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1. INTRODUCTION 

The purpose of this article is to define the commonalities 
between the concept of measurements and geometry; a method 
that uses the elements of geometry to model the basic elements 
of a measurement process. 

Among many approaches that are used to describe 
fundamental measurement categories, geometrical approach is 
often underrated despite the fact that geometry as a science has 
originated from measurements and only later turned to a new 
higher level of generality. This paper attempts to argue that 
measurements and geometry are related, and geometry is not just 
another branch of math. 

At all times the most prominent authorities in the scientific 
world have acknowledged the fundamental and special place that 
geometry takes in the system of exact sciences. Thus, Spinoza 
believed that it is geometry that “reveals a causal connection in 
nature”. Newton said that “geometry expounds and justifies the 
art of measurement” [1]. In [2] we find Einstein’s statement, 
according to which “geometry must precede physics, since the 
laws of the latter cannot be expressed without geometry. 
Therefore, geometry must be considered as a science, logically 
preceding every experience and every experimental science.” A 
remarkable illustration of this thought is also presented in the 

book by B. Mandelbrot, "The Fractal Geometry of Nature" [3]. 
In "The Encyclopedia of Mathematics" [4], the special role of 
geometry is characterized in the following way: “Developments 
of geometry and its applications, advances in geometric 
perception of abstract objects in various areas of mathematics 
and natural science provide solid evidence of the importance of 
geometry as one of the most profound and fruitful means for 
cognizing reality” [5, 6]. 

Today measurement specialists rarely use geometrical 
apparatus both in general and particular cases (with exception of, 
maybe, measurements at the elementary level). Instead, analytical 
approach absolutely dominates the field. However, [7] highlights 
the huge heuristic value of geometric representation of the 
concepts of analysis; saying that geometry “is becoming 
increasingly important in … physics. It simplifies mathematical 
formalism and deepens physical comprehension. This 
renaissance of geometry has had an impact not only on the 
special and general theory of relativity, obviously geometric in 
nature, but also on other branches of physics, where the 
geometry of more abstract spaces is replacing the geometry of 
physical space.” 

Today, no one seems to deny the fact that the science of 
measurements is actually a metascience, which is used in all 
natural and technical sciences, to say the least. For this reason, 
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the apparatus has to be represented by disciplines with the same 
or higher order of generality. Geometry is just such a discipline. 

Section 2 shows that the basic equation for measurements is 
a special case of the expression of projective metric. In Section 3, 
functional measurement transformations are looked at in the 
context of groups theory. Section 4 is devoted to identifying the 
relationship between metrological and geometrical categories. 
The concluding section summarizes the main idea of the paper 
and points out on its practical usefulness. 

2. PROJECTIVE METRIC AND BASIC MEASUREMENT 
EQUATION 

The essence of any measurement has always been a 
comparison with a known unit. Among various geometric 
systems, the most common one is projective geometry, which, 
according to M. Komatsu [8], represents geometry as a whole. 
Projective geometry only studies the mutual relations between 
figures and in this sense is akin to measurements. 

A segment of a numerical axis can traditionally represent the 
value of a measured quantity. In projective geometry, the 
distance between two points is determined using a Cayley metric 
(projective metric)  

𝑙 = 𝑐 |ln 𝑉| , (1) 

where c is the constant,  

𝑉 =
𝑥3 − 𝑥1

𝑥2 − 𝑥3

𝑥4 − 𝑥1

𝑥2 − 𝑥4

⁄  (2) 

(complex, or double ratio of four points of a straight line), 

1 2 3 4, , ,x x x x  are the coordinates of the points on the line. 

