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1. INTRODUCTION 

The use of wearable devices is constantly spreading all over 
the world, thanks to their wide accessibility and high ease of use 
[1] (even if further actions and improvements are still needed to 
overcome barriers for a larger adoption by older adults [2]). 
Nowadays a continuously growing number of people wear a 
smartwatch monitoring a plethora of physiological parameters: 
heart rate (HR) [3], energy expenditure (EE) [4], blood volume 
pulse signal (BVP) [5], electrodermal activity (EDA) [6], 
acceleration signal [7], sleep quality [8], respiration rate [9], stress-
related indices [10], etc. These measurements can be useful for 
different purposes, from cardiovascular monitoring [11] to sleep 
tracking [12], through activity assessment [13], fitness-oriented 
applications [14] and blood pressure observation [15], just to cite 

some. Furthermore, in the recent months wearable devices have 
expanded their application also to the possible detection of early 
symptoms related to SARS-CoV-2 pandemic [16], since this virus 
has stressed the importance of remote monitoring both to limit 
contagion and for “testing, tracking and tracing” strategies [17]. 
However, there are also critical aspects that should be thoroughly 
considered, pertaining to health-related data privacy issues and 
measurement accuracy of these innovative wearable instruments 
[5], which undoubtedly play important roles in the era of 
personalized medicine and digital health [18], [19]. 

Physiological signals can be collected through wearable 
devices 24 hours a day, 7 days a week, producing big amounts of 
data, which are analysed through Artificial Intelligence (AI) 
algorithms more and more frequently, in order to provide useful 
information for the so-called decision-making processes [20], 

ABSTRACT 
This paper aims at characterizing the variability of physiological data collected through a wearable device (Empatica E4), given that both 
intra- and inter-subject variability play a pivotal role in digital health applications, where Artificial Intelligence (AI) techniques have 
become popular. Inter-beat intervals (IBIs), ElectroDermal Activity (EDA) and Skin Temperature (SKT) signals have been considered and 
variability has been evaluated in terms of general statistics (mean and standard deviation) and coefficient of variation. Results show that 
both intra- and inter-subject variability values are significant, especially when considering those parameters describing how the signals 
vary over time. Moreover, EDA seems to be the signal characterized by the highest variability, followed by IBIs, contrary to SKT that 
results more stable. 
This variability could affect AI algorithms in classifying signals according to particular discriminants (e.g. emotions, daily activities, etc.), 
taking into account the dual role of variability: hindering a net distinction between classes, but also making algorithms more robust for 
deep learning purposes thanks to the consideration of a wide test population. Indeed, it is worthy to note that variability plays a 
fundamental role in the whole measurement chain, characterizing data reliability and impacting on the final results accuracy and 
consequently on decision-making processes. 
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[21], thus supporting human choices in different fields, from 
Industry 4.0 [22], [23] to eHealth [24]. The purposes can be 
different: emotion classification [25], activity recognition [26], 
hypertension management [27], fall detection [28], smart living 
environments and well-being assessment [29], and so on. In 
order to be able to develop robust models, capable to provide 
reliable information, data quality is fundamental [30]; in this 
perspective, not only hardware and acquisition options (e.g. 
sampling frequency, signal-to-noise ratio (SNR), resolution, etc.) 
have a big impact, but also data variability, linked both to 
different sources to collect data [31], but also to the physiological 
variability itself. Indeed, the classification performance of AI 
algorithms surely depends on the variability observed in the data 
collected on the test population: if it is true that (physiological) 
variability somehow hinders a perfect discrimination among 
classes, on the other hand it is necessary to test a wide population 
in order to include its variability and avoid overfitting issues. 
These aspects should be thoroughly considered when developing 
AI algorithms for digital health applications, which cannot 
neglect physiological variability characterising the involved 
population, and consequently the measured data. 

