
ACTA IMEKO
ISSN: 2221-870X
September 2021, Volume 10, Number 3, 7 - 14

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 7

Vision-based reinforcement learning for lane-tracking control

András Kalapos1, Csaba Gór2, Róbert Moni3, István Harmati1

1 BME, Dept. of Control Engineering and Information Technology, Budapest, Hungary
2 Continental ADAS AI, Budapest, Hungary
3 BME, Dept. of Telecommunications and Media Informatics, Budapest, Hungary

Section: RESEARCH PAPER

Keywords: Artificial intelligence, machine learning, mobile robot, reinforcement learning, simulation-to-reality, transfer learning

Citation: András Kalapos, Csaba Gór, Róbert Moni, István Harmati, Vision-based reinforcement learning for lane-tracking control, Acta IMEKO, vol. 10, no. 3,
article 4, September 2021, identifier: IMEKO-ACTA-10 (2021)-03-04

Section Editor: Bálint Kiss, Budapest University of Technology and Economics, Hungary

Received January 17, 2021; In final form September 22, 2021; Published September 2021

Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original author and source are credited.

Corresponding author: András Kalapos, e-mail: andras.kalapos.research@gmail.com

1. INTRODUCTION

Reinforcement learning has been used to solve many control
and robotics tasks. However, only a handful of papers have been
published that apply this technique to end-to-end driving [1]-[7],
and even fewer studies have focused on reinforcement learning-
based driving, trained only in simulations and then applied to
real-world problems. Generally, bridging the gap between
simulation and the real world is an important transfer-learning
problem related to reinforcement learning, and it is an
unresolved task for researchers.

Mnih et al. [1] proposed a method to train vehicle controller
policies that predict discrete control actions based on a single
image of a forward-facing camera. Jaritz et al. [2] used WRC6, a
realistic racing simulator, to train a vision-based road-following
policy. They assessed the policy's generalisation capability by
testing it on previously unseen tracks and on real driving videos
in an open-loop configuration; but their work did not extend to
an evaluation of real vehicles in closed-loop control. Kendall et
al. [3] demonstrated real-world driving by training a lane-
following policy exclusively on a real vehicle under the

supervision of a safety driver. Shi et al. [4] presented research that
involved training reinforcement learning agents in Duckietown,
in a similar way to that presented here; however, the focus was
mainly on presenting a method that explained the reasoning
behind the trained agents rather than the training methods. Also
similar to the present study, Balaji et al. [5] presented a method
for training a road-following policy in a simulator using
reinforcement learning and tested the trained agent in the real
world, yet their primary contribution is the DeepRacer platform
rather than an in-depth analysis of the road-following policy.
Almási et al. [7] also used reinforcement learning to solve lane
following in the Duckietown environment, but their work differs
from the present study in the use of an off-policy reinforcement
learning algorithm (deep Q-networks (DQNs) [8]); in this study
an on-policy algorithm (proximal policy optimization [9]) is used,
which achieves significantly better sample efficiency and shorter
training times. Another important difference is that Almási et al.
applied hand-crafted colour threshold-based segmentation to the
input images, whereas the method presented here takes the ‘raw’
images as inputs, which allows for a more robust real
performance.

ABSTRACT
The present study focused on vision-based end-to-end reinforcement learning in relation to vehicle control problems such as lane
following and collision avoidance. The controller policy presented in this paper is able to control a small-scale robot to follow the right-
hand lane of a real two-lane road, although its training has only been carried out in a simulation. This model, realised by a simple,
convolutional network, relies on images of a forward-facing monocular camera and generates continuous actions that directly control
the vehicle. To train this policy, proximal policy optimization was used, and to achieve the generalisation capability required for real
performance, domain randomisation was used. A thorough analysis of the trained policy was conducted by measuring multiple
performance metrics and comparing these to baselines that rely on other methods. To assess the quality of the simulation-to-reality
transfer learning process and the performance of the controller in the real world, simple metrics were measured on a real track and
compared with results from a matching simulation. Further analysis was carried out by visualising salient object maps.

mailto:andras.kalapos.research@gmail.com

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 8

This paper is an extended version of the authors’ original
contribution [10]. It includes the results of the 5th AI Driving
Olympics [11] and aims to improve the description of the
methods. In both works, vision-based end-to-end reinforcement
learning relating to vehicle control problems is studied and a
solution is proposed that performs lane following in the real
world, using continuous actions, without any real data provided
by an expert (as in [3]). Also, validation of the trained policies in
both the real and simulated domains is conducted.

The training and evaluation code for this paper is available on
GitHub1.

2. METHODS

In this study, a neural-network-based controller was trained
that takes images from a forward-looking monocular camera and
produces control signals to drive a vehicle in the right-hand lane
of a two-way road. The vehicle to be controlled was a small
differential-wheeled mobile robot, a Duckiebot, which is part of
the Duckietown ecosystem [11], a simple and accessible platform
for research and education on mobile robotics and autonomous
vehicles. The primary objective was to travel as far as possible
within a given time without leaving the road. Lane departure was
allowed but not preferred. Although the latest version of the
Duckiebot is equipped with wheel encoders, for this method, the
vehicle was solely reliant on data from the robot's forward-facing
monocular camera.

