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1. INTRODUCTION 

Biomedical measurement systems (BMS) play a key role in the 
detection and diagnosis of various diseases, providing new 
solutions for healthcare monitoring and improving bioprocesses 
and technology for biomedical equipment. Generally, BMS use 
measurement devices to collect vital signs, such as heart rate, 
pulse rate and body temperature, from the human body, and then 
these vital signs are processed by a processing unit. Finally, the 
results are displayed to aid doctors in the diagnosis of various 
diseases. However, for old-fashioned BMS (for example, non-
portable and non-smart ultrasound machines), acquiring vital 
signs without disturbing the patient’s routine activities is 
challenging. Moreover, these old-fashioned BMS require patients 
to visit the hospital for their check-up, which takes a great deal 
of time out of their busy lives. Therefore, in order to utilise BMS 
without disturbing routine activities, these systems must be able 
to acquire data in different scenarios [1]. This means not only 
being limited to situations that require the presence of patients 
inside hospitals but also outside, for example, industry workers, 

miners and sports professionals in their working environments 
as well as military personnel and individuals in their home 
environment. Hence, the use of BMS for today’s lifestyle 
demands that devices belonging to these systems should be 
compact, user friendly and comfortable for the wearer, with 
adequate measurement accuracy even in a harsh or complex 
environment [1], [3]. As a result of these emerging requirements, 
recent research activities have been directed towards improving 
BMS by using the Internet of Things (IoT) [4]-[8] and by creating 
a new paradigm, the Internet of Medical Things (IoMT) [1], [9]. 
These IoMT solutions are mainly based on wearable and 
implantable biomedical measurement devices [12] using different 
sensors, such as tactile [13], silicon [14], polymer [15] and optical-
based sensors [16], [17] or sensors already integrated into 
commonly used devices, such as smartphones [3], [18]-[23]. 

Wearable IoMT BMS typically include devices such as 
smartwatches, armbands, glasses, smart helmets and digital 
hearing devices [1], [25]. Today, many wearable devices are smart 
in the sense that they can locally process signals acquired from 
sensors and transmit measurement data through the network to 
other connected devices (on a mobile phone or through hospital 
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systems) so that doctors can promptly monitor and analyse the 
patient’s data to make effective decisions, especially in case of 
emergency [5], [8]. 

Figure 1 shows some smart wearable and implantable devices 
that are used for measuring different vital signs. These devices 
acquire measurement data and then process and send the data to 
local elaboration units for further processing and for the 
presentation of the resulting information to clinicians or patients 
[12]. Therefore, they are considered a substratum for the 
development of IoMT BMS. In order to stimulate research for 
designing innovative BMS, this paper presents an overview of 
IoMT-based BMS. It is an extended version of a previous 
contribution to Technical Committee 4 of the 2020 International 
Measurement Confederation (IMEKO TC4) conference held in 
Palermo, Italy [9], and takes into account further developments 
in measurement devices and available techniques used for 
different medical applications. A discussion concerning each 
example described is reported, including the advantages, working 
principles and technology usage. In addition, some general issues 
and challenges related to the metrological aspects of IoMT-based 
BMS are highlighted. 

The organisation of this paper is as follows. Section II 
explains the basic architecture of IoMT-based BMS, and Section 
III presents the five main categories of existing IoMT-based 
BMS while also introducing some important metrological issues 
in relation to measurement devices used in IoMT. Section IV 
discusses the metrological challenges for existing BMS, and 
finally, the conclusions are presented in Section V. 

2. IOT-BASED BIOMEDICAL MEASUREMENT SYSTEMS (IOMT) 

The main advantage of IoMT-based BMS is that these 
systems provide the online monitoring of a patient's health to 

facilitate a quick response in an emergency and to offer remote 
access to doctors as well as relatives and the patients themselves 
for monitoring targeted vital signs (blood pressure, heart rate, 
glucose level and so on) [26]. To this end, IoMT-based BMS are 
usually designed to offer the following features: (i) the 
continuous monitoring of parameters without disturbing the 
patient’s daily routine, (ii) an alarm triggered in an emergency, 
and (iii) the use of low-cost measurement devices. As a 
consequence, the final aims of an IoMT-based BMS include the 
following: (i) a reduction in the cost of hospitalisation, (ii) the 
optimisation of public health costs, (iii) an increase in the 
independence and quality of life of older adults and (iv) an 
improvement in the monitoring of hospitalised and/or critical 
patients. 

The general architecture for IoMT-based systems is shown in 
Figure 2 [27]. Compared with architectures [28]-[30] that are 
specifically designed for particular applications, such as heart 
disease, blood pressure and blood sugar, the system shown in 
Figure 2 is more general and demonstrates the common 
components belonging to complete IoT-based BMS: (i) a 
physical layer, (ii) a data integration layer and (iii) an application 
service/presentation layer. 