The study reported in this manuscript aims at evaluating the 
intra- and inter-subject variability of different physiological 
signals collected through a wearable wrist-worn device 
(Empatica E4). In particular, the authors have analysed cardiac-
related parameters (i.e. heart rate variability – HRV – parameters 
computed on the BVP signal measured through a 
photoplethysmographic – PPG – sensor), features computed on 
EDA signal and skin temperature (SKT) values. Mean, standard 
deviation and coefficient of variation have been computed for 
each extracted parameter, considering the repeated tests on a 
same subject to evaluate intra-subject variability, and the whole 
acquired data for inter-subject variability. 

The rest of the paper is organized as follows: Section 2 
describes the materials and methods employed for data 
acquisitions and for the evaluation of data variability, Section 3 
reports the intra- and inter-subject variability results, and finally 
in Section 4 the authors provide their considerations and 
conclusions. 

2. MATERIALS AND METHODS 

2.1. Participants 

The study was conducted on 10 healthy volunteers: 3 males, 
7 females; age of (33 ± 16) years with a range of (15 - 59) years; 
height of (169.78 ± 8.83) cm; weight of (66.55 ± 12.00) kg; BMI 
of (22.92 ± 2.14) kg⁄m2 – data are reported as mean ± standard 
deviation. They declared they did not take any medication in the 
24 hours preceding the tests, nor had particular clinical histories 
possibly influencing the results. Before starting the tests, each 
participant was informed on the test purpose and procedure and 
signed an informed consent according to the European 
Regulation 2016/679, i.e., the General Data Protection 
Regulation (GDPR) to obtain the permission for processing 
personal data. 

2.2. Data collection 

In order to assess the inter-subject and intra-subject variability 
of physiological parameters, each subject repeated the 
acquisitions six times, for a total of 60 recordings, each lasting 5 
minutes. Ambient temperature and relative humidity were equal 
to (20 ± 2) °C and (50 ± 5) %, respectively, to be perceived as 
comfortable by most of the involved individuals. The 

participants (with a skin colour classification of Type II – 
Fitzpatrick scale), laying comfortably in a supine position (i.e., in 
rest condition) in a quiet room, were instructed to relax as much 
as possible, breathe normally, and not talk during recordings, in 
order to minimize movement artifacts. As shown in Figure 1, the 
physiological signals were simultaneously collected through a 
multisensory wearable device, namely Empatica E4 [32], placed 
on the dominant wrist. This acquisition device was chosen as it 
provides the raw data, thus resulting particularly suitable for 
research purposes. Firstly, the participants were allowed to adjust 
the device positioning to increase the comfort feeling. Then, the 
device placement was verified to ensure the optimal skin contact 
(not worn too tightly or too loosely), and consequently to 
guarantee the optimal conditions for reliable PPG sensor 
acquisition [33] and, therefore, as high as possible data quality. 

2.3. Data acquisition device 

Individual physiological signals were recorded with the 
multimodal device Empatica E4 (Class IIA Medical Device 
according to the 93/42/EEC Directive) – firmware version: FW 
3.1.0.7124. Such a device captures the Inter-Beat-Interval (IBI), 
BVP, EDA, human SKT, and 3-axis accelerometer signals. In 
particular, BVP and IBI signals, both sampled at 64 Hz with a 
resolution of 0.9 nW/Digit, are derived from the PPG sensor. 
On the bottom of the wristband, there are two green light 
emitting diodes (LEDs) enabling the measurements of blood 
volume changes and heartbeats, and two red LEDs for reducing 
the motion artifacts. Additionally, two units of photodiodes 
(total 14 mm2 sensitive area) measure the reflected light. On the 
bracelet band of Empatica E4, two Ag/AgCl electrodes allow to 
pass a small amount of alternating current (frequency 8 Hz, with 
a maximum peak-to-peak value of 100 µA) for measuring the 
skin conductance in µS, sampled at 4 Hz with a resolution of 
900 pS in the range of [0.01, 100] µS. At the same sampling 
frequency (4 Hz), an infrared thermopile, placed on the back of 
the case, records the SKT data in °C with an accuracy of 
± 0.20 °C (within the range 36 °C - 39 °C), and a resolution of 
0.02 °C. Calibration is valid in the range [-40, 115] °C. The last 
sensor is a 3-axial MEMS accelerometer used to collect the 
acceleration along the three dimensions X, Y, Z with a 32 Hz 
sampling frequency and a default measurement range of ± 2 g. 
In this case the resolution of the output signal is 0.015 g (8 bit). 
A dedicated mobile application (E4 Realtime) was used to stream 
and view data in real-time on a mobile device connected with 
Empatica E4 via Bluetooth Low Energy (BLE). Following each 
measurement session, data were automatically transferred to a 
cloud repository (Empatica Connect) to view, manage, and 
download raw data in .csv format in the post-processing phase 
of the study. 