2.1. Reinforcement learning algorithm

In reinforcement learning, an agent interacts with the

environment by taking 𝑎𝑡 action, then the environment returns

𝑠𝑡+1 observation and 𝑟𝑡+1 reward. The agent computes the next

𝑎𝑡+1 action based on 𝑠𝑡+1 and so on. The policy is the parametric
controller of the agent, and it is tuned during the reinforcement
learning training. Sequences of actions, observations and rewards

(𝜏 trajectories) are used to train the parameters of the policy to
maximise the expected reward over a finite number of steps
(agent–environment interactions). For vehicle control problems,
the actions are the signals that control the vehicle, such as the
steering and throttle, and the observations are the sensor data
relating to the environment of the vehicle, such as the camera,
lidar data or higher-level environment models. In this research,
the observations were images from the robot's forward-facing
camera, and the actions were the velocity signals for the two
wheels of the robot.

Policy optimisation algorithms are on-policy reinforcement

learning methods that optimise the parameters of the πθ(𝑎𝑡|𝑠𝑡)
policy based on the 𝑎𝑡 actions and the 𝑟𝑡 reward received for

them; 𝜃 denotes the trainable parameters of the policy. On-policy

reinforcement learning algorithms optimise the πθ(𝑎𝑡|𝑠𝑡) policy
based on trajectories in which the actions have been computed

by πθ(𝑎𝑡|𝑠𝑡). In contrast, off-policy algorithms (such as DQNs
[8]) compute actions based on the estimate of the action-value
function of the environment, which they learn using data from a
large number of (earlier) trajectories, making these algorithms
less stable in some environments. In policy optimisation

algorithms, the πθ(𝑎𝑡|𝑠𝑡) policy is stochastic, and in the case of
deep reinforcement learning, it is implemented by a neural
network, which is updated using a gradient method. The policy
is stochastic because, instead of computing the actions directly,

1 https://github.com/kaland313/Duckietown-RL (Accessed 23

September 2021)

the policy network predicts the parameters of a probability

distribution (see 𝜇 and 𝜎 in Figure 1) that is sampled to acquire

the 𝑎�̃� predicted actions (here, predicted refers to this action
being predicted by the policy).

In the present study, to train the policy, the proximal policy
optimization algorithm [9] was used because of its stability,
sample-complexity and ability to take advantage of multiple
parallel workers.

Proximal policy optimization performs the weight updates
using a special loss function to keep the new policy close to the
old, thereby improving the stability of the training. Two loss
functions were proposed by Schulman et al. [9]:

𝔏CLIP(𝜃) = �̂�[min(𝜌𝑡(𝜃)�̂�𝑡 ,clip(𝜌𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)�̂�𝑡)], (1)

𝔏KLPEN(𝜃) = �̂� [𝜌𝑡(𝜃)�̂� − 𝛽 KL[πθold(⋅ |𝑠𝑡), πθ(⋅ |𝑠𝑡)]], (2)

where clip(⋅) and KL[⋅] refer to the clipping function and the

Kullback–Leibler (KL) divergence, respectively, while �̂� is
calculated as the generalised advantage estimate [12]. In these

loss functions, 𝜖 is usually a constant in the [0.1,0.3] range, while

𝛽 is an adaptive parameter, and

𝜌𝑡(𝜃) =
πθ(𝑎𝑡|𝑠𝑡)

πθold(𝑎𝑡|𝑠𝑡)
. (3)

An open-source implementation of proximal policy
optimization from RLlib [13] was used, which performs the
gradient updates based on the weighted sum of these loss
functions. The pseudo code and additional details for the
algorithm are provided in the Appendix.

2.2. Policy architecture

The controller policy was realised by a shallow (4-layer)
convolutional neural network. Both the policy and the value
network used the architecture presented by Mnih et al. [1], with
the only difference being the use of linear activation in the output
of the policy network. No weights were shared between the
policy and the value network. This policy is considered to be end-
to-end because the only learning component is the neural
network, which directly computes actions based on observations
from the environment.

Some pre- and post-processing was applied to the
observations and actions, but these only performed very simple
transformations (explained in the next paragraph and Section
2.3). The aim of these pre- and post-processing steps was to

transform the 𝑠𝑡 observations and 𝑎𝑡 actions into
representations that enabled faster convergence without losing

Figure 1. Illustration of the policy architecture with the notations used. The
agent is represented jointly by the ‘Policy network’ and ‘Sampling action
distribution’ blocks; 𝑠𝑡: ‘raw’ observation, 𝑠�̃�: pre-processed observation, 𝑎�̃�:
predicted action, 𝑎𝑡: post-processed action.

https://github.com/kaland313/Duckietown-RL

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 9

any important features in the observations or restricting
necessary actions.

The input of the policy network consisted of the last three
observations (images) scaled, cropped and stacked (along the

depth axis). The observations returned by the environment (𝑠𝑡
on Figure 1) were 640 × 480 (width, height) RGB images, the top
third of which mainly showed the sky, which was therefore

cropped. The cropped images were then scaled down to 84 × 84
resolution (note the uneven scaling), which were then stacked

along the depth axis, resulting in 84 × 84 × 9 input tensors (𝑠�̃� in
Figure 1). The last three images were stacked to provide the
policy with information about the robot's speed and acceleration.

