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1. INTRODUCTION 

One defining feature of malignant tumors is represented by 
the quick creation of abnormal cells that arise beyond their usual 
boundaries. Moreover, these cells have an uncontrollable 
reproduction and division rate up to constitute cancerous tissues 
since they do not respond to the standard signaling system of the 
body [1]–[3]. As stated by the World Health Organization, in 
2020, cancer will be the primary cause of approximately 10 
million deaths worldwide. By way of example, 2.26 million cases 
and 685 thousand deaths of breast cancer and 2.21 million cases 
and 1.8 million deaths of lung cancer, without forgetting the 
hundreds of thousands of children who develop malignant 
tumors each year [4]. 

An early diagnosis and screening can therefore contribute to 
reducing mortality and aid in more effective treatment. However, 
there is a lack of research on cancer behavior due to the various 
and complex molecular pathways involved in the genesis of 
tumors [5]. In most cases, the tumor degree – established by the 

cancer cells' characteristics throughout the tumor lesions' growth 
– is often used to make the diagnosis. Actually, a series of cancer 
screening methods, such as biopsy, Computed Axial 
Tomography (CAT), or scintigraphy, exist but are costly and 
intrusive. 

Biosensors in the microwave field may serve as a 
complementary or replacement method for early-stage non-
invasive prognosis of a variety of illnesses, including 
malignancies. In this context, the measurement of dielectric 
properties of biological tissues has achieved significant benefits 
in biomedical and healthcare due to their high sensitivity, 
versatility, and reduced invasiveness [6]–[9]. Indeed, this 
technology has consolidated its use in various fields. For 
example, Gugliandolo et al. [10] developed a microwave microstrip 
resonator to measure water vapor for industrial pipeline 
applications. Likewise, Majcher et al. [11] investigated the 
possibility of using a dagger-shaped probe to measure soil 
moisture in agrifood applications. Ultimately, D’Alvia et al. [12]–
[14] and Cataldo et al. [15] proposed several applications in the 
cultural heritage field.  

ABSTRACT 
In this paper, we propose the use of Principal Component Analysis (PCA) as a new post-processing method for the detection of breast 
and bone cancer cell lines cultured in vitro using a microwave biosensor. MDA-MB-231 and MCF-7 breast cancer cell lines and SaOS-2 
and 143B osteosarcoma cell lines were characterized using a circular patch resonator in the 1 MHz – 3 GHz frequency range. The return 
loss of each cancer cell line was analyzed, and the differences among each other were determined through Principal Component Analysis 
according to a protocol previously proposed mainly for electrocardiogram processing and X-ray photoelectron spectroscopy. Our results 
showed that the four cancer cell lines analyzed exhibited peculiar dielectric properties when compared to each other and to the growth 
medium, confirming that PCA could be employed as an alternative methodology to analyze microwave characterization of cancer cell 
lines which, in turn, may be deeply exploited as a tool for the detection of cancer cells in healthy tissues. 
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On these bases, microwave-based sensors are now gaining 
more and more interest in the biomedical field. As highlighted in 
the literature [16], microwave probes offer the possibility of 
analyzing living tissue properties through a non-invasive 
measurement of scattering parameters or complex permittivity 
[17]–[19] and identifying eventual pathological conditions as a 
variation in the dielectric properties. Concerning cancer cell and 
tissue characterization, Maenhout et al. [20] evaluated the dielectric 
properties (dielectric loss, dielectric constant, and conductivity) 
of healthy non-tumorigenic cell lines, namely MCF-10A and four 
breast cancer cell lines (Hs578T, MDA-MB-231, MCF7, and 
T47D) using an open-ended coaxial probe in 200 MHz to 
13.6 GHz range. Again, Zhang et al. [21] proposed a microwave 
biosensor capable of identifying the grade of colon cancer cell 
aggressiveness in the 4-12 GHz range. Finally, in previous work 
[22], we proposed a circular patch resonator for the measurement 
of cancer cell line aggressiveness (SaOS-2, 143B, MCF7, and 
MDA-MB-231) through the use of a Lorentzian fit model for the 
return loss signal processing and a weighted MANOVA 
(Multivariate Analysis of Variance) to investigate the differences 
in the three main parameters of interest, namely return loss, 
resonance frequency and full width at half maximum (FWHM). 

This paper proposes a novel methodology to analyze 
microwave sensor’s return loss based on an optimized Savitzky-
Golay filter, generally adopted for electrocardiogram processing 
or X-ray photoelectron spectroscopy [23], [24], and principal 
component analysis (PCA) to extract meaningful information 
from the data and present a final classification based on possible 
similarities between analyzed materials. 