 

Figure 1. Measurement setup.  
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2.4. Data analysis 

As mentioned above, in this study the data variability analysis 
was conducted on HRV (or, more precisely, on Pulse Rate 
Variability [34], [35]), EDA and SKT signals, previously 
processed in MATLAB environment in order to extract relevant 
features. Regarding the HRV evaluation, after applying a 
previously developed artifact correction method [36], the analysis 
was performed on IBIs signals by using the Kubios toolbox [37]. 
Seven meaningful HRV-related parameters were extracted from 
the corrected IBIs signals in time domain (Table 1), namely: 
mean and standard deviation of IBIs; mean, standard deviation, 
minimum and maximum values of HR; root mean square of 
successive RR interval differences. Frequency domain 
parameters were not considered in the present work, to limit the 
number of parameters extracted from the same signal, and also 
because the parameters in frequency domain can be strongly 
affected by spurious components linked to movement artifacts, 
to which wrist-worn wearable devices are prone [38], even more 
during intense physical activities [39]. Concerning EDA data, the 
Bio-SP toolbox [40] was used to pre-process the signals and to 
extract all the features that the toolbox permits to compute. 
Indeed, EDA signal is composed by the superimposition of two 
components, specifically skin conductance response (SCR) and 
skin conductance level (SCL), related to the fast response to 
external stimuli events and the slow changes in baseline levels, 
respectively. This means that the SCL depends on the individual 
characteristics (e.g. skin condition), and can differ markedly 
between individuals. Consequently, under rest condition with no 
external stimuli, the SCL has a higher impact than the SCR 
component on both EDA signal trend and amplitude. According 
to the literature [41], a Gaussian low-pass filter, with a 40-point 
window and a sigma of 400 ms, was applied to reduce noise and 
motion artifacts due to potential subject’s wrist movements. In 
order to characterize the EDA signal, the following five features 
were computed within Bio-SP toolbox in time domain (Table 1): 
SCR mean duration, SCR mean amplitude, SCR mean rise-time, 
EDA mean signal, number of SCRs. Finally, since an inspection 
of the SKT data revealed slight and slow °C changes at rest, no 

filters were applied. Therefore, from the raw SKT signal the 
following parameters were extracted (Table 1): mean and 
standard deviation, minimum and maximum of skin temperature.  

Once the whole set of features was computed and extracted 
from the considered signals, both intra- and inter-subject 
variability was evaluated for each metric. More specifically, data 
variability was estimated by computing the mean (𝜇), standard 

deviation (𝜎) and coefficient of variation (𝑐v = 𝜎 𝜇⁄ ) for all the 
extracted features. Furthermore, the normality of the parameters 
distributions was verified by means of Shapiro-Wilk test [42] 
(null hypothesis: the test population is normally distributed; p-
value ≤ 0.05 considered as statistically significant). 

3. RESULTS 

In this section, results are reported by grouping them 
according to data type: cardiac related parameters (i.e. HRV 
analysis parameters, Subsection 3.1), EDA-related parameters 
(Subsection 3.2) and skin temperature parameters (Subsection 
3.3). 

