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1. INTRODUCTION 

According to the International Federation of Robotics 2019 
report, the average robot density in the manufacturing industry 
has grown to a new global record of 113 units per 10,000 
employees [1]. Although the automation of small- and medium-
sized enterprises (SMEs) is supported within the European 
Union according to the European Commission’s Digital 
Economy and Society Index Report 2019 [2], the share of large 
enterprises that use industrial or service robots is four times 
higher than that of SMEs, and the use of robots varies widely 
with company size. 

One of the most commonly asked questions in the semi-
robotised industry is how to make production more efficient, 
which is related to a study [3], where robots in an assembly 
operation could reduce the idle time of an operator by 85 %. 
Therefore, using collaborative robots (cobots) in a factory for 
assembly tasks could lead to greater efficiency, which means 
shorter production times. This statement can also be useful for 
the assembly of different products or product families, which 
requires a set of different fixtures or reconfigurable fixtures, such 

as those based on the parallel kinematic machine in [4] or the 
fixed but flexibly useable gripper presented in this article.  

However, the problem is that despite well-defined task 
sequences, the changeover from one product to another in a 
collaborative operation could lead to human failures and, 
consequently, to collisions with the cobot due to the previous 
habitual sequence of actions. 

By definition, a cobot has to operate with strict safety 
installations (protective stop execution when a certain force in a 
collision is reached), as outlined in ISO/TS 15066:2016 [5], ISO 

10218‑1:2011 [6] and ISO 10218‑2:2011 [7], but these protective 
stops could cause a significant cumulative delay in production. 
This depends largely on how the robot program has been written, 
i.e. whether operations can be continued after a protective stop. 

Review articles such as those of Hentout et al. [8] and 
Zacharaki et al. [9] present solutions for pre-collision approaches 
in the frame of human–robot interaction (HRI). Pre-collision 
control methods, referred to as ‘prevention’ methods, are 
techniques intended to ensure safety during HRI by monitoring 
either the human, the robot or both and modifying robot control 
parameters prior to incidence of collision or contact [9]. Pre-
collision approaches can be distinguished between reactive 
control strategies, proprioceptive sensor-based strategies and 

ABSTRACT 
The performance of human–robot collaboration can be improved in some assembly tasks when a robot emulates the effective 
coordination behaviours observed in human teams. However, this close collaboration could cause collisions, resulting in delays in the 
initial scheduling. Besides the commonly used acoustic or visual signals, vibrations from a mobile device can be used to communicate 
the intention of a collaborative robot (cobot). In this paper, the communication time of a virtual reality and depth camera-based system 
is presented in which vibration signals are used to alert the user of a probable collision with a UR5 cobot. Preliminary tests are carried 
out on human reaction time and network communication time measurements to achieve an initial picture of the collision predictor 
system’s performance. Experimental tests are also presented in an assembly task with a three-finger gripper that functions as a flexible 
assembly device. 

mailto:imre.paniti@sztaki.hu


 

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 73 

exteroceptive sensor-based control [8]. However, these 
approaches are all manifested in robot control parameter 
modification rather than in operator warnings. 
Both the above studies refer to the work of Carlos Morato et al. 
[10], who presented a similar solution by creating a framework 
using multiple Kinects to generate a 3D model with bounding 
spheres for human movements in real time. The proposed 
framework calculates human–robot interference in a 3D space 
with a physics-based simulation engine. The deficiency of the 
study is the pre-collision strategy for safe human–robot 
collaboration because this results in the complete stoppage of the 
robot. This is indeed a safe protocol, as it reduces the production 
break time, but it does not eliminate it completely. 

The aim of this paper is to highlight the importance of a new 
pre-collision strategy that does not modify the trajectories but 
relies fully on the warning of the operator (using a non-safety-
critical system), especially when flexible/reconfigurable fixtures 
are used.  

