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The important element of today’s speech systems is the set of recorded wavefiles annotated
by a sequence of phonemes and boundary time-points. As the manual segmentation of speech
is a very laborious task, there is the need for automatic segmentation algorithms. However, it
was observed that common HMM-based methods are prone to systematical errors. Thus, some
boundary refinement approaches were introduced. In this paper we combine two sources of
information: boundary error distribution and an acoustic observation distribution, in a single
dynamic programming approach.
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1. Introduction

In the process of constructing speech recognition and synthesis systems it is essen-
tial that the proper set of prerecorded utterances should be available. It should addition-
ally contain full annotation, including the sequence of phoneme labels and subsequent
unit durations (which identify the transition time points). The accuracy of phoneme
boundaries may not be crucial in case of recognition systems, however errors in seg-
mentation seriously affect the quality of the obtained synthesis systems.

Manual segmentation of speech is a very labor-intensive process, moreover it should
be performed by an expert (usually in phonetics) and it is prone to inconsistencies. The
simplest idea is to implement an algorithm which will do this task automatically. We
assume that the phone sequence is known in this task (in contrast to the phoneme recog-
nition problem), either directly or in the form of a convertible orthographic transcription.
Obviously, the obtained automatic boundary points will not be faultless.

The basic algorithmic solution of the segmentation is to run a HMM recognizer in
forced alignment mode. The segmentation can now be considered as a special case of
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recognition, where the word- and model-net are simple concatenation of units, corre-
sponding to the imposed phonetic transcription of an utterance. The standard recogni-
tion for HHMs involves finding the most likely state sequence via the dynamic Viterbi
decoding:
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For segmentation, where the sequence sT

1 is known a priori, the model boundaries
are returned as a supplemental result of the Viterbi decoding or can be obtained in a
backward-pass. This approach has been already well studied (see e.g. [8]).

The important limitation of HMM’s application to speech processing is its ignoring
the probability densities (pdf’s) of phoneme duration. Since the state transition proba-
bility in standard HMM is represented by one constant value, the state duration has an
implicit geometric probability density, which most probably is inadequate as the dura-
tion model. For this reason, the observed phoneme duration is often modeled. In general,
this can be viewed as a conversion from the Markov chain approach into the segment
models [5]. Segment-based recognition involves finding
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where aN
1 is a N -length phone sequence and lN1 denotes a vector of respective segment

lengths. As far as the segmentation is concerned, only the model duration sequence (lN
1 )

is searched for. We implement this in [6].
The above state-chain based methods are primarily designed for speech recognition,

not segmentation, and thus have the following drawbacks:
• the results they return are discretized according to the given frame-rate (usually

10 ms), while in the segmentation task we expect higher precision;
• statistical models of acoustic observations (represented by MFCC vectors) con-

tained in each HMM state are trained on longer fragments of phoneme segments,
while models trained on near-boundary observations only seem to be more appro-
priate for the segmentation task.

Moreover, it was observed that the Viterbi decoding tends to make systematical
errors for certain boundary classes, e.g. transitions from speech to silence are often
located ca. 20 ms before reference annotation.

For those reasons a refinement stage is required, in which “coarse” boundary points
obtained from state-chain method are further fine-tuned. The simple solution, boundary-
specific correction (BSC), as proposed in [4], consists in calculating the mean error for
each of the 100 boundary classes (the phonetic alphabet was split into 10 clusters) and
subtracting such estimate from every transition case in a test set. In [1], the regression-
trees (CART) were used instead of an enforced partition into 100 classes; this method
was reimplemented in this paper as the baseline of our work.
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The BSC/CART method, however, applies the fine-tuning “blindly”, i.e. it does not
consider the underlying acoustic contents of a wavefile in place of a transition. Thus, in
this work, we want to combine two sources of information: the boundary-specific error
distribution and a boundary acoustic observation distribution (for now, we simply use
MFCC parameters for that purpose). For the reason explained below, we use a dynamic
programming method to obtain a final segmentation. In the final extension, the duration
distributions are also incorporated into our method.

The rest of this paper is organized as follows: Section 2 introduces the baseline
boundary correction algorithms, Sec. 3 introduces the dynamic programming method;
in Sec. 4 the experimental results are presented. The paper is concluded in Sec. 5.

2. Boundary-specific correction with regression trees

The boundary-specific statistical correction method (BSC) was introduced in [4].
The average error of the automatic segmentation results compared to manual reference
annotation is computed for each type of the boundaries. For the test set, each individual
boundary bi is corrected by shifting the transition point by its boundary-specific mean
deviation:

b̂i = bi − µC(bi).

