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1. INTRODUCTION 

Paying attention to drivers’ mental wellbeing is crucial to 
improve safety in road traffic. If not properly treated, stress can 
lead drivers to engage in risky behaviours [1] and therefore car 
accidents [2]. A danger situation occurs whenever stress is caused 
by the driving activity itself as happens to professional [3] and 
regular drivers [4], or by personal issues as highlighted in [5] in 
case of economic reasons, or any other kind of reason as 
described in [6]. A Hidden Markov Model (HMM) system to 
assess the probability of assuming certain behaviours considering 
the current emotion is developed in [7]. In [8], a survey describing 
the methods to recognize emotions in drivers is also provided. 

The development of stress detection systems follows two 
main paths [9]. One is based on physiological signals, including 
Electrodermal Activity (EDA), Electroencephalogram (EEG), 
Blood volume pulse (BVP), Electromyography (EMG), Skin 
Temperature (SKT) and Respiration (RESP) [10], [11]. The 

second one relies on physical manifestations of stress: data 
describing human behaviour, for example, could be collected by 
the Global Positioning System [12] and facial expressions [13]. 

A common approach is to identify a stress condition with the 
aid of Machine Learning (ML) and Deep Learning (DL) 
techniques, as in [14]-[16] where the properties of EEG, ECG 
and EDA signals respectively are exploited for classification 
purposes. In [17] different kernel configurations for Support 
Vector Machines (SVMs) are tested, and then applied to 
electromyographic signals. An automated way to find the optimal 
kernel has been used in [18], where the kernel for a Deep 
Multiple Kernel Support Vector Machine (D-MKL-SVM) is 
selected through a Multiple-Objective Genetic Algorithm 
(MOGA). The classifier is then used on ECG data. Different 
physiological measurements, EDA and ECG signals, are 
combined in [19], where features are automatically extracted 
from short signal sections and classified by a multimodal 
Convolutional Neural Network (CNN). 

ABSTRACT 
In this paper, we address the problem of possible stress conditions arising in car drivers, thus affecting their driving performance. We 
apply various Machine Learning (ML) algorithms to analyse the stress of subjects while driving in an urban area in two different 
situations: one with cars, pedestrians and traffic along the course, and the other characterized by the complete absence of any of these 
possible stress-inducing factors. To evaluate the presence of a stress condition we use two Skin Potential Response (SPR) signals, 
recorded from each hand of the test subjects, and process them through a Motion Artifact (MA) removal algorithm which reduces the 
artifacts that might be introduced by the hand movements. We then compute some statistical features starting from the cleaned SPR 
signal. A binary classification ML algorithm is then fed with these features, giving as an output a label that indicates if a time interval 
belongs to a stress condition or not. Tests are carried out in a laboratory at the University of Udine, where a car driving simulator with 
a motorized motion platform has been prearranged. We show that the use of one single SPR signal, along with the application of ML 
algorithms, enables the detection of possible stress conditions while the subjects are driving, in the traffic and no traffic situations. As 
expected, we observe that the test individuals are less stressed in the situation without traffic, confirming the effectiveness of the 
proposed slightly invasive system for detection of stress in drivers. 
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A physical approach can be found in [20]. Driver’s 
expressions and eye movements are recorded by near-infrared 
(NIR) camera sensors, and then aggressive driving behaviour is 
classified by a CNN. The method proposed in [21] combines 
both physiological (electrodermal activity) and behavioural 
(facial) measurements, and fuses together different data types in 
order to build a Sensor Fusion Emotion Recognition (SFER) 
system, improving the classification performance. 

In previous works, the authors carried out some experiments 
with the aid of a driving simulator platform, recreating a highway 
[22], [23] and inducing stress by adding obstacles along the 
course. We collected the ECG in addition to the Skin Potential 
Response (SPR) data, and we employed ML and DL algorithms 
to detect stress in the test individuals. In [24], the authors 
compared the different physiological responses under manual 
and autonomous driving tests. In [25], we also examined the 
possible changes in the physiological responses when different 
car settings are considered. 