Results are reported in tables as 𝜇 ± 𝜎 (𝑐v); some examples of 
mean distributions are also shown by using the histogram 
representation. 

3.1. HRV parameters 

The authors analysed the variability of HRV signal at 
parameters level, focusing on those extracted in time domain. 
The Shapiro-Wilk test evidenced that RR_mean, HR_mean, 
HR_min and HR_max can be considered as normally distributed 
(p-value ≥ 0.05). An example of the distribution is reported in 
the histogram (Figure 2) related to RR_mean parameter. For the 
others (i.e. RR_std and RMSSD), the null hypothesis cannot be 
rejected; the reason could be found in the limited numerosity of 
the test population (60 recordings on 6 subjects). Similarly, the 
HR_std resulted to have non-normal distribution, probably also 
due to the presence of one outlier subject (i.e. subject no. 6, see 
Table 2). 

Observing the variability results in Table 2, it is possible to 
notice a very high variability, in particular for the parameters 

Table 1. Time-domain features extracted from the physiological signals acquired in the tests.  

Signal Features Measurement unit Description 

HRV 

RR_mean ms Mean value of inter-beat intervals 

RR_std ms Standard deviation of inter-beat intervals 

HR_mean bpm Mean value of heart rate 

HR_std bpm Standard deviation of heart rate 

HR_min bpm Minimum value of heart rate 

HR_max bpm Maximum value of heart rate 

RRMSD ms Root mean square of successive inter-beat intervals 

EDA 

SCR_D_mean s Mean duration of skin conductance response signal 

SCR_A_mean µS Mean amplitude of skin conductance response signal 

SCR_RT_mean s Mean rise time of skin conductance response signal 

EDA_mean µS Mean value of EDA signal 

SCR_n - No. of skin conductance response peaks 

SKT 

SKT_mean °C Mean value of skin temperature 

SKT_std °C Standard deviation of skin temperature 

SKT_min °C Minimum value of skin temperature 

SKT_max °C Maximum value of skin temperature 
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describing how the measurement oscillates around its mean 
value, i.e. the standard deviation values of RR, HR and RMSSD, 
reporting inter-subject variabilities of 55.8 %, 126.9 % and 
65.7 %, respectively. This seems to underline the physiological 
variability, hence a subject’s condition of interest cannot be 
described (and classified) without properly considering such data 
variability. A particular remark should be made on the extremely 
high inter-variability of HR_std parameter; indeed, this could be 
linked to the subject no. 6 reporting an extremely high variability 
(i.e., 125.1 %), as already mentioned above. Indeed, by 
performing a visual inspection of data collected on subject no. 6, 
among the tests conducted, one measurement on this subject 
resulted particularly noisy, hindering a reliable HRV analysis 
despite the use of proper artifact correction methods in the pre-
processing phase. However, if this test is discarded from the 
variability analysis, the intra-variability of HR_std reduces from 
(12 ± 15) bpm (125.1 %) to (6 ± 3) bpm (50.0 %) – while the 
remaining parameters do not vary substantially; in this way, the 
inter-subject variability related to HR_std parameter would be 
(4 ± 3) bpm (81.1 %). The observed noise, which quite often 
characterises signals acquired through PPG sensors of wearable 
devices, could be an effect of subjects’ wrist movements [38]. 

Intra-subject variability shows similar results, evidencing a 
very high variability, especially for the standard deviation 
parameters, describing the variations over time. On the other 
hand, mean value parameters show a quite low intra-subject 

variability, with values often lower than 10 % (e.g. for RR_mean 
parameter, lower than 10 % with the exception of 3 subjects out 
of 10). 

3.2. EDA parameters 

As stated above, in rest conditions SCL is the predominant 
component of EDA signal; this can result in very low intensity 
signals related to SCR component (more linked to eventual 
stimuli), and consequently the EDA_mean parameter values are 
expected to be low. 