In [4], Czech phonemes were divided into 10 clusters, reflecting their phonetic and
acoustic features. As each boundary is described by its left and right-hand context, this
resulted in a total of 100 types of boundaries.

As an extension of BSC, a regression tree based method (CART) was proposed
in [1]. A single binary decision tree is constructed by asking questions on phonetic
properties of the left and right-hand phones separated by a particular transition. The
tree is applied to the testing data by moving the boundaries by the time found in a
specific leaf of the tree.

In our paper, the CART was implemented for Polish, using ca. 40 contextual ques-
tions. The tree was trained with a minimum of 70 supporting units in each leaf.

3. Dynamic boundary correction

As it was explained above, the main motivation was to combine two sources of infor-
mation in one refinement method: the boundary-specific error estimates and boundary
acoustic observation distributions.

3.1. Correction ranges

First, it should be noted that while state-chain based systems perform the segmen-
tation “globally”, the presented algorithm will perform the optimization considering
acoustic data near the fine-tuned boundary only. Thus, in the last stage, to preserve the



130 M. SZYMAŃSKI, S. GROCHOLEWSKI

boundaries to unrestrictedly migrate along the utterance (ignoring the HMM stage re-
sults), the transition points can only be shifted along the adjacent segments (left and
right) of the particular boundary. This is equivalent to the assumption that the state-
based segmentation stage does not introduce gross errors (a gross error occurs when
an automatically obtained boundary passes beyond one of the adjacent segments of a
reference manual transcription [3]; this kind of error is considered to be the most harm-
ful one in case of unit-selection synthesis). Obviously, gross errors happen during the
state-chain segmentation; however, this assumption was still consistent with the semi-
automatic segmentation paradigm we mention below. It should be also noted that the
assumption does not mean that the number of gross errors cannot change during the
fine-tuning stage.

3.2. Time discretization (tuning precision)

The presented methods are mainly oriented for the use within a unit-selection syn-
thesis. As the segment transition time-points obtained from one of these methods can
become concatenation points during the synthesis, we may try to avoid some of the
negative effects (e.g. cracks) of linking two clips with unmatched soundwave levels by
placing the potential transition points on rising zero crossings.

In the ideal case, we would expect an algorithm to render results with high precision,
even to the level of one sample. However, such a measurement is unreachable because
of asynchronicity of speech. Thus, we decided to spread potential boundary points in 1
to 5 ms intervals.

First, we search all rising zero-crossings throughout the wavefile. To assure that at
least one potential boundary point appears within each 5 ms, we also allow a falling zero
crossing to be used as a boundary, where necessary. If still no zero crossings are found
within 5 ms or more, as many as needed potential transition points are spread regularly
along such a period. Finally, wherever three zero-crossing points appear within 1 ms,
the middle one is discarded.

The drawback of this approach is that it requires a calculation of MFCC vectors at
a few hundred or more potential boundary points in each utterance. As the experiments
show, the time required for the calculation exceeds the actual dynamic optimization
time. We are going to work on a more effective approach in the future.

3.3. Information sources

3.3.1. Boundary-specific error distribution

Boundary-specific segmentation error information used in this work is, in contrast
to the BSC/CART method, not limited to the mean error. The individual errors are col-
lected from the training set (a signed difference between state-chain stage result and a
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reference transition point) and clustered with a maximum likelihood criterion, yielding
a statistical model of the boundary-specific segmentation error:

lnPBSE(bi − t | C(bi)).

For modeling the error distribution we use single Gaussian pdf. The example values
are demonstrated in Fig. 1.

Fig. 1. Log probability of placing subsequent boundaries at a particular moment in time inside a 500 ms
fragment of an utterance sample, considering the state-based segmentation results and a boundary-specific

error distribution.

3.3.2. Boundary acoustic information

To introduce the acoustic information into the refinement stage, we collect the bound-
ary observations from the training set, as demonstrated in Fig. 2. The MFCC vectors are
calculated for two intersecting Hamming windows (plus 4 windows at each side re-
quired for the derivative calculation); the window length and frame distance are the
same as in the baseline segment model stage, i.e. 25 ms and 10 ms, respectively.