In the physical layer, IoMT-based BMS mostly use wearable 
devices to measure the vital signs (heart rate, pulse rate, body 
temperature, blood pressure, oxygen concentration, lung 
contraction volume, blood sugar level, respiration rate and so on) 
of the subjects being monitored. These measurement data are 
first stored in the storage memory and then transferred to the 
data integration layer (Figure 2) through the Internet/Bluetooth 
or any other communication protocol. In the data integration 
layer, the received data are processed and then sent to the 
application service/presentation layer. Nowadays, various types 
of software are available to extract useful information from the 
measurement data. At the application service/presentation layer, 
data are analysed by the doctor or experts, enabling them to take 
effective decisions about the disease. In the following sections, 
some recently developed IoMT-based systems applied to the 
diagnosis of various diseases are discussed along with some 
metrology-related issues. 

3. EXISTING IOMT-BMS CLASSIFICATION OVERVIEW 

IoMT BMS have various medical applications, including 
healthcare monitoring and the diagnosis of various diseases. 
Based on these applications, this section has classified the 
existing IoMT BMS into five main categories: (i) IoMT BMS for 
heart disease, (ii) IoMT BMS for examining internal body 

a)  

b)  

Figure 1. Smart biomedical measurement devices: (a) smart wearable 
measurement devices [24], (b) smart implantable measurement devices.  

 

Figure 2. General architecture of IOMT systems. 
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sounds, (iii) IoMT BMS for blood pressure, (iv) IoMT BMS for 
brain diseases and (v) IoMT BMS for blood sugar disease. For 
each category, various examples are discussed, examining their 
advantages, working principles and technology usage as well as 
their reliability and accuracy.  

In the literature, it has been observed that researchers in the 
field of IoMT BMS are usually concerned with applying IoT 
technologies to different medical applications without focusing 
on developing suitable solutions in terms of metrology and 
requirements.  

 Since IoMT BMS rely on various types of measurement to 
acquire information about vital signs of the human body, 
therefore the reliability and accuracy of these systems play a 
critical and essential role in their actual ability to provide correct 
and suitable information that can be used by doctors for their 
diagnoses. 

It is also essential that IoMT-BMS devices are properly 
calibrated to ensure that they are accurate and perform in an 
appropriate and timely manner. Vital-sign measurements that do 
not have the required accuracy can result in the misdiagnosis of 
patients’ diseases. Accurate and reliable measurements not only 
ensure effective treatment but also save time and costs related to 
misdiagnosed patients.  

Thus, the metrological characterisation and calibration of 
devices are very important for validating the reliability of IoMT 
systems, and researchers must consider these characteristics, 
starting at the initial design phase and continuing to the final 
testing phase of the IoMT BMS. The following subsections 
discuss existing examples of IoMT BMS and related metrological 
issues. 

3.1. IoMT BMS for heart disease 

The early detection of heart disease is very important for 
saving lives, and IoMT could play a vital role in achieving this 
goal.  

In the physical layer, IoMT-based systems for heart-disease 
detection generally take numerous measurements, such as sugar 
concentration levels, cholesterol levels, heart rate and pulse rate 
as well as other vital signs, using sensors. These measurements 
are usually taken by IoMT devices, such as smartwatches, 
electrocardiogram (ECG) monitors and other ECG or optical-
sensor based heart-monitoring medical devices. Smartwatches 
mostly use optical sensors to scan the blood flow near the wrist 
to measure these vital signs, while ECG monitors use electrodes 
to acquire the electrical signals moving through the heart, record 
the strength and the timing of these signals and then display the 
acquired measurements in graphical form. However, there are 
few limitations to measure these vital signs due to the 
measurement conditions (for example, a patient sweating during 
the ECG measurement) and the accuracy of the measuring 
device [31]. Once the measurements are taken, they are sent to 
the data integration layer through the Internet and may use 
cloud-based servers for further processing [32]. After processing, 
the results are analysed by doctors in the application 
service/presentation layer by means of a mobile app or web page. 
Additionally, further algorithms based on artificial intelligence 
(AI) are now available and are integrated into the data integration 
layer in order to further aid doctors in the diagnostic process [28]. 
For example, in [29], an IoMT-based detection system for the 
monitoring of heart-related diseases based on the deep belief 
network model and a higher order Boltzmann machine is 
presented. This system uses IoT devices, such as embedded 
sensors and a wearable watch, to measure vital signs, such as 

heart rate and blood pressure, and to record other physical 
activities. However, the authors do not provide any details on the 
types of sensor and wearable watch used in the collection of 
these data or how accurate these measurements are. After 
collection, the required data is transmitted to the healthcare 
centre to be processed using the higher order Boltzmann deep 
belief neural network (HOBDBNN), which learns the features 
of heart disease from previous analyses. To evaluate the disease-
prediction accuracy, the system is implemented using MATLAB, 
and the collected data is divided into two sets: 70 % of the total 
data is for training the network and 30 % for testing purposes. 
The HOBDBNN performance is evaluated by different metrics, 
such as the sensitivity and specificity, Precision and F-measure, 
[29] which are defined as 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦/𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 , (1) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
, (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
, (3) 