One of the main contributions of this paper is the analysis and 
comparison of the performance results of different ML models 
(extending the work in [26]), which we demonstrated to be 
valuable in detecting stress episodes in previous experiments, but 
now considering the stress caused by urban traffic. In this work, 
moreover, we simplify the system and consider one signal only, 
i.e., the SPR signal taken from the hands of the driver. In this 
way, we propose a slightly invasive setup, which can be arranged 
with little discomfort for the driver. In detail, we log SPR values 
from the two hands of individuals while they drive. We apply a 
Motion Artifact (MA) removal algorithm, to assess the artifacts 
that can alter the signal caused by the hand movements turning 
the wheel. This algorithm outputs a single SPR signal, without 
artifacts, which is fed to an ML classifier, which has been 
previously trained using a larger dataset. The classifier marks time 
intervals with a “stress” or “not stress” flag. The individuals were 
told to drive normally, in an urban setting simulated by the City 
Car Driving 3D software simulator. The experiment was setup in 
a way to present two different situations. One situation recreates 
an urban area with no traffic and empty streets, while the second 
recreates an urban area complete with traffic, with cars and 
pedestrians. Findings of this study validate the success of the 
supervised learning algorithm in its stress detection task. We also 
demonstrate that SPR signals, recorded with minimally invasive 
and simple sensors, along with ML classifiers, can detect stress 
in a reliable way. In the end, we observe that, as expected, stress 
is generally higher in the urban environment filled with traffic. 

The paper is structured as follows. In the next section we 
present the fundamental blocks of our proposed system. 
Section 3 introduces the experimental setup. Section 4 discusses 

the results obtained from our comparative study, where different 
ML algorithms are used for driver’s stress recognition. Finally, 
some conclusions are drawn in Section 5. 

2. PROPOSED SYSTEM 

The proposed measurement system for stress detection in car 
drivers is shown in Figure 1. 

Each subject under test wears the SPR sensors on the wrists 
and is seated on the driving simulator available in the BioSens 
Lab at the University of Udine. The simulator is composed of a 
moving platform with two axes (DOF Reality Professional P2), 
a steering wheel with pedals and gearbox (Logitech G29), and a 
curved screen. For each subject two different simulations are 
performed on the same city route with two different conditions: 
“no traffic” and “traffic”. “No traffic” means that there are no 
other cars nor pedestrians on the road, “traffic” means that we 
inserted in the simulation other cars and pedestrians with some 
aggressive events (e.g., lane invasion of other cars or unexpected 
pedestrian road crossing), as also described in Section 3. 

During the entire route planned in the simulations we 
acquired the SPR signals on the subjects positioning the sensors 
shown in Figure 2 on the wrist like a smartwatch. The differential 
voltages from the palm and the back of each hand (VP-VB in 
Figure 2) are properly conditioned and acquired by a 12 bit A/D 
converter on board a DSP with sample rate of 200 Sa/s. Data are 
then sent using a low power WiFi module which operates at 
115.2 kbps baud rate. The detailed description of the sensors and 
their characterization is provided in [27], [28].  

Summarizing the architecture and specifications, the sensor 
analog front end is a band-pass differential amplifier (having 
input impedance 100 MΩ) with maximum input range ±10 mV 

 

Figure 1. Block scheme of our proposed stress detection measurement system. 

 

Figure 2. Electrodes arrangement and SPR sensor block diagram. 
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and bandwidth in the [0.08, 8] Hz range. The accuracy of SPR 
acquisition, after characterization, resulted in 0.15 % of full scale 
(corresponding to 30 μV) and the resolution is 4.9 μV. The 
sensors are battery operated with a single LiPo cell with a capacity 
of 850 mAh ensuring ten hours of transmission, since the current 
consumption is 85 mA. The sensors form a body network where 
one SPR sensor acts as slave (henceforth sensor 1) and the other 
acts as master (henceforth sensor 2). The slave sensor sends 
packets to the master and the latter aligns the received data 
packets with the data acquired by the A/D converter. For 
consumption reasons, the slave can send packets every 40 ms at 
minimum. Hence, the slave DSP builds a packet composed of 
eight data acquired every 5 ms and sends them to the master. The 
module is configured as station (STA) with static IP and operates 
as a UDP client. The gateway address is configured to be the 
master address. 