Multiple action representations were experimented with (see
Section 2.3). Based on these representations, the policy outputs

𝒂�̃� predicted an action vector of two or a scalar value that
controlled the vehicle. The policy was stochastic, and the output

of the neural network therefore produced the 𝜇 and log σ
parameters of a multivariate diagonal normal distribution.

During training, this distribution was sampled to acquire the 𝑎�̃�
actions, which improved the exploration of the action space.
During these evaluations, the sampling step was skipped by using

the predicted 𝜇 mean value as the 𝑎�̃� policy output.

2.3. Action representations

The action mapping step transformed the 𝑎�̃� predicted
actions, which could be implemented using many

representations, to 𝑎𝑡 = [𝜔𝑙 , 𝜔𝑟] wheel velocities (see Figure 1).
The vehicle to be controlled was a differential-wheeled robot; the
most basic action representation was therefore to directly
compute the angular velocities of the two wheels as continuous

values in the 𝜔𝑙,𝑟 ∈ [−1; 1] range (where 1 and −1

corresponded to forward and backward rotation at full speed).
However, this action space allowed for actions that were not
necessary for the manoeuvres examined in this paper. Moreover,
as the reinforcement learning algorithm ruled out unnecessary
actions, exploration of the action space was potentially made
more difficult, and the number of steps required to train an agent
was therefore increased.

Several methods can be used to constrain and simplify the
action space, such as discretisation, clipping some actions or
mapping to a lower-dimensional space. Most previous studies
[1],[2],[5],[7] have used discrete action spaces, thus the neural
network in these policies selected one from a set of hand-crafted
actions (steering, throttle combinations), while Kendall et al. [3]
utilised continuous actions, as has been used in this study.

In order to test the reinforcement learning algorithm's ability
to address general tasks, multiple action mappings and
simplifications of the action space were experimented with.
These are described in the following paragraphs.

Wheel velocity: Wheel velocities were a direct output of the

policy; 𝑎𝑡 = [𝜔𝑙 , 𝜔𝑟] = 𝑎�̃� , therefore 𝜔𝑙,𝑟 ∈ [−1; 1].
Wheel velocity - positive only: Only positive wheel velocities were

allowed because only these were required to move forward.

Values predicted outside the 𝜔𝑙,𝑟 ∈ [0; 1] interval were clipped:

𝑎𝑡 = [𝜔𝑙 , 𝜔𝑟] = clip(𝑎�̃� , 0,1).
Wheel velocity - braking: Wheel velocities were still only able to

fall within the 𝜔𝑙,𝑟 ∈ [0; 1] interval, but the predicted values

were interpreted as the amount of braking from the maximum
speed. The main differentiating factor from the ‘positive only’
option was the bias towards moving forward at full speed:

𝑎𝑡 = [𝜔𝑙 , 𝜔𝑟] = clip(1 − 𝑎�̃� , 0,1).

Steering: Predicting a scalar value that was continuously
mapped to combinations of wheel velocities. The 0.0 scalar value

corresponds to moving straight (at full speed), while −1.0 and 1.0
refer to turning left or right with one wheel completely stopped
and the other going at full speed. Intermediate values are
computed using linear interpolation between these values. The
speed of the robot is always maximal for a particular steering
value. Below is the formula that implements this action mapping:

𝑎𝑡 = [𝜔𝑙 , 𝜔𝑟] = clip([1 + 𝑎�̃� , 1 − 𝑎�̃�], 0,1).

2.4. Reward shaping

The reward function is a fundamental element of every
reinforcement learning problem, as it serves the important role
of converting a task from a textual description to a mathematical
optimisation problem. The primary objective for the agent is to
travel as far as possible within a given time in the right-hand lane;
therefore, two rewards that promote this behaviour were
proposed.

Distance travelled: The agent’s reward was directly proportional
to the distance it moved along the right-hand lane at each step.
Only longitudinal motion was counted and only if the robot
stayed in the right-hand lane.

Orientation: The agent was rewarded if it was facing and
moving in the desired orientation, which was determined based
on its lateral position. In simple terms, it received the largest
reward if it faced towards the centre of the right-hand lane (some
example configurations are shown in Figure 2 d). A term
proportional to the angular velocity of the faster moving wheel
was also added to encourage fast motion.

This reward was calculated as 𝑟 = 𝜆Ψ 𝑟Ψ(𝛹, 𝑑) +
λ𝑣 𝑟𝑣(𝜔𝑙 , 𝜔𝑟), where 𝑟Ψ(⋅), 𝑟𝑣(⋅) are the orientation and

velocity-based components (explained below), while the 𝜆Ψ, 𝜆𝑣

constants scale these to [-1,1]. 𝛹, 𝑑 are the orientation and lateral
error from the desired trajectory, which is the centreline of the
right-hand lane (see Figure 2 a).