Let 𝑐 = 1, 𝑥3 = 0, 𝑥4 = ∞. Then from the equations above 
it follows that 

𝑙 = |ln (
𝑥1

𝑥2

)| = |ln (
𝑥2

𝑥1

)| , (3) 

hence 

e𝑙⋅sgn(𝑥2−𝑥1) =
𝑥2

𝑥1

 (4) 

and 

𝑥2 = 𝑥1 ⋅ e𝑙⋅sgn(𝑥2−𝑥1) . (5) 

The meaning of the quantities in the last equation leaves no 
doubt that what we have here the “basic equation of 
measurements” usually written as 

𝑥 = {𝑥}[𝑥] , (6) 

where x is the measured quantity,  

{𝑥} = e𝑙⋅sgn(𝑥2−𝑥1) (7) 

is its numerical value, and [𝑥] is the quantity unit. 
The latter is taken for granted and does not seem to require 

any proof. However, as we can see, it is deduced from the 
definition of projective metric, a fact that can hardly be 
accidental. Thus, it is worth mentioning a statement by famous 
mathematician Holder [9]: “To prevent misunderstanding, I note 

here that the axioms of the theory of quantities as they appear 
here should not be presumed in geometry or applied to segments 
and volumes. On the contrary, there are examples of purely 
geometric axioms for points and segments, from which it can 

later be proved ... that for segments there are facts that in general 
theory of measurable quantities are presupposed as axioms”. 

In connection to the above said, let us make the following 
remark: from (1) it follows that the logarithmic scale, widely used 
in measurements as well as in physics and technology, is nothing 
but a scale in projective metric. In general, the simple relations 
stated above suggest that there is a principled connection 
between the fundamental concepts of geometry and 
measurements. The basic equation for measurements, 
fundamental and meaningful in itself, happens to be a particular 
case of a fundamental geometric relationship too.  

3. GROUPS OF FUNCTIONAL MEASUREMENT 
TRANSFORMATIONS 

In addition, measurements and geometry are related by the 
fact that invariants are widely used in both disciplines. In 
measurements, this leads to improved accuracy. [10] shows an 
example of invariant principle applied to a simple ratio of three 
values of the measured quantity to the affine measurement 
transformation. In geometry, invariants generally have 
fundamental significance, since according to F. Klein's "Erlangen 
Program" [11], various geometries represent the invariant 
theories of the relevant transformation groups. It should be 
noted that the function of the channel transformation of 

measurement system, y = f (x), certainly belongs to one of the 
following groups (we do not mean the groups mentioned in the 
"Erlangen Program"): 

𝑦 = 𝑥 (8) 

is the identical group, 

𝑦 = 𝑥 + 𝛽 (9) 

is the shift group, 

𝑦 = 𝑎 ∙ 𝑥 (10) 

is the similarity group, 

𝑦 = 𝑎 ∙ 𝑥 + 𝛽 (11) 

is the affine (linear) group 

𝑦 = (𝛼 ∙ 𝑥 + 𝛽) (𝛾 ∙ 𝑥 + 𝛿)⁄  (12) 

is the projective (fractional-linear) group,  

𝑦2 ≥ 𝑦1 by 𝑥2 ≥ 𝑥1, or 𝑦2 ≤ 𝑦1 by 𝑥2 ≥ 𝑥1 (13) 

is the group of monotonous transformations.  
All these transformations, except for (13), have invariants. 

Such an invariant for (12), which includes all the previous groups 
(8) through (11), is a complex ratio of four points on a straight 
line [12, 13]. For (11), the invariant is the simple ratio of three 

points on a straight line (𝑥2 − 𝑥1) (𝑥3 − 𝑥2)⁄ , for (9) and (8), 

except for the two indicated invariants, x2 – x1, it is the usual 
Euclidean distance between two points lying on the coordinate 
axis. 

The last two types of transformations are non-linear in 
general. If nonlinearity is small, then most commonly the 
corresponding experimental dependence can be satisfactorily 
approximated by a fractional-linear function [12], [14] – [16]. The 
remarkable property of the latter is that it belongs to the group 
of projective transformations while its form can vary a lot. Such 
a transformation can be visualized as an image of a projection of 
the input scale on the output scale. The group property is 
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expressed in the fact that the superposition of a series of 
fractional-linear functions is the same function and does not lead 
to higher complexity (Figure 1), while the inverse transformation 
is also fractional-linear. Thus, a unified mathematical description 
becomes possible both for the intermediate transformations in 
the channel and for the whole transformation. 

For significantly nonlinear transformations or for improved 
accuracy of the approximation, it is advised that several 
fractional-linear functions should be used. They are either 
summed up or applied to sequential sections of the 
characteristic (piecewise approximation). 