Figure 3 shows how the packets are built by the DSP on the 
slave before transmission. The A/D module provides a 12 bit 
datum every 5 ms. Each byte sent via UART to the master must 
be identified with a unique code, since the master must recognize 
if the incoming datum is the upper or lower byte of the slave 
sample. So, the DSP of the slave builds the lower (upper) byte of 
information using the six least (most) significant bits of the A/D, 
adding one bit for lower (upper) byte (L or H bit in Figure 3, 
respectively). The data packets received by the master are 
dismantled and realigned as in Figure 4. The master adds a unique 
header and builds a packet composed of 18 bytes and containing 
the information on SPR1 and SPR2. The packet is then sent to a 
laptop every 40 ms. The data transmitted from the master are 
acquired by a dedicated Graphical User Interface developed in 
the .NET environment, and are then processed by a motion 
artifact (MA) removal algorithm described in [22], [29]. The two 
SPR signals acquired from the left and right hand of the subjects 
are processed by the MA algorithm in order to provide as output 
a single signal that better represents the activity of the 
Autonomic Nervous System (ANS). As a matter of fact, the SPR 
signals can be typically affected by motion artifacts due to 
pressure on the sensors during hand movements. Ideally, the two 
SPR signals should have approximately the same pattern, since 
they represent the response to the same stimulus, initiated by the 
sympathetic response of the ANS. The MA removal algorithm is 
based on two assumptions, the first being that motion artifact 
enhances the local energy of the signal. The second being that 
the motion artifacts rarely appear simultaneously in the SPR 
signal of both hands. The output of the MA removal block is 
thus obtained by computing a weighted combination of the two 
input SPR signals, evaluating their local energy, giving more 
weight to the less perturbed signal, i.e., the one, between the two 
input signals, with the least local energy value. In our experiments 

(see [22]), we found that the motion artifact rarely appears 
simultaneously in both hands. This, in fact, mostly appears 
during the steering wheel action, which is predominantly 
performed by one hand (as also discussed in [24]). 

After being processed through the MA removal bock, the 
cleaned SPR signal is then sent to various ML classification 
algorithms, which had already been trained on a bigger dataset. 
This dataset, including 3195 intervals for each stress and non-
stress class, is the result of a previous experiment carried out in 
the VI-grade firm (vi-grade.com), utilizing their professional 
dynamic simulator. More specifically, in that case, 18 subjects 
manually drove for 67 km along a highway, trying to cross 12 
obstacles, positioned in prearranged points along the track. 
These obstacles were: Double lane change (right to left or left to 
right), Tire labyrinth, Sponsor block (from left or from right), 
Slalom (from left or from right), Lateral Wind (from left or from 
right), Jersey LR, Tire trap, Stop. We divided the cleaned SPR 
signal in 15 s time interval blocks, after normalization to leverage 
the signal amplitudes among subjects, and for each block we 
computed five statistical features: the interval variance, the 
energy, the mean absolute value, the mean absolute derivative, 
and the maximum absolute derivative. Each interval overlapped 
the previous one by 10 s, so we could derive a new feature vector 
every 5 s. In particular, we could define exactly the obstacle 
location and span, during which the individuals were supposed 
to be in a stress state. In this way, we could assign a flag equal to 
“1” to all of the intervals happening to fall or intersect with the 
stress episodes, and a flag equal to “0” to all the others, i.e., the 
ones happening to fall outside these stress episodes. Finally, after 
classification of the test set, we applied a re-label step to address 
the issue related to the number of single and anomalous “1” flags 
[22]. We were able to compare the results of an SVM, a Random 
Forest (RF) classifier, a Decision Tree (DT), and a k-Nearest 
Neighbours (k-NN) classifier, which provided a similar accuracy 
of about 73 %, with only the k-NN presenting a slightly lower 
value (68 %). All of the ML classifiers were implemented using 
Matlab (2017.a), and a 10-fold cross validation phase was 
considered for all of these algorithms. The Bayesian optimization 
was also used during the training procedure for all of the 
classifiers (for hyperparameter tuning). A Radial Basis Function 
(RBF) kernel was employed for the SVM model (see also [23]). 