The orientation-based term was calculated as 𝑟Ψ(𝛹, 𝑑) =

Λ(𝛹𝑒𝑟𝑟) = Λ(𝛹 − 𝛹des(𝑑)), where 𝛹des(𝑑) is the desired

orientation calculated using the lateral distance from the desired

trajectory (see Figure 2 b for the illustration of 𝛹des(𝑑)). The Λ

function achieves the promotion of the |𝛹𝑒𝑟𝑟| < 𝜑 error, while

an error larger than 𝜑 leads to a small negative reward (a plot of

Λ(𝑥) is shown in Figure 2 c):

Figure 2. Explanation of the proposed orientation reward: (a) explains 𝛹, d,
(b) shows how the desired orientation depends on the lateral error, (c) shows
the Λ(𝑥) function and (d) provides some examples of desired configurations.

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 10

Λ(𝑥) =

{

1

2
+
1

2
cos (π

𝑥

𝜑
) if − 1 ≤ 𝑥 ≤ 1

휀 (1 − |
𝑥

𝜑
|) otherwise

, (4)

where the ε ∈ [10−1, 10−2] and 𝜑 = 50° hyperparameters are
selected arbitrarily.

The velocity-based component was calculated as

𝑟𝑣(𝜔𝑙 , 𝜔𝑟) = max(𝜔𝑙 , 𝜔𝑟) to reward an equally high-speed
motion in both straight and curved sections. In the curved
sections, only the outer wheel was able to rotate at maximal
speed, while on a straight road, both wheels were able to do so.

2.5. Simulation-to-reality transfer

To train the agents, an open-source simulation of the
Duckietown environment was used [14]. This simulation models
certain physical properties of the real environment accurately
(dimensions of the robot, camera parameters, dynamic
properties, etc.), but several other effects (textures, objects at the
side of the road) and light simulation are less realistic (e.g.
compared to modern computer games). These inaccuracies
create a gap between simulation and reality that makes it
challenging for any reinforcement learning agent to be trained
only in simulation but operate in reality.

To bridge the simulation-to-reality gap and to achieve the
generalisation capability required for real performance, domain
randomisation was used. This involves training the policy in
many different variants of a simulated environment by varying
lighting conditions, object textures, the camera, vehicle dynamics
parameters and road structures (see Figure 3 for examples of
domain randomised observations). In addition to the ‘built-in’
randomisation options of Gym-Duckietown, this study used a
diverse set of maps to train on in order to further improve the
agent's generalisation capability.

2.6. Collision avoidance

Collision avoidance with other vehicles greatly increases the
complexity of the lane-following task. These problems can be
solved in different ways, for example, by overtaking or following
at a safe distance. However, the sensing capability of the vehicle
and the complexity of the policy determine the solution it can
learn. Images from the forward-facing camera of a Duckiebot

only have a 160 ° horizontal field of view; therefore, the policy
controlling the vehicle has no information about objects moving
next to or behind the robot. For simplicity, in this study, the same
convolutional network for collision avoidance as for lane
following was used, which does not feature a long short-term
memory cell or any other sequence modelling component (in
contrast to [2]). For these reasons, it is unable to plan long
manoeuvres, such as overtaking, which also requires side vision

to check when it is safe to return to the right-hand lane. The
policy was therefore trained in situations where there was a slow
vehicle ahead, and the agent had to learn to perform lane
following at full speed until it had caught up with the vehicle in
front, at which point it had to reduce its speed and maintain a
safe distance to avoid collision.

In these experiments, the wheel velocity - braking action
representation was used as the policy's output because this
allowed the agent to slow down or even stop the vehicle if
necessary (unlike the steering action). Both the orientation and the
distance travelled reward functions were used to train agents for
collision avoidance. The former was supplemented with a term
that promoted collision avoidance, while the latter was used

unchanged. The simulation used provided a 𝑝coll penalty if the
safety circles around the two vehicles overlapped. The
𝑟𝑐𝑜𝑙𝑙 reward component that promoted collision avoidance was
calculated using this penalty. If the penalty decreased because the
robot was able to increase its distance from an obstacle, the
reward term was proportional to the change in penalty;
otherwise, it was 0:

𝑟coll = {
−𝜆coll ⋅ Δ𝑝coll if Δ𝑝coll < 0

0 otherwise
. (5)

This term was added to the orientation reward, and it aimed to
encourage the policy to increase the distance from the vehicle
ahead if it got too close. Collisions were only penalised by
terminating the episode without giving any negative rewards.

2.7. Evaluation

To assess the performance of the reinforcement learning-
based controller, multiple performance metrics in the simulation
were measured and compared against two baselines, one using a
classical control theory approach and the other being human
driving.

Survival time (𝑡survive) in s: The time until the robot left the
road or the duration of an evaluation episode.

Distance travelled in ego-lane (𝑠ego) in m: The distance travelled

along the right-hand lane within a fixed time period. Only
longitudinal motion was counted; tangential movement therefore
counted the most towards this metric.

Distance travelled both lanes (𝑠both) in m: Both the distance
travelled along the right-hand-lane within a fixed time period and
sections where the agent moved into the oncoming lane counted
towards this metric.

Lateral deviation (𝑑𝑑) in m·s: Lateral deviation from the lane’s
centreline integrated over the time of an episode.

Orientation deviation (𝑑Ψ) in rad·s: The robot orientation's
deviation from the tangent of the lane centreline integrated over
the time of an episode.