𝐹 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
, (4) 

where True positive  is the model’s outcome that shows correct 
prediction of positive class, True negative refers to the correct 
prediction of a negative class, False positive is the model’s outcome 
that shows incorrect prediction of positive class and False negative 
is the incorrect prediction of a negative class. These HOBDBNN 
performance metrics are then compared with other optimised 
classifiers, such as genetic algorithm-based trained recurrent 
fuzzy neural networks, swarm-optimised convolution neural 
networks with a support vector algorithm, particle-optimised 
feed-forward back-propagated neural networks and particle 
swarm-optimised radial-basis function networks. The results 
demonstrate that the performance metrics of the proposed 
HOBDBNN have better values than those achieved using the 
other above-mentioned methods. The overall prediction rate of 
the deep network of the proposed system is reported to be about 
99.03 %.  
Similarly, an ECG-based heart-disease recognition system is 
presented in [33]. This system measures the heart data by using a 
commercially available device called the Pulse Sensor AMPED, 
which consists of a simple optical heart-rate sensor with 
amplification and noise cancellation hardware components to 
collect noise-free heart-pulse readings. The collected data are 
then transmitted wirelessly to the mobile application via an 
Arduino microcontroller. A monitoring algorithm is 
implemented in a mobile application to detect any variances from 
the normal heart rate. This mobile application also raises the 
alarm whenever an emergency occurs. The system is capable of 
predicting heart disease by using an intelligent classifier and a 
machine-learning algorithm, which are pre-trained using clinical 
data. The authors have reported a 100 % detection rate for 
monitoring the algorithm and an 85 % correct-classification rate 
for the classifier.  

In [34], an IoMT-based low-power cardiovascular healthcare 
system with cross-layer optimisation from a sensing patch to a 
cloud platform is presented. It uses a wearable ECG patch with 
custom system-on-chip technology that is integrated with a 
wireless connectivity to connect with mobile devices and a cloud 



 

ACTA IMEKO | www.imeko.org June 2021 | Volume 10 | Number 2 | 177 

platform. To measure and process the ECG signals, the sensing 
patch needs to be placed directly on the human body. The system 
performance is evaluated by first checking the signal denoising 
and compression capability and then by evaluating the correct 
disease prediction rate using the mobile device and the cloud 
platform.  

To evaluate the signal denoising and compression capability 
of the proposed system, it is tested on an MIT-BIH database (an 
open-source dataset that provides standard investigation material 
for the detection of heart arrhythmia [35]). In particular, various 
types of noise (a baseline drift noise, power-line noise and 
electromyography noise) are added to the dataset signals, and, 
under three different scenarios, the proposed system is evaluated: 
(i) signal denoising, (ii) signal compression and (iii) combined 
signal denoising and compression. In this context, some metrics 
are used, such as the denoised mean square error (MSE), the 
denoised signal-to-noise ratio (SNR, dB), improvement in the 
MSE in percentage, the percentage root mean square difference 
(PRD), the signal compression ratio (CR) and the quality score 
(QS), which are defined as 

𝑀𝑆𝐸 = ∑[𝑓𝑐(𝑛) − 𝑓𝑟(𝑛)]2

𝑁𝑖

1

𝑁𝑖⁄  , (5) 

𝑆𝑁𝑅 = 10 log [
∑ 𝑓𝑐

2(𝑛)
𝑁𝑖
1

∑ [𝑓𝑐(𝑛) − 𝑓𝑟(𝑛)]2𝑁𝑖
1

] , (6) 

𝑃𝑅𝐷 = √∑[𝑓𝑖(𝑛) − 𝑓𝑟(𝑛)]2

𝑁𝑖

1

, (7) 

where n is the number of samples of a signal, fc(n) is the noiseless 
reference signal, fr(n) is the reconstructed signal after denoising, 
fi(n) is the input signal and Ni is the total length of the input 
signal. 

𝐶𝑅 = 𝑁𝑖/𝑀𝛿 , (8) 

𝑄𝑆 = 𝐶𝑅 𝑃𝑅𝐷⁄ ,  (9) 

where Mδ is the number of resolved coefficients after 
compression.  

In the case of signal denoising, the results show that the 
average improvement in SNR is 12.63 dB and the improvement 
in MSE is 94.47 %. For signal compression, the results show that 
the average CR is 7.89, the average PRD is 0.61 % and the 
average QS is 13.06. With regard to combined signal denoising 
and compression, the average improvement in MSE and SNR is 
94.47 % and 12.63 dB, respectively, and the average CR, PRD 
and QS are 9.8, 6.14 % and 1.62, respectively. In this case, 
compressed and denoised signals are directly generated with only 
one iteration of the whole system, which can improve the system 
efficiency at the cost of sacrificing signal performance (PRD 
increases and QS decreases). To test the disease-prediction 
accuracy executed on the cloud platform and mobile device, four 
kinds of ECG signal are analysed to detect arrhythmias in disease 
[36]: (i) a normal ECG signal, (ii) a left bundle-branch block 
(LBBB), (iii) a right bundle-branch block (RBBB) and (iv) paced 
beats (PB). The five-fold cross validation [36] results for 
classifying these four kinds of ECG signal, using the mobile 
device and the cloud platform, are presented. For a normal ECG, 
the correct classification rate is 96 %, for LBBB it is 98 %, for 
RBBB it is 100 % and for PB it is 94 %. The average correct 
classification rate of the proposed disease-prediction system 
executed on the cloud platform is 97 %, which is calculated using 

the mean average correct detection values of all five-fold results 
[36]. 