In the summation case the output value is obtained as the sum 
of the results of fractional-linear transformations. To make it 
possible, the following conditions must be met:  

- The result of the approximation by function 

𝑦 = 𝑄(𝑥) 𝑃(𝑥)⁄ = ∑ 𝑎𝑖𝑥𝑖

𝑚

0

∑ 𝑏𝑖𝑥
𝑖

𝑛

0

⁄   (14) 

has single roots in the denominator; 

- 𝑚 does not exceed 𝑛 by more than 1.  
If y is a proper fraction, then it can be converted into a sum  

∑
𝐴𝑖

(𝑥 − 𝛼𝑖)
 ,

𝑛

𝑖=1

 

where 𝛼1, … , 𝛼𝑛 are the roots of the denominator, the 
coefficients are found from the equation 

𝐴𝑖 =
𝑄(𝛼𝑖)

𝑃′(𝛼𝑖)
 , (15) 

whereas  

𝑃′(𝛼𝑖) = 𝑃′(𝑥)|𝑥=𝛼𝑖
 . (16) 

If 𝑚 = 𝑛, then a constant is added to the sum of the fractions 
as a result of extracting the integer part. 

If 𝑚 = 𝑛 + 1, then a linear function is added.  
In both instances we deal with a particular case of a fractional-

linear function. 
If any the roots in the denominator are complex, nothing 
changes in principle, but some of the summable fractional-linear 
functions turn out to be complex. At the same time, all their 
remarkable properties are sustained, including the presence of an 
invariant - a complex relationship of four arbitrary points 

(𝑥3 − 𝑥1)

(𝑥2 − 𝑥3)

(𝑥4 − 𝑥1)

(𝑥2 − 𝑥4)
 .⁄   

An example can be the results of approximation of the 
calibration characteristics of two temperature sensors. Let the 
first one be a platinum thermoresistor (its characteristic is utilized 

to model the international practical temperature scale). In the 
range of –259 °C  ÷ +660 °C, we obtain 

𝑊 =
−2.244 ⋅ 104

𝑡 + 2.768 ⋅ 103 +
2.925

𝑡 + 280.063
+

−7.227 ⋅ 104

𝑡 − 7.947 ⋅ 103 , (17) 

where 𝑊 is the ratio of resistance at temperature 𝑡 in °C to 
resistance at zero Celsius. The standard uncertainty of this 
approximation is 0.7 °C, which corresponds to 0.08 % with 
respect to the temperature range and is considered acceptable for 
most practical cases. Let the second sensor be a Pt/Rh 
thermocouple with 30 % / 6 % Rh content. In the range of 0 °C 
÷ 1800 °C its characteristic is approximated by expression 

𝐸 =
−4.514 ⋅ 106 + 5.287 ⋅ 107𝑖

𝑡 − 186.827 − 2.807 ⋅ 103𝑖

−
4.514 ⋅ 106 + 5.287 ⋅ 107𝑖

𝑡 − 186.827 + 2.807 ⋅ 103𝑖
−

4.86 ⋅ 108

𝑡 − 1.302 ⋅ 104 

(18) 

and the standard uncertainty will equal to 0.3 %. 
In the case of piecewise linear fractional approximation there 

are no restrictions with respect to accuracy (uncertainty), but it is 
more difficult to implement.  

Whichever fractional-linear approximation case is chosen, the 
need for mathematical methods is limited to four arithmetic 
operations. 

Using invariance fits the purpose of measurement, which is 
not about transformation, but rather about preserving the 
information. Indeed, in order to restore the characteristics of 
the original signal using measured characteristics of the 
converted signal, some kind of relationship between the signals 
has to be retained during the chosen transformation. 

From this perspective, the measuring transducer should be 
called a transmitter rather than a transducer, i.e. in this case the 
name is not associated with the main property of an object but 
reflects its secondary property instead. This happens because the 
transfer and transformation of the quantity value (including 
scaled transformation, i.e. energy level transformation) correlate 
to each other in the same way as the essence and a phenomenon; 
in other words, a dualism takes place. 

It is the transformation, not the transfer of the value that is 
visible to an observer. As in other similar cases, the object was 
named for its superficial, rather than essential property.  