Section 2 provides an overview of standards and definitions 
related to robotic and cobotic systems, especially in relation to 
protective separation distance, which is crucial for the proposed 
solution. Section 3 presents an experimental environment and 
use cases in which the proposed solution can be used. Section 4 
describes the new pre-collision approach and its system elements 
in detail, together with some communication measurement 
results to demonstrate the feasibility of the solution. Finally, 
Section 5 presents a summary with conclusions. 

2. STANDARDS AND DEFINITIONS FOR COBOT USE 

In general, when using a robotic arm with a gripper the 
2006/42/EC Machinery Directive [11] and the 2014/35/EU 
Low Voltage Directive [12], together with ISO/TS 15066:2016 
[5] and 16 standards, have to be considered [13]. These are 
detailed in Table 1. 

According to ISO 10218‑1:2011 [6], a collaborative 
workspace is a space within the operating space where the robot 
system (including the workpiece) and a human can perform tasks 
concurrently during production operations, and a collaborative 

operation is a state in which a purposely designed robot system 
and an operator work within a collaborative workspace. 

According to ISO/TS 15066:2016 [5], collaborative 
operations may include one or more of the following methods: 

• a safety-rated monitored stop, 

• hand guiding, 

• speed and separation monitoring, 

• power and force limiting. 
In power- and force-limiting operations, physical contact 

between the robot system (including the workpiece) and an 
operator can occur either intentionally or unintentionally. Power- 
and force-limited collaborative operations require robot systems 
specifically designed for this particular type of operation using 
built in measurement units. According to ISO/TS 15066 [5], risk 
reduction is achieved, either through inherently safe processes in 
the robot or through a safety-related control system, by keeping 
hazards associated with the robot system below threshold limit 
values, which are determined during the risk assessment. 

If an operator wants to maintain a safe distance in a 
collaborative operation, ISO/TS 15066:2016 Robots and robotic 
devices - Collaborative robots (clause 5.5.4: Speed and separation 
monitoring) [5], EN ISO 13850:2015 [19], EN ISO 13855:2010 
[15], EN IEC 60204-1:2018 [20] and EN IEC 62046:2018 [26] 
should be applied together with the following regulations and 
standards: Directive 2006/42/EC [11], EN ISO 10218-1:2011 
[6] and EN ISO 10218-2:2011 [7]. In addition, EN ISO 
12100:2010: Safety of machinery - General principles for design 
- Risk assessment and risk reduction [18] should be considered. 

In speed and separation monitoring, the protective separation 
distance is the shortest permissible distance between any moving 
hazardous part of the robot system and any human in the 
collaborative workspace, and this value can be fixed or variable. 

During automatic operations, the hazardous parts of the 
robot system should never get closer to the operator than the 
protective separation distance, which is calculated based on the 
concepts used to create the minimum distance formula in ISO 
13855:2010 [15]. 

The protective separation distance Sp can be described by 
formula (1): 

𝑆p(𝑡0) =  𝑆h  +  𝑆r  +  𝑆s  +  𝐶 +  𝑍d  +  𝑍r, (1) 

where 
Sp(t0) is the protective separation distance at time t0 (present or 
current time); 
Sh is the contribution to the protective separation distance 
attributable to the operator’s change in location; 
Sr is the contribution to the protective separation distance 
attributable to the robot system’s reaction time; 
Ss is the contribution to the protective separation distance due to 
the robot system’s stopping distance; 
C is the intrusion distance, as defined in ISO 13855, which is the 
distance that a part of the body can intrude into the sensing field 
before it is detected; 
Zd is the position uncertainty of the operator in the collaborative 
workspace as measured by the presence sensing device resulting 
from the sensing system measurement tolerance; and 
Zr is the position uncertainty of the robot system, resulting from 
the accuracy of the robot position measurement system [5]. 
Based on this, the authors propose to extend the protective 
separation distance (1) with an extra distance based on the 
communication time of a pre-collision system (Spc) and with a 
contribution to the protective separation distance attributable to 

Table 1. Standards in manufacturing when using a robotic arm with a gripper. 