3.2. IoMT BMS for internal body sounds 

 Auscultation is a process for examining internal body sounds, 
such as from the heart, lungs or other organs, for medical 
diagnoses. Typically, a stethoscope is used to examine these 
sounds [46], which can help to detect abnormalities that occur in 
the human body and provide information about various diseases 
[46]. However, the auscultation process has some important 
limitations: it requires the doctor to have good hearing acuity and 
expertise in order to accurately detect abnormal sounds, the 
improper placement of the stethoscope on the body results in 
the improper acquisition of sound, the patient should be in a 
relaxed position for correct sound acquisition and the presence 
of background noise can affect the process. In this regard, AI-
based auscultation systems have been proved to be very helpful 
for professionals/doctors in determining abnormal sounds [47], 
[48]. However, IoT-based auscultation systems allow doctors to 
remotely monitor their patients and record the sounds, and they 
offer features for sharing information with other professionals to 
obtain an immediate second opinion [49]. In this paper, some 
recently developed IoMT devices related to the measurement of 
internal body sounds are discussed. For example, eKuore Pro 
[37] is an IoT-based wireless stethoscope that acquires and 
measures internal body sounds through devices placed on the 
body. It can be connected to a mobile app using Wi-Fi to show 
phonograms in real time and keep track of the patient’s medical 
history, which can be easily shared with professionals and 
doctors. However, the manufacturer has not provided any 
information on the accuracy of the system. Another IoMT device 
for the measurement of internal body sounds currently available 
on the market, Stethee, is presented in [38]. It is an AI-based 
wireless stethoscope that uses Aida technology (an AI- and 
machine-learning-based solution to analyse data [39]) to analyse 
the heartbeat and lung sounds acquired by placing the device on 
the body. It uses the Stethee app, which displays clinical 
information such as heart rate, average systole, average diastole 
and respiratory rate in only 20 seconds, and it also allows the live 
streaming of sound data so that it can be visualised in real time 
for the easy evaluation of vital signs. Although the manufacturer 
claims that the device has a number of powerful features, but 
information about measurement methods for the calculation of 
parameters and their accuracy is not provided. Similarly, the 
IoMT-based HD Steth system [40] has been introduced by the 
HD Medical Group for cardiac auscultation. HD Steth is a 
medical stethoscope approved by the Food and Drug 
Administration (FDA), and it is composed of integrated ECG 
electrodes, four microprocessors, an AI-enabled detection 
system for detecting cardiovascular disease and a display screen 
to visualise phonocardiographs and electrocardiographs. It 
provides the real-time visualisation of cardiac waveforms via the 
Bluetooth Low Energy (BLE) mobile app, and patients can easily 
share data with specialists via a cloud platform for a remote 
diagnosis. This device has been patented with noise cancellation 
and smart amplification for high-fidelity auscultation. As with the 
previously mentioned devices, the manufacturer has not 
provided any information on measurement accuracy. Another 
IoT-based smart stethoscope, StethoMe [41], is a CE certified 
and intelligent medical device able to measure and classify 
abnormal sounds in the respiratory system, and it can remotely 
analyse other internal sounds in the body. StethoMe is able to 
connect to a smartphone via Bluetooth, and the patient can place 



 