Ideally, in all types of measurement transformations such as 
the quantity type transformation, identity transformation, 
modulation and demodulation, the form of representing the 
transformation (e. g. analog-digital), code conversions, etc. the 
amount of information remains intact. In these transformations, 
errors mean the loss of information, and it is the degree of this 
loss, not the type of transformations that determines the quality 
of a measuring channel. 

                                                       𝑦1 =
𝑎1𝑥 + 𝑏1

𝑐1𝑥 + 1
                                         𝑦𝑖 =

𝑎𝑖𝑦𝑖−1 + 𝑏𝑖

𝑐𝑖𝑦𝑖−1 + 1
                                 𝑦𝑛 =

𝑎𝑛𝑦𝑛−1 + 𝑏𝑛

𝑐𝑛𝑦𝑛−1 + 1
 

 

𝑦 =
𝑎𝑥 + 𝑏

𝑐𝑥 + 1
 

Figure 1. The circuit of fractional-linear transformations in a measuring channel.  
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Perhaps, the reason for the difficulty with the classification of 
measuring transducers that has still not been resolved is that all 
the variants of such a classification that are known so far are 
created on that side of the above-mentioned dualism that 
characterizes the phenomenon rather than the essence. In other 
words, what we are trying to do is classify the types of 
transformations; whereas what we should do is classify the types 
of information preservation.  

This situation, which occurs while fractional-linear and their 
dependent transformations are used, is consistent with the 
general concept of the measurement procedure. The very basic 
procedures, for example, when the length was measured, 
consisted of two stages: the mutual displacement of the 
measured object and the measure, and their comparison with 
each other. Historically, this original essence of measurement is 
now perceived only by its second stage, while the first stage is 
actually no less significant. 

It is worth highlighting that what in the early measurements 
was omnipresent mechanical displacements, nowadays is 
replaced by measurement transformations. 

The analogies between displacements in an ordinary space 
and measurement transformations can be formalized even 
further. In length measurements, the correlation we wish to 
preserve is seen as the distance between the points, and this 
distance remains unchangeable no matter what the shifts and 
turns are. If we determine the distances in terms of the values 
that are preserved during such transformations for a set of all 
possible signals, we will arrive to the geometrical interpretation 
of a measurement procedure as a transformation that preserves 
the distance, i.e. as “displacements” in the relevant space. With 
fractional-linear transformations (for example, when using a 
voltage divider), complex ratio 𝑉 is preserved. But projective 
metric is thereby preserved too. Since fractional-linear 
transformations preserve projective metric, it is only natural to 
call them the “displacements in a projective space”. At the same 
time, they are the most common among all the above 
transformations (except for monotonous transformations), each 
preserving the distance. It can be assumed that it is this property 
that permits us to either correct errors effectively or implement 
algorithms that eliminate errors in the first place.  

In these terms, the stages of the measurement procedure 
consist of displacements in a projective space and comparison 
with a master reference, i.e. coincide with an ordinary length 
measurement procedure. A typical example is measuring voltage 
with a bitwise-balancing voltmeter, whose range is smaller than 
the voltage measured. In such a case the voltage is pre-attenuated 
by a divider. The divider produces the corresponding section of 

the voltage scale on its output, preserving its length in the 

projective metric, while the voltmeter makes the comparison. 
As a preliminary conclusion, we can state so far that: 

- any functional measurement transformation belongs to 
the group of monotonous transformations; 

- the most common monotonous transformation is a 
fractional-linear variety that can describe projective 
correlations analytically and act as displacements 
(whereas the dimensions of the moving object are 
invariant). 

4. CORRESPONDENCE BETWEEN METROLOGICAL AND 
GEOMETRIC CATEGORIES 

Table 1 shows the mutual correspondence of the fundamental 
metrological and geometric categories. Any line in Table 1 can 
be used as a departure point for further research. 