Standard Ref. 

EN ISO 10218-1:2011  [6] 

EN ISO 10218-2:2011  [7] 

ISO/TR 20218-1:2018 [14] 

EN ISO 13855:2010  [15] 

EN ISO 13849-1:2015 [16] 

EN ISO 13849-2:2012 [17] 

EN ISO 12100:2010 [18] 

EN ISO 13850:2015  [19] 

EN IEC 60204-1:2018 [20] 

EN IEC 62061:2005 [21] 

EN ISO 11161:2007  [22] 

EN ISO 13854:2017  [23] 

EN ISO 13857:2019  [24] 

EN ISO 14118:2017  [25] 

EN IEC 62046:2018  [26] 

EN ISO 13851:2019  [27] 
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the robot operator’s reaction time (Sort) to avoid speed reductions 
or protective stops. This would result in a modified protective 
separation distance (Sp*):  

𝑆p
∗ =  𝑆p  +  𝑆pc  +  𝑆ort . (2) 

However, the proposed system in this paper is, as has already 
been mentioned, an extra non-safety certified solution. The 
purpose of the presented measurements in this paper is to 
determine the above-mentioned time parameters 
(communication time and reaction time) of the additional 
distances (Spc and Sort) in this specific environment. 

3. EXPERIMENTAL ENVIRONMENT AND USE CASES 

Robots are usually moved on prespecified trajectories that are 
defined in the robot’s program, and, in most cases, a new task 
involves starting a new robot program. Another method is to 
move the high-level robot control from the robot to a computer, 
and the robot then continuously receives the required 
movements and other actions via a stream. In this case, the robot 
runs a general-purpose program or framework that interprets 
and executes the external instructions received. In this scenario, 
the framework is called URSZTAKI, developed by the SZTAKI 
Research Laboratory for Engineering and Management 
Intelligence. URSZTAKI has three kinds of instructions: (a) 
basic instructions that constitute the robot's programming 
language, (b) instructions for the robot add-ons (e.g. the gripper 
and force sensor) integrated into the robot language by the 
accessory suppliers and (c) frequently used, more complex task 
instructions (e.g. putting down or picking up an object when the 
table distance is unknown). The third type of instruction 
constitute the real features of URSZTAKI. 

It should also be mentioned that the expansion of the UR 
robot's functions and language is possible with the help of so-
called URCAPs (which is a platform where users, distributors 
and integrators can demonstrate accessories that run successfully 
in UR robot applications [28]), and currently, URSZTAKI can 
also be installed as an URCAP. 

The experimental layout consists of a UR10 robot with a force 
sensor and a two-finger gripper. The environment was designed 

to support different assembly tasks, either fully robotised or 
collaborative. To equip partly or even fully different 
components, universal mounting technology was required 
instead of special fixtures. Another gripper (with three fingers) 
was used that allowed a wide variety of fixings. All three fingers 
could be moved independently of the selected adaptive gripper 
fixed to the robot worktable (Figure 3). 

The three-finger gripper from RobotiQ [29] has four different 
modes for operating the fingers (Figure 2). In the ‘pinch’ mode 
on the top left side of Figure 1, the gripper acts as a two-finger 
model, and the fingers move closely together to be able to pick 
up small objects. The next mode is the ‘scissor’ mode in which 
the closing–opening ability of the gripper is used to pick up an 
object. In the third ‘wide’ mode, the fingers are fan-like, and they 
provide a firm wide grip for longer objects. For the leftmost 
‘normal’ grip, the three fingers move in parallel and, depending 
on the relative position of the object, the fingertips also turn for 
greater precision in ‘normal’ and ‘wide’ mode. This is the 
encompassing grip. 