Fig. 2. Boundary acoustic information acquisition.
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The above data are clustered according to the context (separate clustering for each
of the sides) to form decision trees. The left-side and right-side observation likelihood
is combined using the formula:

ln PMFCC(Ot | bi) = ln P (Ot,1 | C(bi,1)) + ln P (Ot,2 | C(bi,2)).

The sample values are demonstrated in Fig. 3.

Fig. 3. Log probability of placing boundaries at a particular point inside a fragment of the same utterance
sample, based on the acoustic boundary likelihood (limited to the correction range).

3.4. Dynamic programming formulae

The cost of placing a boundary bi at the potential transition point occurring at time
t depends on the sum of two elements: lnPBSE(bi−t |C(bi)) and lnPMFCC(Ot | bi). Let
us note, however, that a simple, local maximization of such a sum could theoretically
lead to “swapping” two consecutive boundary points, which would implicate negative
duration segments. For this reason, we propose a dynamic programming algorithm, in
which φi,t will denote a likelihood of putting a boundary bi at time t:

φ1,t = lnPBSE(bi − t | C(bi)) + lnPMFCC(Ot | bi),

φi,t = ln PBSE(bi − t | C(bi)) + ln PMFCC(Ot | bi)

+ max
0≤u<t

(φi−1,u).

The optimal solution is obtained in a backward pass of the dynamic algorithm.

3.5. Duration model version

Finally, we extended the above method by incorporating the duration likelihood of
a left-side segment of a examined boundary into the optimization formula:

φi,t = lnPBSE(bi − t |C(bi)) + lnPMFCC(Ot |bi)

+ max
0≤u<t

(φi−1,u + ln PDUR(t − u | bi, 1)).
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We assume that a phrase starts and ends with a silence segments (possibly of zero
duration). As silence segments were not subject to the duration modeling, the presented
extension does not change the formula for φ1,t.

It may be noted that the dynamic programming approach is required in a duration
model version, while in the basic version (Sec. 3.4) it was used only to assure positive
duration of subsequent segments.

4. Experimental results

In the experiments we use a part of the Polish Corpora [2] database. It consists of a
total of 5 hours of speech, inside 28 folders of 365 separate sentences each, coming from
24 different speakers. Hence, we deal with a speaker-independent segmentation.(1) The
baseline HMM models were trained for the MFCC target rate of 10 milliseconds, while
the manual segmentation was done with a 5 ms precision.

The tests were performed in 7–fold cross-validation, repeated 3 times. The devel-
opment of the segmentation methods is demonstrated in Table 1. For each of them we
calculated the number of gross error and the Root Mean Square Error (RMS). In the last
three cases, BSC and DBC methods were applied as a refinement stage to the segmen-
tation result obtained from the segment-model approach (2nd line).

Table 1. Developement of the segmentation method.

Method % gross errors RMS error [ms]

Viterbi dec. 0.051 17.75
Segment model 0.032 17.15
BSC/CART 0.031 14.81
DBC 0.031 14.62
DBC+Duration 0.021 13.91

The results show that the largest accuracy boost is obtained by introduction of the
CART technique. Dynamic programming extension constitutes a smaller improvement,
although incorporating the duration modeling seems to reduce the number of gross er-
rors.

5. Conclusions

We have presented an approach for fine-tuning the transition points obtained from a
state-chained based algorithm. This final segmentation stage successfully combines the
error distribution information and boundary acoustic observation models in a dynamic

(1) It should be noted that the database was specifically designed to contain as much different diphones
as possible. Since some sentences were not very common, this might have influenced the statistical models
used in this work.
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programming algorithm. We have also shown that incorporation of phoneme duration
information reduces the number of gross errors, both in the case of baseline and fine-
tuning stage. The main drawback of the approach is the time required for the boundary
observation acquisition; we think, however, that the calculation time is not crucial in
case of the segmentation task.

As far as a fine-tuning methods are concerned, further works include:
• incorporating other feature parameters into the boundary observation models;
• developing a more effective method for calculation of the boundary

acoustic likelihood at potential boundary points.
Also, in [7] we presented a semi-automatic approach to the segmentation task, in

which we had a human expert manually annotating a small part of a corpus prior to
the automatic segmentation of the rest of a speech database. In the second stage, the
segmentation algorithm considers the enforced expert boundary points and does not
change them. For that purpose we also plan to design a confidence measure, that would
decide which boundaries should be inserted manually prior to the automatic stages, in
order to reduce the number of gross errors. Having the number of gross errors very close
to zero allows to make the assumption described in Sec. 3.1.
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