The concept of the space of affine connectivity takes up the 
first place in the table among geometrical concepts.  
It represents diversity, in which the field of the connectivity 
object is defined. The term “diversity” generally needs to be 
defined; however, in this case we will skip that as its meaning is 
obvious. As we know, the connectivity object characterizes the 
point of diversity, in which a local benchmark (or affine 
benchmark, referring precisely to the given point) is defined. In 
turn, the affine benchmark is a combination of the point itself 
and the coordinate basis. The connectivity object gives as answer 
to the question about how the coordinates of an arbitrary vector 
change as it is displaced along a certain curve while preserving 
orientation. In the general case, the coordinates will indeed 
change, because as the vector is moving from one point to 
another, the local benchmark to which the vector is momentarily 
related, changes too.  

The space of affine connectivity is poor in terms of 
properties, but it becomes richer once a metric is introduced in 
it by means of defining a metric tensor. Then the space becomes 
Riemannian, a space of curved vectors. Such vectors represent 
physical quantities that characterize a specific physical object 
[17]. For such a vector space, a system of units can serve as a 
basis since a unit of any quantity can be expressed via the basic 
units of the system.   

A good example is a vector acceleration receiver on a moving 
ship. This receiver reads accelerations in an acoustic wave in 
water and its purpose is to identify the locations of the sources 
of noise. The main part of the receiver is shown in Figure 2. We 
see six flat piezoelectric plates at the outside edges rigidly 
connected to a pair of strings in its middle, each pair of strings 
being fixed on the frame and running in three mutually 
perpendicular directions. The inner edges of the piezoelectric 
plates are perpendicularly joined to the faces of a cubic inertial 
element.  

When the frame experiences acceleration, the inertia force 
acts upon the cubical element, which can be componentized 
along the axes perpendicular to the planes of the piezoelectric 
plates. These componentized forces cause electrical charges. The 
axes perpendicular to the planes of the piezoelectric plates form 
a coordinate basis, and together with the center of gravity of the 
cubic element create a local benchmark. 

As the ship moves and experiences pitching and rolling, the 
location and orientation in space of the local benchmark changes, 
whereas the direction of the vector of acceleration of water 
particles in the acoustic beam remains the same. As a result, the 

Table 1. Correspondence between metrological and geometric categories. 

Metrological category Geometric equivalent 

An object, a measuring instrument 
with deterministic relationships  

The space of affine connectivity, or a 
Riemannian space 

Physical quantity Point in the space, vector 

System of units Basis 

Probability characteristics and 
statistical relationship of physical 
quantities 

Metric tensor (determines the space 
geometry) 

Analog measurement 
transformation 

Affinor (determines the relationship 
of the vectors) 

Analog-to-digital conversion Vectors subtraction   

Preservation of the measurement 
information 

Invariance 
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projections of this vector on the axis of the coordinate basis l 
change as determined by the connectivity object. 

The connectivity object is a system of numbers, called 
connectivity coefficients. If each and every connectivity 
coefficient turns into zero, the diversity becomes an affine space. 
Vectors can be defined in it, so the space is a vector space. An 
affine space is a model of any particular object whose physical 
regular properties can be described by simple additive 
relationships. 

The space describing a measuring instrument is generally 
multidimensional. In [18], we can see the application of 
multidimensional spaces apparatus. 

In this space, the points and the vectors connecting them to 
the origin correspond to physical quantities. The basis of the 
space is the system of units. 

An affine space can be identified for an object with any other 
kind of regular physical properties, but only in an infinitesimal 
region and with an accuracy no greater than that of the first order 
[19].  

Let 𝑦 = 𝑓(𝑥1, … , 𝑥𝑛) be any function of 𝑛 variables.  
Then  

d𝑦 = (
𝜕𝑦

𝜕𝑥𝑖

) d𝑥𝑖  (19) 

(implied summation over 𝑖) can be considered a vector, since 

coordinates (
𝜕𝑦

𝜕𝑥𝑖
) d𝑥𝑖 (at first approximation) are affine. The rule 

of adding the vectors, and, consequently, the space geometry, is 
determined by a metric tensor. Since the values for the 

generality should be considered random, the addition on rule 
must take into account their probability characteristics and 
statistical relationship. As shown in [20], if the coordinates for 
the vectors are expanded uncertainties, then the metric tensor is 
determined by the types of probability distribution, the coverage 
probability, the ratio of the terms, and mutual correlation. By 
today, the components of such a tensor for the most popular 
probability distributions and for 0.95 and 0.99 coverage 
probabilities have been determined by A. Chepushtanov [20]. If 
the coordinate system is formed by standard uncertainties, then 
the metric tensor is determined only by the mutual correlation. 