3. EXPERIMENTAL SETUP 

As already stated, the test was carried out by using a driving 
simulator, consisting of a 3D driving simulator software and a 
motorized platform, located in a lab at the University of Udine. 
The experiment employed 10 test subjects, students of the 
University of Udine. They were asked to drive along a predefined 
track, in an urban area simulated by the City Car Driving 
software. The software enables the creation of an urban area with 
a nearby motorway, complete of car traffic, with the option of 
adding different stress-inducing factors, like pedestrian crossing, 
and vehicles unexpectedly changing lane (also from the opposite 
direction) or braking suddenly. These stressors do not occur 

 

Figure 3. Construction of the packets on the slave for transmission.  

 

Figure 4. Realignment of the packets on the master.  

http://vi-grade.com/
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exactly at the same location and time. However, the type and 
multiplicity of these stress-inducing events is similar between 
different simulations. The complete track is displayed in Figure 
5. The green solid line represents the motorway, and the orange 
solid line represents the city route. The subjects were asked to 
drive in two different situations: in the first there is a complete 
lack of traffic with no cars and people, whereas the second 
situation has car and pedestrian traffic. In this second situation, 
the traffic volume is kind of low, but the behaviour of traffic was 
set to “very aggressive”, where the cars and pedestrians act in a 
more unpredictable and temperamental way, with cars intruding 
in the subject’s way, or pedestrians crossing the road in forbidden 
points. One-half of the individuals started with the no traffic 
situation first, and then proceeded with the traffic situation (i.e., 
subjects 1, 2, 3, 4, and 10), while the remaining 50 % did the 
opposite order (i.e., subjects 5, 6, 7, 8, and 9). Completing the 
track in Figure 5 takes on average 10 minutes, with a similar 
required time to complete the motorway and urban section.  

4. EXPERIMENTAL RESULTS 

All of the SPR data collected from the 10 test subjects, after 
they had driven along a course in an urban area recreated by City 
Car Driving, are then cleaned through the MA removal block. 

These output signals are scaled to make a meaningful comparison 
possible, i.e., for each subject and for each driving condition, we 
standardize the corresponding signal using the mean and 
standard deviation resulting from the concatenation of both 
signals coming from the two driving conditions, with traffic and 
no traffic, for that subject. These standardized signals are 
ultimately fed to an ML algorithm. More specifically, the same 
five SPR features introduced in the previous section are extracted 
from each 15 s interval. We make a new interval start 5 seconds 
after the start of the previous one (therefore each interval is 
overlapping the previous one by 10 seconds). The various ML 
classifiers introduced in the previous section are only used for 
the test phase. In the end, we can look at all of the labels that 
each classifier gives as output and calculate the final number of 
labels equal to “1” or “0”, according to the intervals that it labels 
as “stress” or “non-stress”, for each subject and each driving 
situation (with and without traffic). Table 1 displays the 
percentage of labels equal to “1” (with stress), when considering 
the SVM, RF, DT, and k-NN classifiers, for each subject, and 
taking into account the entire complete test course in the traffic 
and non-traffic conditions.  

As an example, for the RF classifier, we show in Figure 6 the 
graphical representation of the values reported in Table 1. As we 
can deduce looking at all of the classifiers’ results, the no traffic 
situation appears to be less stressful than the traffic situation for 
all of the subjects excluding subject 4. In addition, there are some 

 

Figure 5. Graphical representation of the course: it comprises a motorway 
and an urban route.  

Table 1. Total number of intervals marked as “stress” in %, for each classifier and for each subject in the two driving conditions (with traffic and no traffic). The 
numeric difference of labels between the two conditions (traffic - no traffic) is also shown. 