Figure 3. Examples of domain randomised observations.

a) Simulated b) Simulated c) Real

Figure 4. a) Test track used for simulated reinforcement learning and baseline
evaluations; b) and c) real and simulated test track used for the evaluation of
the simulation-to-reality transfer.

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 11

Time outside ego-lane (𝑡𝑜𝑢𝑡) in s: Time spent outside the ego-lane.
Even though Duckietown is intended to be a standardised

platform, it is still under development, and the official evaluation
methods and baselines have not been adopted widely in the
research community. The AI Driving Olympics provided a great
opportunity to benchmark the solution presented here to others;
however, the methods behind these solutions have not yet been
published in the scientific literature. For this reason, this method
was analysed primarily by comparing it with baselines that could
be evaluated under the same conditions.

The classical control theory baseline relies on information
about the robot’s relative location and orientation to the
centreline of the lane, which is available in the simulator. This
baseline works by controlling the robot to orient itself towards a
point on its desired path ahead and calculating wheel velocities
using a proportional-derivative (PD) controller based on the
orientation error of the robot. The parameters of this controller
are hand-tuned to achieve a sufficiently good performance, but
more advanced control schemes could offer better results.

In many reinforcement learning problems (e.g. the Atari 2600
games [15]) the agents are compared to human baselines.
Motivated by this benchmark, a method to measure how well
humans were able to control Duckiebots was proposed, which
was then used as a baseline. The values shown in Table 1 were
recorded by controlling the simulated robot using the arrow keys
on a keyboard (therefore via discrete actions), while the
observations seen by the human driver were very similar to the
observations of the reinforcement learning agent.

2.8. Methods to improve results at the AI Driving Olympics

The agents in this study were trained to solve autonomous
driving problems in the Duckietown environment and not to
maximise scores at the AI Driving Olympics. Therefore, some
hyperparameters and methods had to be modified to match the
competitions' evaluation procedures. It was found that training
on lower frame rates (0.1 ms step time) improved the scores even
though the evaluation simulation was stepped more frequently.
In addition, implementing the same motion blur simulation that
was applied in the official evaluation improved the results
significantly compared with agents that were trained on non-
blurred observations.

3. RESULTS

3.1. Simulation

Even though multiple papers have demonstrated the
feasibility of training vision-based driving policies using
reinforcement learning, adapting to a new environment still
poses many challenges. Due to the high dimensionality of the
image-like observations, many algorithms converge slowly and
are very sensitive to hyperparameter selection. The method
presented in this study, using proximal policy optimization, is
able to converge with good lane-following policies in 1-million

timesteps thanks to the high sample complexity of the algorithm.
This training takes 2–2.5 hours on five cores of an Intel Xeon
E5-2698 v4 2.2 GHz CPU and an Nvidia Tesla V100 GPU if 16
parallel environments are used.

3.1.1. Comparison against baselines

Table 1 compares the reinforcement learning agent from this
study with the baselines. The performance of the trained policy
is measurable to the classical control theory baseline as well as to
how well humans are able to control the robot in the simulation.
Most metrics indicate similarly good or equal performance even
though the PD-controller baseline relies on high-level data such
as position and orientation error rather than images.

3.1.2. Comparison against other solutions at the AI Driving
Olympics

Table 2 shows the top-ranking solutions of the simulated
lane-following (validation) challenge at the 5th AI Driving
Olympics. All top-performing solutions were able to control the
robot reliably in the simulation for the duration of an episode (60
s); however, the distances travelled were different. The method
in this study is able to control the robot reliably at the highest
speed, so it therefore achieves the highest distance-travelled
value while also showing good lateral deviation and rarely
departing from the ego-lane.

3.1.3. Action representation and reward shaping

Experiments with different action representations show that
constrained and preferably biased action spaces allow
convergence with good policies (wheel velocity - braking and steering).
However, more general action spaces (wheel velocity and its clipped
version) can only converge with inferior policies during the same
number of steps (see Figure 5). The proposed orientation-based

Table 1. Comparison of the reinforcement learning agent with two baselines
in simulation.

Mean metrics over 5 episodes
 RL

agent
PD

baseline
Human
baseline

Survival time in s ↑ 15 15 15

Distance travelled both lanes in m ↑ 7.1 7.6 7.0

Distance travelled ego-lane in m ↑ 7.0 7.6 6.7

Lateral deviation in m ·s ↓ 0.5 0.5 0.9

Orientation deviation in rad·s ↓ 1.5 1.1 2.8

Table 2. Comparing the method in this study with other solutions at the AI
Driving Olympics

Author
𝒕𝐬𝐮𝐫𝐯𝐢𝐯𝐞
in s ↑

𝒔𝐞𝐠𝐨

in m ↑
𝒅𝒅

in m·s ↓
𝒕𝐨𝐮𝐭

in s ↓

A. Kalapos [10], [16] 60 30.38 2.65 0

A. Béres [16] 60 29.14 4.10 1.4

M. Tim [16] 60 28.52 3.45 0.4

A. Nikolskaya 60 24.80 3.15 1.6

R. Moni [16] 60 18.60 1.78 0

Z. Lorincz [16] 60 18.6 3.5 0.8

M. Sazanovich 60 16.12 4.35 3.4

R. Jean 60 15.5 3.28 0

Y. Belousov 60 14.88 5.41 9.8

M. Teng 60 11.78 2.92 0

P. Almási [7], [16] 60 11.16 1.32 0

a) Orientation reward b) Distance travelled reward

Figure 5. Learning curves for the reinforcement learning agent with different
action representations and reward functions.