2. MATERIALS AND METHODS 

2.1. Cell culture and Experimental Procedure 

As previously described [22], we had the opportunity to test 
two pediatric human osteosarcoma cell lines, SaOS-2 and 143B 
[25]–[28], and two human breast adenocarcinoma cell lines, 
MCF7 and MDA-MB-231 [29], [30] for their dielectric response. 
In particular, SaOS-2 and MCF7 are low-aggressive osteoblast-
like osteosarcoma and low-aggressive breast cancer cell lines, 
while 143B and MDA-MB-231 are high-aggressive lung-tropic 
metastatic osteosarcoma and high-aggressive bone-tropic breast 
cancer cell lines, respectively. Cells were seeded in a standard 
60 mm Petri dish at an average density of 8 × 105 cells/plate and 
placed in an incubator at 37 °C with 5 % CO2 for 24 hours to 
allow cells to form a homogeneous confluent monolayer. During 
the measurements, all cell types were maintained in 1.5 mL of 
Dulbecco's Modified Eagle Medium (DMEM) culture medium 
[31], and eight different dishes were prepared for each cell line. 
Moreover, eight samples of 1.5 mL pure DMEM were prepared 
as controls.  

A circular patch resonator with a radius of 20.00 mm [22] and 
a SubMiniature ver. A (SMA) connector placed on the 
conductive edge was employed to determine the dielectric 
properties of cell line samples. The key component of the 
measuring setup is the low-cost portable vector network analyzer 
MiniVNA-TINY [32], used for measuring the return loss|S11(f)| 
in the operating frequency range of 1.9 – 2.6 GHz. The 700 MHz 
frequency span was previously evaluated to maximize the 
resolution of acquired data (0.5 MHz) [22]. As a result, the return 
loss|S11(f)|was acquired for the eight samples of the five 
different “materials under test” i. e. different media and cell lines.  

2.2. Data Elaboration Process 

Principal component analysis (PCA) is a multivariate analysis 
that permits identifying and extracting meaningful information 
from the data and presenting a final classification based on a 
multiparametric similarity test and variables reduction [33]. 
Figure 1 shows a scheme of the applied pre-processing 
algorithm. All data processing was performed with OriginLab 
2017 software. 

In particular, PCA is a useful tool to reduce the dimension of 
a dataset, maintaining only those variables with the highest 
variance. As a result, all the vectors used to represent the 
acquired return loss are transposed into a new space with a 
dimension equal to the number of significant components 
determined by PCA, and the acquired data may be represented 
as: 

where X is the original data matrix containing the return loss 
data, L is the loading matrix, S is the score matrix based on the 
eigenvalues derived from the X matrix decomposition, and E is 
the error matrix, which contains the variance load not explained 
by the PCA model. The matrix dimension i is the number of 
acquired samples, j is the signal length, and k is the number of 
significant components.  

Before performing the PCA on the acquired Return Loss data, 
we applied a pre-processing algorithm, as proposed by Es Sebar 
et al. [34] for Raman spectroscopy applications: 

1) baseline removal through an interactive endpoint weighted 
(EPW) algorithm for each column vector of X;  

2) application of a Savitzky-Golay filter (SGF) using a 
window length of 14 points and fitted with a second-
order polynomial since SFG flattens peaks less than a 
moving average smoothing with the same window 
width [35]; 

 

Figure 1. Data processing workflow involved in PCA.  

𝑿(𝑖,𝑗) = 𝑺(𝑖,𝑘) × 𝑳(𝑘,𝑗)
T + 𝑬(𝑖,𝑗) = �̂�(𝑖,𝑗) + 𝑬(𝑖,𝑗) , (1) 
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3) data normalization by subtracting its average value from 
each X column and scaling by the standard deviation 
[36]. For the i-th column of X, equation 2 holds: 

with X* the normalized matrix, X(i,c) the i-th centered 
vector, and σ the standard deviation of the X(i,c) vector. 
This normalization is also known as standard normal 
variate (SNV) transformation. 

The principal PCA was performed by applying equation (2) in 
equation (1): 

The discriminant analysis based on a cross-validation test was 
performed as the final analysis, using as many k components as 
those with an eigenvalue greater than or equal to 3 [37].  