SVM / Subject 1 2 3 4 5 6 7 8 9 10 mean 

Traffic  51.82 68.00 58.86 57.47 41.94 60.00 80.33 94.49 87.60 96.43 69.69 

No traffic 22.55 60.31 55.56 65.22 5.04 1.63 75.00 54.62 38.98 91.87 47.08 

Traffic - No traffic 29.26 7.69 3.31 -7.75 36.89 58.37 5.33 39.87 48.62 4.56 22.62 

RF / Subject 1 2 3 4 5 6 7 8 9 10 mean 

Traffic 56.93 72.00 59.49 62.07 44.35 64.44 77.05 93.70 89.26 92.14 71.14 

No traffic 26.47 65.65 54.70 66.09 6.72 0.81 72.58 57.98 37.29 89.43 47.77 

Traffic - No traffic 30.46 6.35 4.79 -4.02 37.63 63.63 4.47 35.72 51.97 2.71 23.37 

DT / Subject 1 2 3 4 5 6 7 8 9 10 mean 

Traffic 56.20 70.40 60.76 63.22 42.74 64.44 84.43 96.06 90.91 96.43 72.56 

No traffic  27.45 65.65 57.26 74.78 5.88 3.25 76.61 57.14 41.53 92.68 50.22 

Traffic - No traffic 28.75 4.75 3.49 -11.56 36.86 61.19 7.81 38.92 49.38 3.75 22.33 

k-NN / Subject 1 2 3 4 5 6 7 8 9 10 mean 

Traffic 56.93 70.40 58.86 63.79 42.74 63.70 75.41 92.91 87.60 90.71 70.31 

No traffic 27.45 67.94 54.70 76.52 5.04 2.44 75.00 55.46 40.68 79.67 48.49 

Traffic - No traffic 29.48 2.46 4.16 -12.73 37.70 61.26 0.41 37.45 46.93 11.04 21.82 

 

Figure 6. Total number of intervals labelled as “stress” by the RF classifier.  
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individuals where the difference between the positive labels in 
the two situations is higher (e.g., subjects 5, 6, and 9), while for 
others this difference is lower (e.g., subjects 3 and 7). We can try 
to explain this in different ways. Maybe the pressure of taking a 
test changed the expected stress reaction, or the outcome could 
be influenced by the order of the simulated situation experienced 
first by the subjects (traffic and no traffic, or the other way 
around). Still, for 90 % of the subjects the resulting “stress” 
interval count is higher in the traffic situation. In Figure 7 we 
show the output of the RF classifier for subject 9, where the 
difference between the positive labels in the traffic and no traffic 
situation is among the biggest positive ones we observe 
comparing all of the classifiers. For the sake of simplicity, we only 
plot the positive labels using a grey stem, located at the end of 
the corresponding 15 s classified SPR interval. The labels 

corresponding to the non-stress case are not included in the 
figure. The cleaned and normalized SPR signals of the subject in 
the two different situations (with traffic and no traffic) are also 
shown in a blue continuous line. The output of the DT classifier 
for the same subject is displayed in Figure 8 (here the difference 
is slightly lower than the one obtained with the RF). In Figure 9 
the output of the k-NN classifier for subject 4 is reported instead. 
This is the only subject where the difference between the positive 
labels in the traffic and no traffic scenario is always negative, for 
all of the classifiers. This negative difference is the biggest for the 
k-NN case. In Figure 10 we display a last example considering 
the SVM classifier’s output for subject 3. As we can notice, the 
classifiers well identify the increased stress level throughout the 
entire simulations.  

 

Figure 7. Output of the RF classifier for subject 9 in the two situations (without traffic and with traffic). 