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 12

reward function also leads to as good a final performance as one
that is ‘trivially’ rewarding based on the distance travelled;
however, the latter seems to perform better on more general
action representations (because policies using these action spaces
and trained with the orientation reward do not learn to move fast).

3.2. Real-world driving

To measure the quality of the transfer learning process and
the performance of the controller in the real world, performance
metrics that were easily measurable both in reality and simulation
were selected. These were recorded in both domains in matching
experiments and compared against each other. The geometry of
the tracks, the dimensions and the speed of the robot were
simulated accurately to evaluate the robustness of the policy
against all the inaccurately simulated effects and those that were
not simulated. Using this method, policies trained in the domain-
randomised simulation were tested as well as those that were
trained only in the ‘nominal’ simulation. This allows for the
evaluation of the transfer learning process and the highlighting
of the effects of training with domain randomisation. The real
and simulated version of the test track used in this analysis is
shown in Figure 4 b and Figure 4 c.

During real evaluations, it was generally found that under
ideal circumstances (no distracting objects at the side of the road
and good lighting conditions), the policy trained in the ‘nominal’
simulation was able to drive reasonably well. However, training
with domain randomisation led to a more reliable and robust
performance in the real world.

Table 1 shows the quantitative results of this evaluation. The
two policies seemed to perform equally well when compared
based on their performance in the simulation. However, metrics
recorded in the real environment show that the policy trained
with domain randomisation performed almost as well as in the
simulation, while the other policy performed noticeably worse.
The lower distance travelled ego-lane metric of the domain-
randomised policy can be explained by the fact that the vehicle
tended to drift to the left-hand lane at sharp turns but returned
to the right-hand lane afterwards, while the nominal policy
usually made more serious mistakes. Note that in these
experiments the orientation-based reward and the steering action
representation were used, as this configuration learns to control

the robot in the minimum number of steps and the shortest
training time.

An online video demonstrates the performance of the trained
agent from this study: https://youtu.be/kz7YWEmg1Is
(Accessed 23 September 2021).

An important limitation for the method presented in this
study is that during real evaluations, the speed of the robot had
to be decreased to half of the simulated value. The policy
evaluations were executed on a PC connected to the robot via
wireless LAN; therefore, the observations and the actions were
transmitted between the two devices at every step. This
introduced delays in the order of 10 – 100 ms, making the
control loop unstable when the robot was moving at full speed.
However, at half speed, a stable operation was achieved.

It was noticed that models trained with motion blur and
longer step times for the AI Driving Olympics performed more
reliably in the real world regardless of whether they used domain
randomisation. However, further analysis and retraining of these
agents multiple times is needed to firmly support these
presumptions.

3.3. Collision avoidance

Figure 6 demonstrates the learned collision avoidance
behaviour. In the first few seconds of the simulation, the robot
controlled by the reinforcement learning policy accelerates to full
speed. Then, as it approaches the slower, non-learning robot, it
reduces its speed and maintains an approximately constant
distance from the vehicle ahead (see Figure 6). From the simple,
fully convolutional network of this policy, learning, planning and
executing a more complex behaviour, such as overtaking, cannot
be expected.

Table 4 shows that training with both reward functions leads
to functional lane-following behaviour. However, the non-
maximal survival time values indicate that neither of the policies
are capable of performing lane following reliably with the
presence of an obstacle robot for 60 s. All metrics in Table 4
indicate that the modified orientation reward leads to better lane-
following metrics than the simpler distance travelled reward. It
should be noted that these metrics were mainly selected to
evaluate the lane-following capabilities of an agent; a more in-

Table 3. Evaluation results of reinforcement learning agent in the real
environment and in matching simulations.

Eval.
Domain

Mean metrics over 6 episodes Domain
Rand. Policy

Nominal
Policy

Real Survival time in s ↑ 54 45

 Distance travelled both lanes in m ↑ 15.6 11.4

 Distance travelled ego-lane in m ↑ 7.0 8.4

Sim. Survival time in s ↑ 60 60

 Distance travelled in m ↑ 15.5 15.0

a) 𝑡 = 0 s b) 𝑡 = 6 s c) 𝑡 = 8 s d) 𝑡 = 24 s

e) Approximate distance between the vehicles
Initial Positions Catching up Following the vehicle ahead

Figure 6. Sequence of robot positions in a collision avoidance experiment with a policy trained using the modified orientation reward. After 𝑡 = 6 s, the
controlled robot follows the vehicle in front at a short but safe distance until the end of the episode (approximate distance is calculated as the distance
between the centre points of the robots minus the length of a robot).

Table 4. Evaluation results of policies trained for collision avoidance with
different reward functions.