In fact, in Table 3, EDA_mean parameters show very low 
values, up to 0.0005 μS for the subject no. 9. Such very low mean 
values, together with high signal variability (i.e. high standard 
deviation), result in extremely high coefficients of variation (see 

for example subjects no. 3 and 9, where 𝑐v is extremely high due 
to the fact that the mean value of signal is an order of magnitude 
lower than its standard deviation). 

More in general, the parameters related to the EDA signals 
show a very high variability, with coefficient of variation values 
related to inter-subject variability often over 100 %. Also, intra-
subject variability seems to be extremely high, evidencing that 
EDA signal is not stable over time, hence it should be considered 
in this long-term evolution, instead of limiting to use descriptive 
statistics. Such a high variability could be attributable to the fact 
that EDA measurements at total rest, with no external stimuli, 
seem to be quite complicated, especially when performed by 
means of wearable devices. In fact, there are multiple subjective 
causes influencing the measurement results. Furthermore, it 
should be considered that wrist EDA results to be quite different 
from standard finger EDA [43]. Regarding the type of 
distribution, no features extracted from EDA can be considered 
as normally distributed. The reason could be attributed again to 
the restricted test population. An example of distribution is 
reported in the histogram (Figure 3) for EDA_mean parameter. 

3.3. Skin temperature parameters 

Contrarily to the previously reported parameters, skin 
temperature (Table 4) shows measures slowly varying over time 
(with the exception of the standard deviation value, evidencing a 
higher variability – up to 87.1 % in intra-subject results), hence 
providing a more precise footprint of a subject in a determined 
condition. On the other hand, this could mean that the wrist skin 
temperature has a slow dynamic, thus it could be not suitable to 
rapidly mirror possible changes in the subject’s psycho-physical 

Table 2. Variability of HRV parameters in time domain. Results are reported as µ ± σ (cv). 

Subject RR_mean in ms RR_std in ms HR_mean in bpm HR_std in bpm HR_min in bpm HR_max in bpm RMSSD in ms 

1 1044 ± 66 (6.3 %) 70 ± 43 (61.0 %) 58 ± 4 (6.5 %) 4 ± 2 (49.9 %) 50 ± 4 (8.8 %) 65 ± 6 (8.7 %) 94 ± 64 (68.6 %) 

2 1152 ± 30 (2.6 %) 36 ± 12 (33.7 %) 52 ± 1 (2.5 %) 2 ± 1 (48.5 %) 49 ± 2 (3.3 %) 58 ± 4 (6.1 %) 46 ± 16 (33.7 %) 

3 934 ± 44 (4.7 %) 40 ± 13 (33.6 %) 64 ± 3 (4.8 %) 3 ± 1 (39.9 %) 59 ± 5 (7.8 %) 76 ± 5 (6.1 %) 49 ± 18 (36.8 %) 

4 1008 ± 80 (8.0 %) 83 ± 51 (61.1 %) 60 ± 5 (8.1 %) 6 ± 5 (87.3 %) 49 ± 7 (13.6 %) 70 ± 5 (7.8 %) 114 ± 69 (60.1 %) 

5 1027 ± 80 (7.8 %) 39 ± 20 (51.9 %) 59 ± 5 (8.0 %) 3 ± 2 (72.0 %) 53 ± 3 (5.0 %) 64 ± 6 (9.7 %) 54 ± 30 (56.1 %) 

6 991 ± 133 (13.5 %) 72 ± 26 (35.5 %) 62 ± 9 (14.2 %) 12 ± 15 (125.1 %)* 52 ± 8 (15.1 %) 74 ± 12 (16.5 %) 97 ± 42 (43.2 %) 

7 938 ± 31 (3.4 %) 68 ± 28 (40.5 %) 64 ± 2 (3.4 %) 6 ± 5 (81.3 %) 55 ± 5 (9.1 %) 74 ± 4 (4.8 %) 90 ± 44 (48.9 %) 

8 873 ± 44 (5.0 %) 48 ± 2 (4.9 %) 69 ± 3 (5.0 %) 4 ± 1 (10.4 %) 61 ± 3 (4.2 %) 79 ± 6 (6.9 %) 45 ± 2 (4.7 %) 