 

Figure 8. Output of the DT classifier for subject 9 in the two situations (without traffic and with traffic). 
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5. CONCLUSIONS 

In this paper, we described a stress detection system that 
allows us to identify stress of drivers. Our system classifies 
overlapping 15 s signal blocks, and can therefore provide a 
classification output every 5 s, with a small delay in a real-time 
application and a good localization in time. The test subjects 
drove in a simulated urban environment, utilizing a car driving 
simulator located in our BioSens Lab at the University of Udine. 
We logged two SPR signals, from their hands, and we processed 
these signals through an MA removal block. We computed some 
features from the resulting single signal, and we sent them as 
input to different ML algorithms, thus comparing the final 
results. We showed that, regardless of the ML algorithm used, all 
of the subjects, except one, appeared more stressed when driving 
in an urban area prearranged with traffic. Therefore, through the 

use of a low-complexity SPR data acquisition sensor and the 
application of ML algorithms, we could effectively recognize 
stress states arising in drivers.  

REFERENCES 

[1] L. Bowen, S. L. Budden, A. P. Smith, Factors underpinning unsafe 
driving: A systematic literature review of car drivers, 
Transportation Research Part F: Traffic Psychology and 
Behaviour 72 (2020) pp. 184-210.  
DOI: 10.1016/j.trf.2020.04.008 

[2] G. Miyama, M. Fukumoto, R. Kamegaya, M. Hitosugi, Risk factors 
for collisions and near-miss incidents caused by drowsy bus 
drivers, International Journal of Environmental Research and 
Public Health 17(12) (2020).  
DOI: 10.3390/ijerph17124370 

 

Figure 9. Output of the k-NN classifier for subject 4 in the two situations (without traffic and with traffic). 

 

Figure 10. Output of the SVM classifier for subject 3 in the two situations (without traffic and with traffic). 

https://doi.org/10.1016/j.trf.2020.04.008
https://doi.org/10.3390/ijerph17124370


 

ACTA IMEKO | www.imeko.org December 2021 | Volume 10 | Number 4 | 123 

[3] L. R. Hartley, J. El Hassani, Stress, violations and accidents, 
Applied Ergonomics 25(4) (1994) pp. 221-230.  
DOI: 10.1016/0003-6870(94)90003-5 

[4] Y. Amichai-Hamburger (edited by), Technology and Psychological 
Well-being, Cambridge University Press, 2009, Online ISBN 
9780511635373. 
DOI: 10.1017/CBO9780511635373 

[5] D. L. Kitara, O. Karlsson, The effects of economic stress and 
urbanization on driving behaviours of Boda-boda drivers and 
accidents in Gulu, Northern Uganda: a qualitative view of drivers, 
The Pan African Medical Journal 36(47) (2020).  
DOI: 10.11604/pamj.2020.36.47.21382 

[6] E. Bosch, K. Ihme, U. Drewitz, M. Jipp, M. Oehl, Why drivers are 
frustrated: results from a diary study and focus groups, European 
Transport Research Review 12(52) (2020) pp. 1-13.  
DOI: 10.1186/s12544-020-00441-7 

[7] Y. Liu, X. Wang, Differences in driving intention transitions 
caused by driver’s emotion evolutions, International Journal of 
Environmental Research and Public Health 17(19) (2020).  
DOI: 10.3390/ijerph17196962 

[8] S. Zepf, J. Hernandez, A. Schmitt, W. Minker, R. W. Picard, Driver 
emotion recognition for intelligent vehicles: a survey, ACM 
Computing Surveys (CSUR) 53(3) (2020) pp. 1-30.  
DOI: 10.1145/3388790 

[9] S. Greene, H. Thapliyal, A. Caban-Holt, A survey of affective 
computing for stress detection: Evaluating technologies in stress 
detection for better health, IEEE Consumer Electronics Magazine 
5(4) (2016) pp. 44-56. 
DOI: 10.1109/MCE.2016.2590178 

[10] M. Moghimi, R. Stone, P. Rotshtein, Affective recognition in 
dynamic and interactive virtual environments, IEEE Transactions 
on Affective Computing 11(1) (2020), pp. 45-62.  
DOI: 10.1109/TAFFC.2017.2764896 

[11] C. Maaoui, A. Pruski, F. Abdat, Emotion recognition for human-
machine communication, Proc. of the 2008 IEEE/RSJ 
International Conference on Intelligent Robots and Systems 
(IROS), Nice, France, 22-26 September 2008, pp. 1210-1215.  
DOI: 10.1109/IROS.2008.4650870 