Mean metrics over 15 episodes Distance
travelled

Orientation
+𝑟coll

Survival time (max. 60) in s ↑ 46 52

Distance travelled both lanes in m ↑ 22.5 22.9

Distance travelled ego-lane in m ↑ 22.7 23.1

Lateral deviation in m·s ↓ 1.9 1.6

Orientation deviation in rad·s ↓ 6.3 5.8

https://youtu.be/kz7YWEmg1Is

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 13

depth analysis of collision avoidance with a vehicle in front calls
for more specific metrics.

An online video demonstrates the performance of the agent
trained in this study: https://youtu.be/8GqAUvTY1po
(Accessed 23 September 2021)

3.4. Salient object maps

Visualising which parts of the input image contribute the
most to a particular output (action) is important because it
provides some explanation of the network's inner workings.
Figure 7 shows salient object maps in different scenarios
generated using the method proposed in [17]. All of these images
indicate high activations on lane markings, which is expected.

4. CONCLUSIONS

This work presented a solution to the problem of complex,
vision-based lane following in the Duckietown environment
using reinforcement learning to train an end-to-end steering
policy capable of simulation-to-real transfer learning. It was
found that the training is sensitive to problem formulation, such
as the representation of actions. This study has demonstrated
that by using domain randomisation, a moderately detailed and
accurate simulation is sufficient for training end-to-end lane-
following agents that operate in a real environment. The
performance of these agents was evaluated by comparing some
basic metrics to match real and simulated scenarios. Agents were
also successfully trained to perform collision avoidance in
addition to lane following. Finally, salient object visualisation was
used to give an illustrative explanation of the inner workings of
the policies in both the real and simulated domains.

ACKNOWLEDGEMENT

We would like to show our gratitude to Professor Bálint
Gyires-Tóth (BME, Dept. of Telecommunications and Media
Informatics) for his assistance and comments on the progress of
our research.

The research reported in this paper and carried out at the
Budapest University of Technology and Economics was
supported by Continental Automotive Hungary Ltd. and the
‘TKP2020, Institutional Excellence Programme’ of the National
Research Development and Innovation Office in the field of
Artificial Intelligence (BME IE-MI-SC TKP2020).

REFERENCES

[1] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, K. Kavukcuoglu, Asynchronous methods for deep
reinforcement learning, Proc. Of the International Conference on
Machine Learning, New York, United States, 19–24 June 2016, pp.
1928-1937.

[2] M. Jaritz, R. de Charette, M. Toromanoff, E. Perot, F. Nashashibi,
End-to-end race driving with deep reinforcement learning, Proc.

of the IEEE International Conference on Robotics and
Automation (ICRA), Brisbane, Australia, 21–25 May 2018, pp.
2070-2075.

[3] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J. Allen, V. Lam,
A. Bewley, A. Shah, Learning to drive in a day, Proc. of the
International Conference on Robotics and Automation (ICRA),
Montreal, Canada, 20–24 May 2019, pp. 8248-8254.

[4] W. Shi, S. Song, Z. Wang, G. Huang, Self-supervised discovering
of causal features: towards interpretable reinforcement learning,
2020. Online [Accessed 3 August 2020]
https://arxiv.org/abs/2003.07069

[5] B. Balaji, S. Mallya, S. Genc, S. Gupta, L. Dirac, V. Khare, G. Roy,
T. Sun, Y. Tao, B. Townsend, E. Calleja, S. Muralidhara, D.
Karuppasamy, DeepRacer: educational autonomous racing
platform for experimentation with Sim2Real reinforcement
learning, 2019. Online [Accessed 13 April 2020]
https://arxiv.org/abs/1911.01562

[6] M. Szemenyei, P. Reizinger, Attention-based curiosity in multi-
agent reinforcement learning environments, Proc. of the
International Conference on Control, Artificial Intelligence,
Robotics & Optimization (ICCAIRO), Majorca Island, Spain, 3–5
May 2019, pp. 176-181.

[7] P. Almási, R. Moni, B. Gyires-Tóth, Robust reinforcement
learning-based autonomous driving agent for simulation and real
world, Proc. of the International Joint Conference on Neural
Networks (IJCNN), Glasgow, United Kingdom, 19–24 July 2020,
pp. 1-8.

[8] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D.
Wierstra, M. Riedmiller, Playing Atari with deep reinforcement
learning, 2013. Online [Accessed 13 April 2020]
https://arxiv.org/abs/1312.5602

[9] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov,
Proximal policy optimization algorithms, 2017. Online [Accessed
2 December 2019]
https://arxiv.org/abs/1707.06347

[10] A. Kalapos, C. Gór, R. Moni, I. Harmati, Sim-to-real
reinforcement learning applied to end-to-end vehicle control,
Proc. of the 23rd International Symposium on Measurement and
Control in Robotics (ISMCR), Budapest, Hungary, 15–17 October
2020, pp. 1-6.