From the software point of view, both grippers can be directly 
programmed from the robot's program code. Despite the fact 
that both grippers are from the same manufacturer, which could 
make the development easier, the commands of one of the 
grippers had to be modified to avoid conflict between the 
individual instructions. 

A typical scenario is that the robotic arm picks up and 
transfers a part to the fixed gripper, which grabs it, and after that, 
another part is placed or pressed with the desired force by the 
robotic arm on the part fixed by the immobile gripper. There are 
some detailed tasks, such as the insertion of a spring into a 
housing, which have to be performed by the human operator. 

In this environment, it is also possible for the robot to hold a 
screwdriver and fasten the assembled parts with screws at the set 
torque limit (Figure 3 and Figure 4). 

The prototype was designed specifically for the previously 
shown push-button element. However, it can be easily 
redesigned for another part, or a universal piece can be made to 
support different types of product assembly. 

Following the parallel movement of the fingers, a form-fitting 
shape is created that holds the part motionless while the required 
actions are carried out. Because the holder is connected to the 
fingertips, slippage is also prevented in cases where the pressing 

 

Figure 1. Demonstration environment.  

 

Figure 2. The four different modes of the three-finger RobotiQ gripper [29].  
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force applied is too great or an inappropriate human movement 
occurs. 

The proposed solution with the immobile three-finger gripper 
satisfies the requirements of a flexible fixture for certain parts. In 
this scenario, human–robot collision problems might occur if the 
human operator forgets the predefined assembly task sequence 
when beginning the assembly of a new product, reaches for an 
assembly part and the hand trajectory intersects that of the robot. 

To demonstrate a flexible assembly with the three-finger 
gripper, an additional application was developed in which both 
grippers were used to perform the assembly task, requiring 
human intervention at certain points of the assembly process at 

the same time. In the task, a didactic element, which had been 
packaged with a transparent plastic lid and a metal base, were 
pushed together at the beginning of the operation (presumably, 
this packaging material came from the supplier). The operation 
steps of the complete assembly were the following: 

1. Pick up the packaging material with the robot arm and 
fix the base with the three-finger gripper. 

2. Remove the lid from the base and put it down (Figure 5). 
3. Pick up the didactic element and place it onto the metal 

base. 
4. Put the plastic lid back on the base. 
5. Fix the packed object, release the three-finger gripper 

and put it back in its starting position. 
Inserting the didactic element is the bottleneck in the 

assembly process. Normally, the robot finds the hole with a small 
spiral movement using force sensing. Since the gap between the 
meter and the base is narrow, this operation is not always 
successful (see Figure 6), in which case, human intervention is 
possible or necessary to avoid any wastage.  

In some instances, the next operation (putting the lid back) 
corrected the skewed didactic element, and it slipped into the 
base. However, the success of a process should not be based on 
coincidence, and this is when a collision predictor system can be 
very useful. An easy movement by the operator can prevent 
wastage, thereby reducing costs. 

It is a simple operation sequence, but because of the 
positioning errors, human intervention may be required during 
two of the steps. 

 

Figure 3. Illustration of the robotised screwdriving of a push-button element 
in which the spring has to be inserted manually.  

 

Figure 4. Illustration of the robotised screwdriving of a ball valve element.  

 

Figure 5. Illustration of the second step.  

 

Figure 6. Illustration of the failed insertion of the didactic element.  
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4. PRE-COLLISION APPROACH AS A PREDICTOR 

In order to avoid collisions with the robot, either the robot 
trajectory has to be modified in real time (which might cause 
additional production time, something companies want to avoid) 
or the human operator has to be warned with a pre-defined 
understandable signal so the human movement can be modified 
in time. 
The warning signal can be given to the operator in several ways: 
visual, acoustic or tactile. In this paper, the latter has been 
developed as part of a PREdictor of Human–RObot COllision 
(PREHUROCO) framework. The subject of the prediction in 
this case is the predetermined movement of the robot, which can 
be recorded and will occur after a certain time, so a similar 
framework had to be created to that described in [10]. However, 
instead of a digital twin of the robot (real-time 3D visualisation 
of the robot), a pre-played robot model motion was used 
together with the 3D skeleton model of the operator. The virtual 
collisions of the two models were used as trigger signals to warn 
the operator before a real collision. 