ACTA IMEKO | www.imeko.org June 2021 | Volume 10 | Number 2 | 178 

the device on the points indicated by the mobile app for the 
recording to start automatically. The mobile app then stores the 
medical history in the cloud, notifying patients if there are any 
abnormal sounds, and sends the examination results to a doctor, 
who will take effective decisions accordingly. It uses AI 
algorithms to verify the examination process, which makes, in 
the manufacturer’s opinion, the StethoMe about 29 % more 
accurate than a specialist in the detection and classification of 
abnormal sounds. However, the accuracy evaluation process is 
not provided by the manufacturer, so there is no information on 
how the 29 % figure has been obtained. In [42], an IoMT-based 
wireless digital stethoscope with mobile integration for sound 
auscultation is presented. The system first acquires the sound 
signals from the human body by using a traditional stethoscope 
chest piece that has an integrated microcontroller unit and a 
Bluetooth communication device. The acquired data are then 
processed and finally transmitted to a mobile device for 
recording and listening to and for the visual display of sound 
waveforms. This system can be used for monitoring patients in 
remote locations, especially in quarantine units, and can also be 
utilised for remotely training healthcare staff through the 
broadcasting of the recorded signals. However, the authors have 
not provided any information on the measurement accuracy of 
the system. In [43], an IoMT-based novel cardiac auscultation 
monitoring system based on wireless sensing for healthcare is 
presented. In this system, the cardiac-sound auscultation sensing 
unit consists of two main components. The first is the HKY-06B 
heart-sound sensor, manufactured by Huake electronic, which 
converts the weak heart vibration signal into electrical signals. It 
also has integrated micro-sound components made from 
polymer materials. It has the capability of detecting all kinds of 
heart and acoustic sounds from the body’s surface. The second 
component is the data acquisition module consisting of CC2540 
system-on-chip technology with an external antenna [44], an 
8051-based micro-controller [45] and other auxiliary 
components. This module’s main function is analogue-to-digital 
conversion and Bluetooth transmission. It uses a BLE Bluetooth 
protocol to offer power efficiency and moderate the data 
transmission rate. The proposed system is used to monitor 
cardiovascular health, and the acquired information is sent to 
caregivers as well as medical practitioners using the IoT network 
and an Android mobile app. In particular, pre-processing, 
segmentation and clustering techniques are performed to gather 
any significant health information. The system also features a 
Hilbert–Huang transform to reduce interference signals and help 
extract features of the first heart sound, S1, and the second heart 
sound, S2. In healthy people, S1 and S2 are produced by the 
closure of the atrioventricular valves and semilunar valves, 
respectively. The detection rate of the proposed system for S1 
and S2 is 88.4 % and 82.7 %, respectively, and the overall 
detection rate of S1 and S2 for irregular heart sounds is 86.66 %, 
as reported in the article. In [46], an IoMT-based smartphone 
auscultation system is presented. It is a low-cost stethoscope 
connected to a mobile phone that can record lung sounds and 
detect abnormal sounds from recorded data. The system uses a 
support vector machine to identify the sound of wheezes and 
crackles by extracting features from the spectrogram of each 
sound signal. The system is trained using recorded data 
consisting of lung sounds from 155 patients suffering from 
wheezes or crackles. The system is validated by evaluating the 
performance of detection algorithms, taking into account the 
area-under-the-curve (AUC) parameters. This AUC is calculated 
by plotting the receiver-operating-characteristic (ROC) curve 

between the false positive rate and the true positive rate, as 
shown in Figure 3. For the crackle detector algorithm, the AUC 
value is 0.87, and for the wheeze algorithm, the AUC value is 
0.71. In [49], the IoT-based smartphone monitoring of a second 
heart sound split is presented. The heart sounds are recorded 
using a customised external microphone consisting of an 
acoustic stethoscope and a 3.5-mm mini-plug condenser 
microphone with adapter that connects wirelessly to a mobile 
app to record the heartbeat. The system detects S1 and S2 by 
converting the recorded heartbeat signal into a frequency domain 
using the fast Fourier transform. S2 is then fed to a discrete 
wavelet transform (DWT) and a continuous wavelet transform 
to extract the aortic and pulmonic components. This system can 
be very useful for remotely monitoring S2. However, these 
authors have also not provided any information on the 
measurement accuracy of the system.  

3.3. IoMT BMS for blood pressure 

 
High blood pressure (BP) is a serious issue that affects older 

people as well as young adults; it is important for patients to 
control their BP with repeated check-ups, otherwise serious 
conditions such as heart failure or strokes can occur. Therefore, 
patients that suffer hypertension need a BP check-up several 
times a day. IoMT-based BP measurement systems can help to 
make this task easier for the patients. An automatic BP 
measurement system using the oscillometric technique is 
presented in [50]. This system is capable of monitoring both 
systolic and diastolic pressure, which are used to define arterial 
BP. The values are continuously updated through Wi-Fi on a 
database that can be accessed remotely, where these data are 
compared with already existing data to improve the accuracy of 
the results. The authors have stated the accuracy of the system 
to be 7 mmHg. This accuracy has been calculated by means of 
standards or protocols (defined for BP measuring devices) that 
are based on the general consensus of several organisations, such 
as the US Association for the Advancement of Medical 

 
 

 

Figure 3. Receiver operating characteristic (ROC) curves for crackles and 
wheezes [46]. 
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Instrumentation (AAMI), the British Hypertension Society and 
the European Society of Hypertension (ESH), which are active 
working groups on BP monitoring, as well as the International 
Organization for Standardization (ISO) [51]. However, these 
protocols and the accuracy of the oscillometric BP instrument 
continue to be the subject of discussion in the scientific field. 
This is due, for example, to the BP oscillometric device’s 
tendency to provide inaccurate measurements for certain patient 
groups and to be prone to noise and artifacts. Moreover, the 
difficulty in reproducibility of the adopted calibrating methods 
[52]-[54] allows monitors to pass validation tests when there are 
clinically significant differences in BP estimated values in some 
individuals [52]. 

In [55], the Qardio Arm system is used to develop a smart BP 
measurement system, in which the acquired oscillometric data 
are transferred to a smartphone app for analysis and visualisation. 
The accuracy of the system has been evaluated by comparing its 
results with the OMRON M3 device, as it has been clinically 
validated according to the existing ESH International Protocol. 
However, the same concerns about the accuracy and calibration 
of the oscillometric BP measurement expressed for the previous 
device exist for the Qardio Arm system.  

