure 12 
through the following expression:  

𝐶fused = [[𝐶UWB]
−1 + [𝐶cam]

−1]−1 , (24) 

𝑃fused = 𝐶fused[[𝐶UWB]
−1𝑃UWB + [𝐶cam]

−1𝑃cam] , (25) 

where: 
- PUWB and Pcam are the estimated mean position of 

the UWB system and camera system respectively; 

- CUWB and Ccam are the covariance matrices of the 

estimated position of the UWB system and camera 
system respectively. 

6. CONCLUSIONS 

In this work, an innovative and robust method to identify and 
track an operator from a mobile robot in real-time was 
developed. In particular, the operator can be identified through a 
convolution neural network tool and tracked through a designed 
localization method obtained by fusing the information from 
low-cost sensors such as UWB transceivers and a depth camera. 
It was implemented to locate the operator’s position with less 
uncertainty. The test campaign shows the UWB system has a 
higher uncertainty in the angular direction, contrary to the 
camera, where the uncertainty is higher in the radial direction. 
Specifically, CUWB is affected by the distances measured between 

 
 

Figure 10: Standard deviation (std) of each eigenvalue in the two principal 
direction X and Z for camera system from 0 m to 10 m with the off-diagonal 
terms of covariance matrix Ccam equal to 0. 

 
 

Figure 11. Camera system uncertainty ellipses for     different tag positions. 

 
(a)  

 

(b)  
 

Figure 12. (a) Two examples of uncertainty ellipses (95 % with k= 2.4478 [24]) 
in two different tag positions (x=0 m, z=4 m; x=2 m, z=6 m) from camera and 
UWB system; (b) zoom of the results. 



 

ACTA IMEKO | www.imeko.org December 2021 | Volume 10 | Number 4 | 131 

the tag and the two anchors (d1, d2) and between the anchors 

themselves (d3) with their corresponding uncertainties. Ccam 
instead depends on the focal length f, on the baseline b, and on 
the standard deviations of disparity σd and pixels σc, σr. 

Our solution makes the final system robust and more precise 
due to the complementarity of information between the 
covariance matrices of the UWB system and the vision system. 

To obtain a better result for the real application, the UWB 
transceivers were calibrated following a test campaign that 
provided the correct behaviour of the systematic offset in the 
measurements and their standard deviations. Offsets change for a 
specific UWB device and increase with Z distance. The standard 
deviation for the distances between the devices was calculated at 
0.05 m in the scenario with a free line of sight and outdoor. 

Another test campaign, this time on the vision system, was 

carried out to evaluate the theoretical model of the standard 

deviation σz as a function of Z distance and the value of camera 

disparity standard deviation σd. The σd calculated for our Camera 

D455 is 0.4 pixels. Moreover, the average uncertainty of each 

pixel σc, σr was calculated as three pixels through heat-maps 

analysis of the convolution neural network used.   
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