4.1. Requirement analysis 

The following features were needed for the candidate 
software library, based on the requirement analysis of 
PREHUROCO: 

1) Fully open source: the system must fulfil all the 
security requirements of a real manufacturing 
system; therefore, complete control of the source 
code is obligatory. 

2) Modular: the system should be divided into various 
software components, so the candidate software 
library must support responsibility encapsulation. 

3) Distributed: in a manufacturing system, many 
computers and Internet-of-Things (IoT) devices can 
be connected; therefore, the PREHUROCO 
software components must have the ability to run 
on different computers or IoT devices.  

4) Cross platform: as the distribution requirement is 
for many computers and devices with different 
operating systems to be connected, the candidate 
framework should be cross platform. 

5) Programming language variability: as the 
distribution and cross-platform requirements are for 
different devices and computer operating systems in 
manufacturing scenarios, the candidate software 
library should support different application 
programming interfaces (APIs). 

6) Scalability: PREHUROCO software components 
should be developed independently of whether they 
run on the same computer or not. In terms of 
performance, the software components should be 
be easily put together in one machine or one 
application and easily distributed. 

7) Rapid prototyping: the candidate framework should 
provide examples or even pre-made components 
that can be improved during PREHUROCO 
implementation because the proposed system 
should deal with 
• rigid-body simulation, 
• visualisation (including VR or AR), 
• real-time 3D scanning, 
• an X3D model format and 
• various communication protocols. 

Unity Engine [30] and Unreal Engine [31] are well-known cross-
platform game engines. ApertusVR [32] is a software and 
hardware vendor-free, open-source software library. It offers a 
no-vendor-lock-in approach for integrating VR technologies into 
industrial software systems.  

The comparison of the candidate frameworks considering the 
requirements is summarised in Table 2. 

Based on the PREHUROCO requirement analysis, the 
ApertusVR software library was chosen for implementing the 
system. With the help of this software library, a distributed 
software ecosystem was created via the Intranet/Internet, which 
was divided into two main parts, the core and plugins. The core 
system is responsible for the Internet/Intranet communication 
between the elements of the distributed software ecosystem, and 
it synchronises the information between them during the session. 
The plugin mechanism makes it possible to extend the capability 
of any solution created by the ApertusVR library. Plugins can 
access and manipulate the information within the core system. 

4.2. Explanation of the PREHUROCO system 

The system is distributed into five major responsibilities: 
1) 3D scanning of the human operator, 
2) streaming the joint angles of the robot, 
3) collision detection between the human and the 

robot, 
4) alerting the human to the possible collision and 
5) visualising the whole scenario. 

In the present study, these responsibilities were implemented 
with the help of the ApertusVR library, and each responsibility 
was encapsulated into six plugins [33]: the collision detection 
plugin, the visualisation plugin, the Kinect plugin, the WebSocket 
server plugin, the X3D loader plugin and the NodeJS plugin. 

The seventh element was a WebSocket client, which was 
implemented in the form of an HTML site using the jQuery 
JavaScript library and the vibration API method [34] for mobile 
phones; but for more comfortable use, the WebSocket client 
could also run on a smart watch. 

Figure 7 shows the realised system with the connections and 
applied protocols in an experimental set up with an UR5 robot. 

Collision detection plugin [35]: this plugin was created based 
on the pre-made ApertusVR ‘bulletPhysics’ plugin. Previously, 
this plugin had been able to run rigid-body simulations, but 
collision events were not created during these simulations. The 
ApertusVR rigid-body abstraction was enhanced by the 
functionality of collision events. 

Visualisation plugin [36]: this plugin was used as-is from the 
ApertusVR repository for visualisation purposes. 