In [56], the OMRON HeartGuide is introduced. It is an FDA-
approved IoMT smartwatch for BP measurement. This device 
can measure BP by using an inflatable cuff within the smartwatch 
bracelet. The smartwatch sends the data to the data integration 
layer via the Internet, and then sends it on to the application 
service/presentation layer, where it is available for the doctor to 
access it in real time. The measurement accuracy of the device is 
about 3 mmHg, but the validation of this device has also been 
carried out under the protocols for BP devices, with the same 
limitations reported above.  

Similarly, the IoMT-based Instant Blood Pressure (IBP) 
Auralife app is presented in [57] for BP measurement using a 
mobile phone and without the use of any external hardware. IBP 
Auralife extracts the BP values from the photoplethysmogram 
(PPG) signal acquired with a flash led light and a mobile camera. 
The accuracy of the system is evaluated by using the AAMI/ISO 
81060-2:2013 protocol to compare IBP with other reference 
upper-arm cuffless BP monitors and oscillometric blood 
pressure cuff devices. A result analysis shows that the device’s 
systolic BP mean accuracy is 2.7 mmHg and diastolic BP mean 
accuracy is 2.6 mmHg. However, the system only delivers results 
at this level of accuracy for individuals whose BP lies in a specific 
range; therefore, it is not suitable for use by individuals whose 
BP falls outside of the systolic range of 83–178 mmHg or 
diastolic range of 58–107 mmHg. The manufacturer states that it 
is not recommended for medical use and not a substitute for 
cuff-based or other BP monitors because it provides an estimate 
of BP only. Another device, the Asus VivoWatch BP, is reported 
in [58]. This device has an ECG sensor on the back that receives 
an ECG signal from the wrist and an optical sensor on the front 
for the measurement of PPG signals from the index finger. This 
data is then automatically processed, and the results are displayed 
to the user. However, the manufacturer has not provided any 
information on the accuracy of the device.  

3.4. IoMT BMS for brain diseases 

Many people are affected by brain diseases, such as brain 
tumours, dementia, headaches, brain strokes, chronic pains in the 
head, Tourette’s syndrome, Alzheimer’s, Parkinson’s and 
epilepsy. The development of IoMT-based BMS in the field of 
brain-related diseases is a promising solution for the monitoring 

of patients and timely detection of such diseases. Typical devices 
that are used in IoMT-based BMS for brain-related diseases are 
electroencephalogram (EEG) electrodes, smartwatches, galvanic 
skin response sensors and cameras. These devices are used to 
monitor brain-disease patients. For example, by using EEG 
electrodes, it is possible to measure EEG signals to monitor 
brain activities, with galvanic skin response sensors, the changes 
in sweat glands can be measured to monitor stress, and by using 
cameras, it is possible to monitor the daily physical activities of 
patient (e.g. neuro-degenerative disease patients). In this context, 
some IoMT brain-related BMS are used to monitor and measure 
vital signs (for example stress levels and EEG signals) and can 
generate an alarm in the case of a crisis.  

 In [59], an IoMT smart sensor for stress-level detection is 
presented. This is a novel stress-detection system called iStress. 
It monitors stress levels by measuring parameters such as the rate 
of body motion, body temperature and levels of sweat during 
physical activity using sensors for temperature and humidity and 
also a three-axis accelerometer. The collected data are then 
processed using a neural network based on a Mamdani-type 
fuzzy logic controller, which is based on a fuzzy technique. The 
proposed system is very efficient in terms of power consumption 
and allows the real-time remote monitoring of stress levels by 
transmitting the collected data to the cloud, thus helping to 
improve the detection of the patient’s health status. The system 
classifies stress into three levels: low, normal and medium. The 
outputs of the sensors are fed to a fuzzy logic controller designed 
in MATLAB to detect stress levels. The authors report that this 
system has a stress detection rate of 97 %.  

In [60], a high-definition camera is used to analyse the motion 
of the patients with neuro-degenerative diseases (ND). The 
system is based on remote video monitoring that measures the 
quantity and quality of two clinically relevant motor symptoms 
(impairment in step length and arm-swing angle). The system has 
been evaluated by mean absolute error (MAE), which gives an 
indication of how close the measurements are to the ground 
truth. For this evaluation test, a video of a healthy individual in a 
walking position is recorded in two scenarios: (i) just walking and 
(ii) sitting on a chair, followed by standing up and walking. The 
camera is setup to capture the lateral view for the correct 
detection of the required ND parameters. A total of 23 valid step 
lengths and 10 arm-swing angles are recorded in both cases. The 
ground-truth measurements are marked/annotated using the 
Kinovea software package, which provides a set of tools to 
capture, slow down, study, compare, annotate and measure the 
technical performance of a video [61]. The authors state that the 
system is able to measure ND parameters with a tolerance 
ranging from 2 % to 5 %. 