[11] J. Zilly, J. Tani, B. Considine, B. Mehta, A. F. Daniele, M. Diaz, G.
Bernasconi, C. Ruch, J. Hakenberg, F. Golemo, A. K. Bowser, M.
R. Walter, R. Hristov, S. Mallya, E. Frazzoli, A. Censi, L. Paull,
The AI Driving Olympics at NeurIPS, 2018. Online [Accessed 13
April 2020]
https://arxiv.org/abs/1903.02503

[12] J. Schulman, P. Moritz, S. Levine, M. Jordan, P. Abbeel, High-
dimensional continuous control using generalized advantage
estimation, Proc. of the International Conference on Learning
Representations (ICLR), San Juan, Puerto Rico, 2–4 May 2016, 14
pp. Online [Accessed 23 September 2021]
http://arxiv.org/abs/1506.02438

[13] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg,
J. Gonzalez, M. Jordan, I. Stoica, Rllib: abstractions for distributed
reinforcement learning, Proc. of the International Conference on
Machine Learning, Stockholm, Sweden, 10–15 July 2018, pp.
3053-3062.

[14] M. Chevalier-Boisvert, F. Golemo, Y. Cao, B. Mehta, L. Paull,
Duckietown environments for OpenAI gym, 2018. Online
[Accessed 15 January 2021]
https://github.com/duckietown/ gym-duckietown

[15] M. G. Bellemare, Y. Naddaf, J. Veness, M. Bowling, The arcade
learning environment: an evaluation platform for general agents,
J. Artif. Intell. Res. 47 (2013), pp. 253-279.
DOI: 10.1613/jair.3912

[16] R. Moni, A. Kalapos, A. Béres, M. Tim, P. Almási, Z. Lőrincz, PIA
project achievements at AIDO5, 2020. Online [Accessed 15
January 2021]
https://medium.com/@SmartLabAI/pia-project-achievements-
at-aido5-a441a24484ef

a) Simulated b) Real c) Collision avoidance

Figure 7. Salient objects highlighted on observations in different domains and
tasks. Blue regions represent high activations throughout the network.

https://youtu.be/8GqAUvTY1po
https://arxiv.org/abs/2003.07069
https://arxiv.org/abs/1911.01562
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1903.02503
http://arxiv.org/abs/1506.02438
https://github.com/duckietown/%20gym-duckietown
https://doi.org/10.1613/jair.3912
https://medium.com/@SmartLabAI/pia-project-achievements-at-aido5-a441a24484ef
https://medium.com/@SmartLabAI/pia-project-achievements-at-aido5-a441a24484ef

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 14

[17] M. Bojarski, P. Yeres, A. Choromanska, K. Choromanski, B.
Firner, L. D. Jackel, U. Muller, Explaining how a deep neural
network trained with end-to-end learning steers a car, 2017.
Online [Accessed 15 April 2020]
https://arxiv.org/abs/1704.07911

APPENDIX

Proximal policy optimization

The pseudo code for proximal policy optimization (PPO) is
as follows:

Algorithm PPO, Actor-Critic Style (based on [9])

Input: initial policy with 𝜃0 parameters and initial value function estimator with

𝜙0 parameters
for iteration = 1,2,... do

for actor=1,2,...,N do

Run πθold in the environment for T timesteps to collect τ𝑖 trajectory

Compute advantage estimates �̂�1,… , Â𝑇 based on the current value
function

end

Optimise 𝔏CLIP(𝜃) + 𝔏KLPEN(𝜃) wrt. 𝜃, for K epochs and minibatch size

𝑀 ≤ 𝑁𝑇
Fit the value function estimate by regression on mean-squared error

𝜃old ← 𝜃, 𝜙old ← 𝜙
end

The 𝛽 adaptive parameter mentioned in Section 2.1 is updated
according to the following rule:

𝛽 ← {
𝛽/2, if 𝑑 < 𝑑targ/1.5

𝛽 × 2, if 𝑑 > 𝑑targ × 1.5,
 (6)

where 𝑑targ is a hyperparameter and 𝑑 is the KL-divergence of

the old and the updated policy

𝑑 = �̂� [𝐾𝐿[πθold(⋅ |𝑠𝑡), πθ(⋅ |𝑠𝑡)]]. (7)

The �̂�𝑡 generalised advantage estimate [12] is calculated as

�̂�𝑡 =∑(γλ)𝑙δ𝑡
𝑉

∞

𝑙

 (8)

𝛿𝑡
𝑉 = 𝑟𝑡 + 𝛾 𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡) , (9)

where 𝑉(𝑠𝑡) and 𝑉(𝑠𝑡+1) are the value function estimates

calculated by the value network at steps 𝑡 and 𝑡 + 1; 𝛾 is the

discount factor, while 𝜆 is a hyperparameter of the generalised
advantage estimate.

To assure reproducibility, the hyperparameters of the
algorithm are provided in the Table 5.

Table 5. Hyperparameters of the algorithm. The description of some
parameters is from the RLlib documentation [13].

Description Value

Number of parallel environments 𝑁 = 16
Learning rate α = 5 × 10−5

Discount factor for return calculation 𝛾 = 0.99

𝜆 parameter for the generalised advantage estimate 𝜆 = 0.95

PPO clip parameter ϵ = 0.2

Sample batch size 𝑇 = 256

SGD minibatch size 𝑀 = 128

Number of epochs executed in every iteration 𝐾 = 30

Target KL-divergence for the calculation of 𝛽 𝑑targ = 0.01

https://arxiv.org/abs/1704.07911