Kinect plugin [37]: this plugin was created based on the pre-
made ApertusVR ‘Kinect’ plugin. Previously, this plugin had 

Table 2. Comparison of different frameworks in relation to the PREHUROCO 
requirements. 

Requirement Unity Engine Unreal Engine ApertusVR 

Open source Partially Yes Yes 

Modular Yes Yes Yes 

Distributed Partially Corner Case Yes 

Cross platform Yes Partially Partially 

Prog. lang. variability Partially Corner Case Yes 

Scalability Partially Partially Yes 

Rapid prototyping Yes Yes Yes 
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been able to create the skeleton of the tracked human or even its 
point cloud, but rigid bodies were not created. For collision 
detection, rigid bodies are mandatory; therefore, rigid bodies 
were created based on the geometries of the human skeletons. 

Websocket server plugin [38]: this plugin was created based 
on the pre-made ApertusVR ‘WebSocketServer’ plugin. 
Previously, this plugin had been able to forward all events 
developed in the core. For collision detection, only the collision 
event of the rigid bodies is necessary. During the implementation 
of that plugin, a filter feature was added to forward only the 
desired event into the WebSocket connection. 

X3D loader plugin [39]: this plugin was created based on the 
pre-made ApertusVR ‘X3DLoader’ plugin. Previously, this 
plugin had been able to parse the X3D format and create only 
the geometries of the robot. For collision detection, rigid bodies 
are mandatory; therefore, rigid bodies were created based on the 
parsed geometries. 

NodeJS plugin [40]: this plugin was used as-is from the 
ApertusVR repository and allows a web server to be run to 
receive the joint angle of the UR5 robot via HTTP requests. 

In the PREHUROCO system, these plugins are encapsulated 
in different applications. These different applications can be run 
on different computers to distribute the computational power 
and achieve real-time collision prediction. As the diagram in 

Figure 7 shows, these applications communicate through 
Internet/Intranet communication via different protocols. 

The collision detection application has to be run on a high-
performance computing (HPC) server to process the virtual 
collisions in real time. 

The Kinect application can run on a dedicated computer for 
the Kinect device or on the same computer that calculates the 
virtual collisions. 

The X3DLoader and the NodeJS plugins are integrated into 
one application and can run on the dedicated computer for the 
UR5 robot. 

The WebSocket server application can also be run on a 
different computer to ensure security and locality requirements. 

The joint positions are stored in a jsonlist file, which is 
generated by executing the whole robot program. During the 
execution, the joint positions are ‘grabbed’ and saved with a 
given frequency. 

The speed of the simulation is equal to the speed of the robot 
movement, and the ‘forecast’ can be determined by the delay 
between the simulation starting time and the real robot execution 
start time. 

4.3. Modified PREHUROCO system and measurements 

During the validation process, the PREHUROCO system 
was reconfigured to eliminate any unnecessary delay in the 
system. The reconfiguration process was achieved by the 
ApertusVR configuration feature; thus, all the plugins were re-
used without any modification. The previously distributed 
PREHUROCO system was therefore easily reconfigured to form 
a single application (Figure 8) and was able to run on a single 
computer. 

The elimination of unnecessary network connections/delays 
was a crucial step in avoiding any latency in the system. Through 
this approach, the human–robot-collision calculation time and 
the human-operator reaction time were measured precisely. 
Timestamps were buffered before and after the collision events, 
the WebSocket message transmission/receipt and the human 
operator pressing the button on a Bluetooth keyboard. 

The proposed framework was tested on two local network 
topologies. In the first case, the calculations were divided into a 
cloud-service-based computer (with four virtual CPUs, 8 GB 
RAM, running a Windows 10 operating system) and an HPC 
server (Ideum with Intel i7-8700, RTX 2080 8 GB GDDR6 
NVIDIA graphics card, dual 250 GB NVMe M.2 SSD, 32 GB 
2400 MHz DDR4 RAM, running a Windows 10 operating 
system), and the collision events were delivered to the 
WebSocket client with significant delay. 