9 1083 ± 139 (12.9 %) 31 ± 7 (23.7 %) 56 ± 7 (12.8 %) 2 ± 1 (24.8 %) 53 ± 7 (12.8 %) 61 ± 7 (11.5 %) 39 ± 7 (18.6 %) 

10 885 ± 130 (14.7 %) 49 ± 19 (39.6 %) 69 ± 10 (14.7 %) 4 ± 1 (16.9 %) 62 ± 9 (15.3 %) 83 ± 7 (8.7 %) 43 ± 66 (39.0 %) 

Tot. 993 ± 117 (11.8 %) 54 ± 30 (55.8 %) 61 ± 7 (12.0 %) 4 ± 6 (126.9 %)* 54 ± 7 (12.9 %) 70 ± 10 (14.2 %) 67 ± 4 (65.7 %) 

* Results affected by a particularly noisy test performed on subject no.6 

 

Figure 2. Histogram related to RR_mean parameter (HRV signal). 
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conditions. None of the parameters extracted from SKT signal 
can be considered normally distributed, according to the 
Shapiro-Wilk test. The reason could be the same indicated for 
the other signal (i.e. narrow test population). An example is 
reported in the histogram (Figure 4) for SKT_mean (where the 
distribution skewness is markedly < 0). 

4. DISCUSSION AND CONCLUSIONS 

The use of wearable devices in a growing number of 
application fields emphasizes the need of considering the 
metrological aspects determining the reliability of measurement 
results. In recent years, AI algorithms have known unprecedent 
developments, providing extremely powerful tools to support 
decision-making processes and thus prevent serious health-issues 
in a variety of digital health applications, among which affective 
states classification, eHealth, smart living environments and 
ambient assisted living. In order to obtain good performances 
from AI algorithms, data accuracy and data quality are of 
uttermost importance, along with data variability that 
undoubtedly represents a key factor in this scenario. 
Furthermore, only a part of variability can be minimised (e.g. by 
correcting the sensor positioning in the data acquisition phase), 
but another part is inevitable and uncontrollable, given that there 
is a physiological variability, whose values cannot be disregarded. 
It is a matter of fact that all the steps of the measurement chain 
influence the final results of AI algorithms: from the sensors 

uncertainties to the data variability and accuracy, all influencing 
the reliability of the output information. In a real-life context, 
this contributes to reveal a corrupted output with a poor 
information quality, which could be used for different final 
purposes (e.g. support to decision-making processes in digital 
health scenarios) [29]. 

The results obtained in this study have highlighted the 
physiological data variability among different subjects and intra-
subject, considering data acquired by means of a wearable device. 
In particular, HRV and EDA signals have been firstly analysed, 
observing that HRV parameters in time domain exhibit higher 
inter-subject variability when considering measures describing 
their variations over time (i.e. standard deviation values), with 
respect to average values, which seem more stable. Furthermore, 
EDA signals appear to be extremely changeable even in a same 
subject, evidencing the intrinsic variable nature of this type of 
data. Indeed, this type of signal is referred to wrist skin 
conductance, instead of finger one, which is the site generally 
used for standard measurements. Previous studies underlined 
that the measurement is not reliable if compared to finger/palm 
skin conductivity [44]; in fact, thermoregulatory processes would 
affect the results more than psychophysiological phenomena, 
which on the contrary are more influencing in the standard 
measurement sites [45]. 

On the other hand, other types of physiological data, such as 
SKT, can show a quite limited variability, resulting more stable 
than HRV and EDA. However, the slow changes could be 

Table 3. Variability of EDA parameters. Results are reported as µ ± σ (cv). 