[12] J. Li, J. Lv, B. Oh, Z. Lin, Y. J. Yu, Identification of stress state for 
drivers under different GPS navigation modes, IEEE Access 8 
(2020) pp. 102773-102783.  
DOI: 10.1109/ACCESS.2020.2998156 

[13] Su-Jing Wang, Wen-Jing Yan, Xiaobai Li, Guoying Zhao, Chun-
Guang Zhou, Xiaolan Fu, Minghao Yang, Jianhua Tao, Micro-
expression recognition using color spaces, IEEE Transactions on 
Image Processing 24 (12) (2015), pp. 6034-6047. 
DOI: 10.1109/TIP.2015.2496314 

[14] Hanna Becker, Julien Fleureau, Philippe Guillotel, Fabrice 
Wendling, Isabelle Merlet, Laurent Albera, Emotion recognition 
based on high-resolution EEG recordings and reconstructed brain 
sources, IEEE Transactions on Affective Computing 11(2) 
(2017), pp. 244-257. 
DOI: 10.1109/TAFFC.2017.2768030 

[15] Bosun Hwang, Jiwoo You, Thomas Vaessen, Inez Myin-Germeys, 
Cheolsoo Park, Byoung-Tak Zhang, Deep ECGNet: An optimal 
deep learning framework for monitoring mental stress using ultra 
short-term ECG signals, Telemedicine and e-Health 24(10) (2018), 
pp. 753-772.  
DOI: 10.1089/tmj.2017.0250 

[16] F. Al Machot, A. Elmachot, M. Ali, E. Al Machot, K. Kyamakya, 
A deep-learning model for subject-independent human emotion 
recognition using electrodermal activity sensors, Sensors 19(7) 
(2019), art. no. 1659.  
DOI: 10.3390/s19071659 

[17] O. Vargas-Lopez, C. A. Perez-Ramirez, M. Valtierra-Rodriguez, J. 
J. Yanez-Borjas, J. P. Amezquita-Sanchez, An explainable machine 
learning approach based on statistical indexes and SVM for stress 

detection in automobile drivers using electromyographic signals, 
Sensors 21(9) (2021), art. no. 3155.  
DOI: 10.3390/s21093155 

[18] K. T. Chui, M. D. Lytras, R. W. Liu, A generic design of driver 
drowsiness and stress recognition using MOGA optimized deep 
MKL-SVM, Sensors 20(5) (2020), art. no. 1474.  
DOI: 10.3390/s20051474 

[19] J. Lee, H. Lee, M. Shin, Driving stress detection using multimodal 
convolutional neural networks with nonlinear representation of 
short-term physiological signals, Sensors 21(7) (2021), art. no. 
2381. 
DOI: 10.3390/s21072381 

[20] Rizwan Ali Naqvi, Muhammad Arsalan, Abdul Rehman, Ateeq Ur 
Rehman, Woong-Kee Loh, Anand Paul, Deep learning-based 
drivers emotion classification system in time series data for remote 
applications, Remote Sensing 12(3) (2020), art. no. 587.  
DOI: 10.3390/rs12030587 

[21] Geesung Oh, Junghwan Ryu, Euiseok Jeong, Ji Hyun Yang, 
Sungwook Hwang, Sangho Lee, Sejoon Lim, DRER: Deep 
Learning–Based Driver’s Real Emotion Recognizer, Sensors 21(6) 
(2021), art. no. 2166.  
DOI: 10.3390/s21062166 

[22] Pamela Zontone, Antonio Affanni, Riccardo Bernardini, 
Alessandro Piras, Roberto Rinaldo, Fabio Formaggia, Diego 
Minen, Michela Minen, Carlo Savorgnan, Car driver's sympathetic 
reaction detection through electrodermal activity and 
electrocardiogram measurements, IEEE Transactions on 
Biomedical Engineering 67(12) (2020) pp. 3413-3424.  
DOI: 10.1109/TBME.2020.2987168 