3. RESULTS AND DISCUSSIONS 

Figure 2 presents an example of data processing for DMEM, 
reporting the initial raw data (Figure 2a) and the three steps for 

the signal processing (Figure 2 b, c and d) baseline remotion, 
filtering, and normalization, respectively. In detail, the EPW 
algorithm translates and nutes the signal so that the tails lie at 
zero, while the SG filter evaluates a polynomial regression 
around each point, creating a new smoothed value for each data 
point. Finally, the SNV transformation permits to center and 
scale the data without altering their overall interpretation: indeed, 
if two variables were equally correlated before pre-processing, 
they would still be strongly correlated in post-processing. 
Therefore, for each of the forty acquired signals, the background 
is removed, the spectrum is filtered to improve the signal-to-
noise ratio, the normalization is completed, and the PCA is 
performed. 

The cumulative variance trend is shown in Figure 3. It is 
possible to observe that the first three components represent an 
overall variance of about 92.3 %, given by a contribution equal 
to 76.6 %, 11.9 %, and 3.8 % for components 1, 2, and 3, 
respectively. According to the literature [37] this can be 
considered a satisfactory value, as a balance between cumulative 
variance and complexity of the system to be analyzed for the 
subsequent analysis, also taking into account that the fourth 
component contributes only for 2.5 % of the total variance, while 
the remaining thirty-six components account for the 5.2 % of the 
whole. 

𝑿𝑖
∗ =

𝑿(𝑖,𝑟𝑎𝑤) − (𝑿(𝑖,𝑟𝑎𝑤))

𝜎 (𝑿(𝑖,𝑟𝑎𝑤) − (𝑿(𝑖,𝑟𝑎𝑤)))
=

𝑿(𝑖,𝑐)

𝜎(𝑿(𝑖,𝑐))
  (2) 

𝑿(𝑖,𝑗)
∗ = 𝑿(𝑖,𝑗)

∗̂ + 𝑬(𝑖,𝑗) . (3) 

    
a)      b) 

    
c)      d) 

Figure 2. a) Example of Raw Return Loss for the DMEM and computed baseline, b) Return Loss for the DMEM after baseline removal through EPW algorithm, 
c) Return Loss for the DMEM filtered with SG, and d) Return Loss for the DMEM normalized with SNV transformation, i. e. the final output.  
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Figure 4 shows the result of the PCA, reporting the scores of 
the three principal components as a combination of two 
separately. 

As can be seen, in figures 4 (a) and (b), the measurements 
group together into two macro clusters: one containing the pure 

medium, highlighted by a dotted rectangle, and a second 
containing all the tested cell types, highlighted by a dashed 
rectangle. Nonetheless, in both figures, it is also possible to 
distinguish five sub-clusters highlighted by the ellipses enclosing 
similar spectra with a 95 % confidence level. Interesting results 
can be obtained by focusing on the inclination of these clusters. 
Indeed, the pure medium revealed a different inclination than 
those obtained when testing all the cell lines. On the other hand, 
the two less aggressive cell lines (SaOS-2 and MCF7) have the 
same inclination as the two aggressive cell lines (MDA-MB-231 
and 143B). More in detail, the pure medium cluster and the 
cluster representing the highly aggressive cell lines (143B and 
MDA-MB-231) have the same inclination (100° and 90° 
respectively) both when focusing on PC2 vs. PC1 and PC3 vs. 
PC1, while the inclination of the cluster representing the low-
aggressive cell lines (SaOS-2 and MCF7) is 105° when 
representing PC2 vs. PC1 and 84° when computing PC3 vs. PC1. 
As a matter of fact, the inclination of the 95 % confidence 
interval cluster may be a parameter that can give helpful 
information on tumor aggressiveness. 

Figure 4 c) shows that cell lines and pure DMEM did not 
show proper clusterization. However, the absence of clusters in 
the PC2 vs. PC3 plot can be explained by considering the low 
variance captured by the third component (3.9 %). Indeed, this 
component plays a crucial role in the model in linear 

 

Figure 3. Cumulative percentage variance for the first seven components, as 
obtained from the PCA, with the third component highlighted in green.  

 
     a)                 b) 

 
         c) 

Figure 4. Cumulative Score plots of the first three components: a) PC1-PC2, b) PC1-PC3, and c) PC2-PC3. The percent variance obtained for each component is 
in the axis legend. The colored ellipse highlights the five clusters representing the 95 % confidence interval. The dotted and dashed rectangles highlight the 
medium and “cell” clusters.  
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combination with the main two components to allow for a 
cumulative variance higher than 90.0 % (as discussed above), 
thus improving the fitting of the essential peaks found in the two 
main components. 