In [62], an IoT-based system is reported that predicts the 
Parkinson’s brain disorder. The system uses wearable IoT-based 
deep brain simulation (DBS) to collect patient brain activities and 
assess the condition of cells to predict brain functionality 
changes. DBS is a smart device that collects brain data by placing 
electrodes on individuals to conduct continuous monitoring. By 
means of an heuristic tubu-optimised sequence modular neural 
network (HTSMNN), it is possible to predict the changes present 
in the human brain and its functions. To validate the proposed 
system, the authors have used the dataset in [63] that contains 
Parkinson’s disease-related information. The performance of the 
system is analysed using MAE, MSE, precision, recall, 
classification accuracy (CA) and the AUC, which are defined as 
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where N is the number of Parkinson’s features and y is the actual 

and �̃� the predicted output; TP is the true positive, TN the true 
negative, FN the false negative and FP the false positive, while 
precision and recall have already been defined in equations (2) 
and (4).  

 The above system parameters are calculated by first 
calculating the system deviation to identify the errors present in 
the Parkinson’s disease recognition process. The deviation is 
computed by considering the difference between the actual and 
predicted output. The HTSMNN system deviation value is 
compared with other methods, such as particle-swarm-optimised 
neural networks, particle-swarm-optimised radial basis neural 
networks, genetic algorithm-based extreme machine-learning 
networks and tubu-optimised deep neural networks. After 
computing the above parameters, it is reported by the authors 
that the system ensures an MAE equal to 0.284, an MSE equal 
to 0.273 and a CA equal to 98.07 %. 
In [64], an IoMT-based BMS is presented using the deep learning 
approach, called Stress-Lysis, which is used to measure stress 
levels. The deep learning system is developed and tested with 
three different datasets containing activities of daily living (ADL) 
and physical activities. ADL are collected with an accelerometer 
and humidity and temperature sensors worn on the wrist. A 
physical-activity monitoring dataset is developed by collecting 18 
different activities from nine volunteers wearing three inertial 
measurement sensors and a heart-rate monitor. The system 
learns the stress-level parameters obtained by the wrist band, 
such as skin temperature, heart rate and sweat during physical 
activity. The authors have conducted the validation of this 
proposed solution by analysing the collected dataset using 
Python and Tensorflow. The dataset consists of 2,000 samples, 
of which 1,334 samples are for training purposes and 667 are for 
testing. The results are displayed in the form of a loss function 
that demonstrates that the correct classification rate is in the 
range of 98.3 % to 99.7 %.  

In [9], a seizure-detection IoMT system is demonstrated by 
using a DWT, Hjorth parameters and a K-NN classifier. This 
system is based on an IoMT device called Neuro-Thing, which is 
capable of accurately detecting seizure-related diseases. In this 
method, EEG electrodes are used to acquire EEG signals, which 
contain information on the physiological state of the brain to 
understand and monitor brain function. These EEG signals are 
decomposed in sub-bands using DWT, and then Hjorth 
parameters are extracted from the decomposed signals, which are 
classified using the K-NN method. The device is capable of 
sending the information to the IoT cloud, where it can be 
accessed by doctors/physicians so that they can take effective 
decisions about the disease. In order to validate the proposed 
method, the authors perform system-level simulations, 
implemented in a Simulink environment, where DWT and the 
K-NN classifier are developed by user-defined functions. IoMT 

implementation is done using ThingSpeak, which is an open data 
platform that enables IoT applications to gather and analyse data 
in the cloud. In addition, the system is validated by experimental 
results in which open-source EEG data [11] is utilised to validate 
the classification capability of the K-NN model by calculating 
sensitivity and specificity, as defined in equations (1) and (2). The 
reported results show 100% classification accuracy for normal 
vs. ictal EEG and 97.9% for normal and interictal vs. ictal EEG.   

 

3.5. IoMT BMS for blood sugar disease 

Diabetic or blood sugar disease occurs when the human body 
is not able to properly process blood sugar [65]. Generally, blood 
sugar is measured by determining the concentration of glucose 
in the blood. Most devices are based on electrochemical 
technology, which uses electrochemical strips to perform 
measurements. There are some limitations to obtaining accurate 
measurements due to the variance in strip manufacturing and the 
use of old or out-of-date strips. Other limitations arise from 
environmental factors, such as temperature or altitude (in hilly 
areas), or from patient factors, such as improper handwashing 
[66]. Patients suffering from this disease usually require their 
blood glucose levels to be checked regularly and to manage their 
diet to keep the effects of this disease under control. Recent 
research focuses on using IoMT to improve the sharing of 
measurement data with physicians and then giving prompt 
feedback to patients.  

An IoMT system with a novel framework to measure and 
monitor glucose levels is presented in [65]. The system is used 
for remotely powered implantable glucose monitoring, in which 
the signal, retrieved from the interaction of radio frequency 
signals with biological tissue, is first characterised and then 
monitored. A low-power Bluetooth protocol is used for the 
transmission of measurement data to the user’s mobile. 
However, the authors do not discuss the accuracy of the 
proposed system. In [67], an IoMT-based system for glucose 
monitoring is presented. The article presents a non-invasive 
blood glucose measurement system based on optical detection 
and an optimised regression model. A system for light 
absorbance at a wavelength of 940 nm with a prediction model 
is designed, and the technique is validated through measurements 
taken from human fingertips. The evaluation of the method is 
performed by comparing the achieved results with referenced 
blood glucose concentrations using an SD-check one-touch 
glucometer. The results are evaluated by calculating the mean 
absolute difference, which is found to be about 5.82 mg/dl, while 
the mean absolute relative difference (MARD) is 5.20 %, the 
average error (AvgE) is 5.14 % and RMSE is 7.50 mg/dl. The 
test samples of 43 healthy people and diabetic patients are 
collected for a Clarke error grid analysis, which is used to quantify 
the clinical accuracy of blood glucose devices with reference 
values [68]. The overall results show that better measurements 
have been achieved using the proposed approach than using the 
non-invasive measurement methods presented in [69]-[71].  