By running all ApertusVR plugins on the Ideum and sending 
only the collision events via a wireless LAN connection (2.4 GHz 
Wi-Fi) the user experience was quasi real-time. 

Figure 9 shows a virtual collision test running on the Ideum 
(HPC server) with the skeleton model of a single operator (1), 
virtual UR5 robot movement simulation (2), a real robot (3), a 
Kinect sensor (4) and a mobile phone (5) with an android 
operating system running the WebSocket client to vibrate the 
device. The 3D scene was visualised with a top camera view, but 
arbitrary camera views are possible. 

To avoid the execution of large JavaScript files locally on the 
android mobile phone, external calls to cdn.jsdelivr.net and 
code.jquery.com were used. The ping time to these services were 
measured with an android application (PingTools version 4.52), 
which gave 9 ms and 30 ms as the average from three 
measurements, respectively. 

 

Figure 7. PREHUROCO system elements and connections with the applied 
protocols.  

 

Figure 8. Reconfigured PREHUROCO system.  
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The second network topology was used to measure the 
communication time of the system with five more people of 
different genders and ages (see Figure 10). The reaction time of 
each operator was measured using an android application 
(Reaction Test version 1.3), which vibrates at randomised short 
time intervals (a couple of seconds) and calculates the average of 
five measurements. 

The average calculation time of the human–robot model 
collision until the HTTP-request send was 98 ms, the average 
time from the HTTP-request send to the keypress event was 
1,355 ms and the average reaction time was 449 ms. Each virtual 
collision with keyboard pressing as confirmation was tested three 
times. According to a Bluetooth keyboard performance test, 
‘Microsoft delays in a non-interference test environment by 
approximately 40 to 200 milliseconds’ [41], so the calculation 
time for the human–robot collision together with the network 
communication time would be less than 1 s using this 
PREHUROCO configuration. 
However, by using RakNet instead of HTTP requests the 
performance of the system can be significantly improved. 
RakNet communication time measurements from 223 collision 
events showed that only 36.52 ms was needed on average. 
Furthermore, it is worth mentioning that with 5G 

communication an average two-way latency of 1.26 ± 0.01 ms 
would be possible, as noted in [42]. 

The Kinect plugin creates a simplified skeleton model from 
the human operator, which needs improvement. An 
anthropomorphic skeleton model or voxelisation could be a 
solution in the future. 

It should be highlighted that the communication time 
increased by the human reaction time should not exceed the ΔT 
time between the pre-played simulated motion and the actual 
motion of the robot. A jsonlist file of the simulated UR5 robot 
movement is provided in [43]. 

5. CONCLUSION 

In this paper, a commercially available gripper as a flexible 
fixture for assembly and a new pre-collision approach as a 
predictor for human–robot collaboration were presented. The 
proposed framework was realised with the help of a modular, 
distributed, open-source cross platform (ApertusVR) with 
different programming API support and scalability solutions. 

Seven interconnected system modules were developed with 
the goal of monitoring the movement of the human operator in 
3D space, calculating collisions with a virtual robot (with pre-
played movements rather than the movement of a real robot) and 
alerting the human operator before a real collision could occur. 
Successful virtual collision tests with six candidates showed that 
the operator received the warning signal immediately (under 1 s) 
in the form of a mobile-device vibration to modify the planned 
movement.  

In some cases, real-time path planning is required, especially 
in a changing environment, such as when the position of the 
workpiece to be gripped is variable (e.g. litter picking). In a 
collaborative environment, this is a serious security challenge that 
the whole system has to manage. The static parts of the 
environment can be checked regularly through collision 
detection, but the presence of the human means that ‘simple’ 
collision detection is not sufficient. This was the main reason for 
the current research and development presented in this paper. 
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