Subsequently, we evaluated the cross-validation of the PCA 
loadings concerning the first three components, and the results 
are reported in Table 1. This test highlighted that pure DMEM 
was detected with a prediction accuracy of 100.0 %, SaOS-2, 
MCF7 with a prediction accuracy of 87.5 %, and MDA-MB-231 
with a prediction accuracy of 75.0 %. Finally, 143B cells have a 
prediction accuracy of 50.0 %. It is worth noting that these 
discretized prediction accuracy results are strictly related to the 
number of tested samples. Indeed, when testing 8 samples, every 
prediction accounts for 12.5 % accuracy. 

Figure 5 reports the cumulative results, allowing a better 
interpretation of the PCA predictions. The figure clearly shows 
that all the 8 DMEM tested samples have been appropriately 
predicted, while, for example, among the 8 tested SaOS-2 
samples (the red bar), seven have been appropriately recognized, 
while 1 was interpreted as MDA-MB-231 cells. Similarly, among 
the 8 tested 143B samples, 4 have been interpreted as 143B, 2 as 

MCF7, and 2 as MDA-MB-231; of the 8 tested MCF-7 samples, 
7 have been appropriately recognized and 1 as 143B, and among 
the 8 tested MDA-MB-231 samples 6 have been appropriately 
interpreted and 2 as 143B cells. 

 Interestingly, the final average prediction error for the entire 
data set is 20.0 %. Moreover, these results are in high agreement 
with that reported in [22], in which the different cell lines were 
studied with reference to the main Lorentzian fit parameters 
(return loss, resonance frequency, and FWHM) through a 
MANOVA test. In particular, in [22], we reported a statistical 
significance difference between DMEM and all tested cell lines 
(p < 0.0001), and in this work, we obtained a cross-validation of 
100.0 %. Similarly, MANOVA reported a significant (p < 0.5) 
difference between 143B vs. MCF7 and no significant difference 
between 143B and MDA-MB-231, and PCA prediction accuracy 
was 12.5 % and 25.0 %, respectively. 

Therefore, the procedure reported in this work represents an 
alternative methodology to distinguish tumor aggressiveness 
without using any fitting procedure, hence only based on the raw 
data, whose limit at present consists of the limited number of 
measurements for each group. 

4. CONCLUSIONS 

This paper proposes an alternative methodology to analyze 
the return loss of tumor cell lines. The method allows for 
discriminating between groups of different tumor cells, analyzing 
the appropriately filtered and normalized purchase signal, leading 
to results in agreement with those obtained with traditional 
methods, such as the Lorentzian fit. 

This methodology is based on a pre-processing algorithm, 
background removal associated with a Savitzky-Golay filter, a 
normalization procedure concerning the signal variation, and a 
subsequent Principal Component Analysis. Results showed good 
average accuracy of the prediction methodology, confirming the 
feasibility of PCA also for this kind of signal, whereas it has 
consolidated applications for processing more complex and 
multi-peak signals. 

As a future development, we expect to realize a "split ring 
resonator" sensor inducing more peaks in the instrument's 
uniformity band to evaluate better the reliability of the 
methodology proposed here. 

 

Figure 5. Prediction rate for each group.  

Table 1. Cross-validation Summary for Training Data and Error Rate  
 

Predicted Group 

DMEM SaOS-2 MDA-MB-231 MCF-7 143B Total 

DMEM 
8 0 0 0 0 8 

100.0 % 0.0 % 0.0 % 0.0 % 0.0 % 100.0 % 

SaOS-2 
0 7 1 0 0 8 

0.0 % 87.5 % 12.5 % 0.0 % 0.0 % 100.0 % 

MDA-MB-231 
0 0 6 0 2 8 

0.0 % 0.0 % 75.0 % 0.0 % 25.0 % 100.0 % 

MCF-7 
0 0 0 7 1 8 

0.0 % 0.0 % 0.0 % 87.5 % 12.5 % 100.0 % 

143B 
0 0 2 2 4 8 

0.0 % 0.0 % 25.0 % 25.0 % 50.0 % 100.0 % 

Total 
8 7 9 9 7 40 

20.0 % 17.5 % 22.5 % 22.5 % 17.5 % 100.0 % 

 Error Rate 
 

DMEM SAOS MDA MCF7 143B Total 

Prior 0.2 0.2 0.2 0.2 0.2 
 

Rate 0.0 % 12.5 % 25.0 % 12.5 % 50.0 % 20.0 % 
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