In [72], iGLU 2.0 is presented. This is a new IoMT-based 
wearable device that is used for measuring blood glucose levels. 
The device uses infrared spectroscopy and IoMT paradigms for 
the remote access of data by doctors/users. Analysis of the 
optimised regression model is performed, and the system is 
validated on healthy, pre-diabetic and diabetic patients. The 
robust regression models of serum glucose levels are deployed as 
the mechanism for measurement for this proposed solution. In 
particular, a total of 50 different samples of capillary glucose and 
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37 samples of serum glucose are taken from pre-diabetic, diabetic 
and healthy people for the testing and analysis of the proposed 
iGLU 2.0 device. The obtained results are then compared with 
the reference values for serum glucose obtained from a 
laboratory. In particular, the reference values for capillary glucose 
are measured using an invasive glucometer SD check, which is 
the gold standard for validation purposes. In terms of capillary 
blood glucose, AvgE is found to be about 6.07 % and MARD is 
6.08 %, whereas for serum glucose, AvgE is 4.88 % and MARD 
is 4.86 %.  

In [73], a reliable IoT-based embedded healthcare system that 
uses the Alaris 8100 infusion pump, Keil LPC-1768 board and 
IoT cloud to monitor diabetic patients is proposed. The infusion 
pump delivers medical liquid (insulin) to the patient on a timely 
basis, and the Keil LPC-1768 board is responsible for delivering 
the control commands and daily patient readings and providing 
a secure connection layer. The system is capable of storing 
patient records in the cloud, and a secure hash algorithm and 
secure socket shell are employed in this system to achieve the 
reliability components of the proposed scheme. The article 
reports that the system has a 99.3 % probability of continuing to 
operate normally. Also the authors claim that the proposed 
system design is reliable, secure and authentic in relation to 
security and privacy. However, the metrological aspects of the 
proposed system are not discussed.  

4. METROLOGICAL IOMT-BMS CHALLENGES  

There are several metrological issues related to IoT-based 
BMS that should be addressed when considering their large-scale 
implementation in the healthcare sector. 

As reported in the previous sections, several devices have 
been proposed by researchers in this field, but the majority of 
researchers do not focus on the device’s metrological 
characterisation, and they provide questionable validation, 
calibration and/or accuracy parameters. 

The treatment and monitoring of diseases are based on 
measurements provided by the devices used in IoMT BMS. If 
IoMT BMS are not investigated from a metrological perspective, 
there can be no certainty about their capacity for providing 
reliable, accurate, precise and repeatable measurements of vital 
signs, with the serious risk of delivering incorrect information, 
leading to the misdiagnosis or incorrect treatment of diseases 
[73]. Therefore, it is important to consider all aspects relating to 
the measurement accuracy of the devices (measurement nodes) 
used in the system. In addition, it is essential that the 
measurement devices used in IoMT BMS are properly calibrated 
[75] using suitable reproducible procedures and references. 
There should be appropriate guidelines for the common user on 
the calibration process of the IoMT device or properly accredited 
laboratories that provide these services, either onsite or remotely. 
In practice, calibrations are usually made by switching the device 
on and off or zeroing or resetting the device, which is not 
recommended [73]. Due to the presence of various measurement 
parameters (i.e. pressure flow, temperature, sound pressure), it is 
difficult to calibrate these devices. Moreover, one of the major 
challenges is that there is no general consensus among different 
laboratories (from different disciplines, such as pressure flow, 
temperature, sound pressure) on how to regulate calibration 
traceability on a single platform for the different kinds of 
measurement system [76].  

5. CONCLUSION 

IoMT BMS play an important role in the diagnosis of diseases, 
such as abnormal blood pressure, heart attacks, brain tumours, 
Alzheimer’s, Parkinson’s and epilepsy as well as in healthcare 
monitoring, the monitoring of disease progression and 
biomedical research. The rapid growth of and increasing demand 
for IoMT BMS that suit the modern lifestyle make it essential for 
these systems to be accurate, fast, user friendly and comfortable 
for the wearer and to provide stability and accuracy even in harsh 
environments. Based on these common requirements, scientists 
are trying to improve these BMS and develop new solutions. The 
presented overview aims to stimulate research in this field and 
offer some highlights of IoT-based BMS for specific diseases. 
The paper has also highlighted some important challenges related 
to metrology in IoMT that need to be addressed. Such issues will 
lay the groundwork for the development of new multidisciplinary 
approaches to the design of improved IoMT systems and, thus, 
guarantee the continuous monitoring of human health, delivering 
accurate and reliable measurements. 
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