Subject SCR_D_mean in s SCR_A_mean in μS SCR_RT_mean in s EDA_mean in μS SCR_n 

1 10.2 ± 5.0 (49.4 %) 0.0097 ± 0.0034 (34.8 %) 5.3 ± 2.6 (48.7 %) 0.0022 ± 0.0032 (144.5 %) 23 ± 7 (30.5 %) 

2 26.1 ± 26.1 (99.8 %) 0.0138 ± 0.0056 (72.7 %) 13.1 ± 10.6 (80.3 %) 0.0030 ± 0.0052 (177.1 %) 14 ± 10 (71.2 %) 

3 8.3 ± 5.4 (65.0 %) 0.0095 ± 0.0056 (59.3 %) 4.3 ± 2.9 (68.6 %) 0.0010 ± 0.019 (1980.1 %) 12 ± 9 (77.7 %) 

4 12.4 ± 17.5 (140.9 %) 0.0098 ± 0.0079 (80.8 %) 9.4 ± 15.8 (167.9 %) 0.0078 ± 0.010 (133.0 %) 21 ± 16 (76.6 %) 

5 18.9 ± 19.2 (101.7 %) 0.0115 ± 0.0044 (38.1 %) 5.2 ± 3.4 (65.5 %) 0.0027 ± 0.0044 (131.4 %) 22 ± 13 (59.5 %) 

6 15.2 ± 10.0 (65.6 %) 0.0112 ± 0.0051 (45.6 %) 9.3 ± 7.4 (79.5 %) 0.0043 ± 0.0051 (50.1 %) 18 ± 7 (41.0 %) 

7 14.5 ± 14.4 (99.2 %) 0.0105 ± 0.0090 (85.7 %) 10.6 ± 12.2 (115.1 %) 0.0066 ± 0.0090 (97.4 %) 16 ± 14 (85.5 %) 

8 5.7 ± 1.3 (22.5 %) 0.0257 ± 0.0160 (62.7 %) 3.1 ± 0.7 (23.1 %) 0.0029 ± 0.0160 (126.9 %) 23 ± 9 (38.0 %) 

9 4.9 ± 0.9 (18.1 %) 0.0116 ± 0.0061 (52.9 %) 2.7 ± 0.5 (18.4 %) 0.0005 ± 0.0061 (862.7 %) 30 ± 9 (31.3 %) 

10 5.6 ± 1.2 (20.5 %) 0.0144 ± 0.0065 (45.6 %) 2.9 ± 0.6 (19.3 %) 0.0029 ± 0.0065 (137.9 %) 30 ± 8 (27.9 %) 

Tot. 12.2 ± 13.7 (112.3 %) 0.0128 ± 0.0089 (69.3 %) 6.6 ± 7.9 (120.0 %) 0.0034 ± 0.0076 (224.3 %) 21 ± 11(54.6 %) 

 

Figure 3. Histogram related to EDA_mean parameter (EDA signal).  

 

Figure 4. Histogram related to SKT_mean parameter (SKT signal). 
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problematic in following, for example, the subject’s reactions to 
external stimuli. 

The observed variability can represent a double sword edge: 
on one hand, the subjective diversity can hinder a net 
classification by means of AI algorithms; on the other hand, 
considering a test population sufficiently wide to include all the 
characteristic variability is required to develop robust AI 
algorithms, not suffering from overfitting issues. 

It is worthy to underline that the test population of this study 
is quite limited (10 subjects), therefore the normality condition 
could be non-optimally satisfied (verification through Shapiro-
Wilk test). It would be interesting to repeat this kind of analysis 
on some publicly available large-scale databases (e.g. WESAD 
[46], k-EmoCon [47], TILES [48], etc.), in order to examine the 
data variability results on wider populations (possibly including 
also different age groups) and also considering longer acquisition 
intervals and different measuring devices and acquisition 
conditions (e.g. free-living conditions, which probably remark 
variability). Additionally, future studies may include one or more 
AI algorithms to compare the achieved performance on two 
datasets with different variabilities, for demonstrating the high 
impact of data variability on AI algorithms outputs, which can 
consequently impact on decision-making processes. 
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