[23] Pamela Zontone, Antonio Affanni, Riccardo Bernardini, Leonida 
Del Linz, Alessandro Piras, Roberto Rinaldo, Supervised learning 
techniques for stress detection in car drivers, Advances in Science, 
Technology and Engineering Systems Journal 5(6) (2020), pp. 22-
29. 
DOI: 10.25046/aj050603  

[24] Pamela Zontone, Antonio Affanni, Riccardo Bernardini, Leonida 
Del Linz, Alessandro Piras, Roberto Rinaldo, Stress evaluation in 
simulated autonomous and manual driving through the analysis of 
skin potential response and electrocardiogram signals, Sensors 
20(9) (2020), art. no. 2494.  
DOI: 10.3390/s20092494 

[25] Pamela Zontone, Antonio Affanni, Riccardo Bernardini, Leonida 
Del Linz, Alessandro Piras, Roberto Rinaldo, Emotional response 
analysis using electrodermal activity, electrocardiogram and eye 
tracking signals in drivers with various car setups, Proc. of the 
2020 28th European Signal Processing Conference (EUSIPCO), 
Amsterdam, NL, 18-21 January 2021, pp. 1160-1164.  
DOI: 10.23919/Eusipco47968.2020.9287446 

[26] P. Zontone, A. Affanni, A. Piras, R. Rinaldo, Stress recognition in 
a simulated city environment using Skin Potential Response (SPR) 
signals, Proc. of the 2021 IEEE International Workshop on 
Metrology for Automotive (MetroAutomotive), Bologna, Italy, 1-
2 July 2021, pp. 135-140.  
DOI: 10.1109/MetroAutomotive50197.2021.9502867 

[27] A. Affanni, Dual-channel electrodermal activity and an ECG 
wearable sensor for measuring mental stress from the hands, Acta 
IMEKO 8(1) (2019), pp. 56-63.  
DOI: 10.21014/acta_imeko.v8i1.562 

[28] A. Affanni, Wireless sensors system for stress detection by means 
of ECG and EDA acquisition, Sensors 20(7) (2020), art. no. 2026. 
DOI: 10.3390/s20072026 

[29] A. Affanni, A. Piras, R. Rinaldo, P. Zontone, Dual channel 
Electrodermal activity sensor for motion artifact removal in car 
drivers' stress detection, Proc. of the 2019 IEEE Sensors 
Applications Symposium (SAS), Sophia Antipolis, France, 11-13 
March 2019, pp. 1-6. 
DOI: 10.1109/SAS.2019.8706023 

 

 

https://doi.org/10.1016/0003-6870(94)90003-5
https://doi.org/10.1017/CBO9780511635373
https://doi.org/10.11604/pamj.2020.36.47.21382
https://doi.org/10.1186/s12544-020-00441-7
https://doi.org/10.3390/ijerph17196962
https://doi.org/10.1145/3388790
https://doi.org/10.1109/MCE.2016.2590178
https://doi.org/10.1109/TAFFC.2017.2764896
https://doi.org/10.1109/IROS.2008.4650870
https://doi.org/10.1109/ACCESS.2020.2998156
https://doi.org/10.1109/TIP.2015.2496314
https://doi.org/10.1109/TAFFC.2017.2768030
https://doi.org/10.1089/tmj.2017.0250
https://doi.org/10.3390/s19071659
https://doi.org/10.3390/s21093155
https://doi.org/10.3390/s20051474
https://doi.org/10.3390/s21072381
https://doi.org/10.3390/rs12030587
https://doi.org/10.3390/s21062166
https://doi.org/10.1109/TBME.2020.2987168
https://doi.org/10.25046/aj050603
https://doi.org/10.3390/s20092494
https://doi.org/10.23919/Eusipco47968.2020.9287446
https://doi.org/10.1109/MetroAutomotive50197.2021.9502867
http://dx.doi.org/10.21014/acta_imeko.v8i1.562
https://doi.org/10.3390/s20072026
https://doi.org/10.1109/SAS.2019.8706023