The analog measurement transformation, which takes into 
account the design parameters of the device and influencing 
factors as input quantities, has a geometrical equivalent - affinor, 

the rule that states that each vector 𝐝𝒙 is matched with a certain 

vector 𝐝𝒚. The affinor is a square-matrix bivalent tensor. 
Since the result of the analog-digital transformation is a 

number, it is only obvious that the quantity separates from the 
quality. In other words, the quantity rids of its physical carrier. 
Taking the logarithm of the basic equation for measurements 
yields two vectors – one for the numerical value and another for 
the unit. We do not touch here on the quasi uncertainty arising 
in the logarithm of a unit, we note only that it is a matter of 
logarithmising not the number „one”, but a unit of a physical 
quantity, which can have a different real meaning. Thus, in the 
logarithmic representation, the geometric essence of the analog-
digital transformation is that the unit vector is subtracted from 
the full quantity vector, which is incidentally nothing else but 
computing how many units of the quantity (or which part of the 
unit) is included in the dimension of the quantity. 

Finally, as it was stated above, the preservation of the 
measurement information characterizing the object conceptually 
corresponds to invariance. Information losses, inevitable in any 
measurement transformation (introduction of an uncertainty), 
means that this principle of correspondence is compromised. 

When searching for the points of contact between modern 
geometry and measurements, special attention should be paid to 
non-Euclidean geometries. Riemann geometry is one of them, 
since its features are quite visible in the space of quantities. For 
instance, the ends of the logarithmic vectors of reciprocal 
quantities (such as resistance and conductivity) are located at the 
diametrically opposite points of a sphere that has its center at the 
origin of the coordinates. At the same time, there is practically 
no difference between them. They represent the same 
characteristic of the system. As it is known, the Riemann 
geometry is a spherical geometry with an additional condition of 
identification applied to the opposite points of the sphere. The 
obvious similarity between the physical and geometrical facts can 
hardly be accidental.  

Moreover, there is evidence that different geometries work in 
case of different measurement ranges of the same physical 
quantities, which is only natural due to a wide generality of their 
geometric space. Further research in this area seems to be 
promising and new interesting results are expected. 

Other promising applications of projective geometry are in 

explaining the laws of physics and image processing [22]. The 

basic concept here is projective mapping. It is most frequently 

used as a visual image rather than a mathematical structure. Being 

used in a strict geometric sense, this concept allows us to describe 

patterns with any level of complexity. Then the mapping 

parameters logically become variable, which is consequent to the 

change in the position of the projection center. This position, in 

turn, is affected by some physical causes, which now can be 

identified and explored. 

Thus, the fundamental metrological categories have 
geometric equivalents. Problem defining in the area of 
measurements can be described using geometric terminology. 
Solving metrological problems seems possible if the powerful 
modern geometric apparatus is used.  

5. CONCLUSIONS 

The most important geometric concepts have equivalents in 
measurement theory. This knowledge allows us to apply 
geometric approach and apparatus to formulate a single 

 

Figure 2. The main part of a vector acceleration receiver.  
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mathematical description for important measurement categories, 
obtain new theoretical results, and model measuring procedures. 

In particular, projective transformations can be used in such 
modelling. Due to their group properties, the characteristics of 
measuring devices can be described in a significantly simpler 
manner, whereas the present invariant allows us to increase the 
accuracy of measurements. 

A model for any physical object, including the measuring 
device itself, can be represented as a vector space, whose 
elements, in turn, represent the quantities characterizing the 
object. This approach can be used in metrological analysis of 
measuring devices, where an important role is given to the 
summation of uncertainties. For such a summation in the 
geometric model, a metric tensor of the space is used, and in case 
of standard uncertainties such a tensor morphs into the 
coefficient of mutual correlation.  

Thanks to the affinity of the concepts in geometry and 
measuring theory, measuring concepts and facts can be 
considered from a geometric standpoint and bring new 
interesting results.  
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