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The main aim of the study was to compare acoustic comfort in eighteen rectangular class-
rooms, using a new method for modal analysis. Taking into regard the Schroeder frequency
as the upper frequency limit, a statistical fluctuation in frequency spacing was calculated for
all modes (parameters A and B) and axial modes separately (parameters C and D). Con-
sidering the range extended by about 30% towards higher frequencies, when compared to
Bolt assumptions, it appeared that the rooms did not satisfy the Bolt criterion changed signifi-
cantly their modal regularity. The enclosure with the ideal proportions, according to R. H. Bolt
(1 : 1.5 : 2.5) had the A value higher than a few rooms of other proportions and hence, was
characterized by greater statistical fluctuation in frequency spacing.
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1. Introduction

In many earlier papers the acoustic comfort in classrooms was considered, depend-
ing on the reverberation time, background level of noise or speech intelligibility [1].
None of the above parameters was determined by the geometric proportion of the room.
However, it seems that these proportions should affect the acoustic conditions in some
way [2, 4]. The acoustic comfort in small and middle-size rectangular enclosures can
decrease as a result of the elementary physical phenomenon of standing wave genera-
tion. This decrease can be caused by a significant strengthening of the perceived level
of the sound corresponding to particular frequency components of the noise, generated
by such devices as overhead projector or computer [2, 3]. Such an enhanced compo-
nent can be a source of unpleasant acoustic effects disturbing concentration and causing
fatigue of the hearing system.
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In designing enclosures, one of the main objectives is to achieve ideal proportions
ensuring a regular distribution of the lowest modes on the frequency scale. The Bolt
curve defines the geometric size that would guarantee a regular distribution of these
modes in a relatively limited band. Considering the range extended by about 30% to-
wards higher frequencies, it appears that the rooms that do not satisfy the Bolt criterion
after the extensions are characterised by greater regularity.

2. Numerical calculations

Modal analysis has been performed in the frequency range up to the Schroeder
frequency, defined as the limiting value below which the subsequent eigenmodes are
at distances great enough not to disturb the linearity of the frequency response of a
given room. The Bolt curve treated hitherto as a criterion of the smoothest charac-
teristics of the frequency response in a given room, was prepared on the basis of the
25 lowest modes. The mean square of the deviations of the actual distances between
subsequent modes from the mean value in a certain frequency range was, according to
BOLT [3], a measure of the regularity of distribution of the eigenmodes on the frequency
scale:

ψ =
1

µb − µa

b∑

a

(
δ2

δ

)
, (1)

where µa, µb – dimensionless parameters corresponding to the lower and upper fre-
quency limits of the range studied, a – the lower bound of frequency range, b – the
upper bound of frequency range, δ – the distance between subsequent modes on the fre-
quency scale (dimensionless parameter), δ – the mean distance between the subsequent
frequencies (dimensionless parameter).

Given the frequencies of subsequent eigenmodes (fi) in any range, the value of ψ
can be found alternatively on the basis of the parameters in Hz. Let us assume:

fi+1 − fi = δi = δ + εi, (2)

where δi is the distance between subsequent eigenmodes in the room [Hz], δ is the
mean distance between subsequent eigenmodes in the room [Hz], εi is the deviation
from the mean value [Hz] and i is the index denoting the pair of modes whose distance
was considered. The dimensionless expression µb −µa from Eq. (1) can be replaced by
(n− 1)δ, where n is the number of modes in the frequency range considered. In conse-
quence, Eq. (1) can be written as:
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Since
n−1∑

i=1

εi = 0.

Equation (3) can be finally presented in the form:

ψ =

n−1∑

i=1

ε2i

(n− 1)δ
2 + 1. (4)

As it was mentioned before, ψ is a measure of statistical fluctuation in frequency spac-
ing [3]. However, ψ does not bring complete information on the character of this non-
uniformity. To get this information we introduce an additional parameter. Let Ω be
defined as follows:

Ω =

n−1∑

i=1

(|εi| − Γ )2

(n− 1)Γ 2
, (5)

where:

Γ =
√
ψ − 1.

The higher the value of Ω, the larger the “gaps” in the characteristics (the irregularity
increases).

Knowing the accurate frequencies of subsequent eigenmodes of a given room, it
is possible to calculate easily the values of ψ and Ω. The question is: how many of
the lowest eigenmode frequencies (n) should be taken into regard in the calculation?
Bolt assumed n to be close to twenty-five; however, taking into regard the SCHROEDER
frequency (6), this value does not seem to be sufficient. This frequency denotes approx-
imately the boundary between the reverberant room behaviour and the discrete room
modes [6]:

fSch = 2000

√
T60

V
, (6)

T60 =
0.161V

Ab
, (7)

where T60 – reverberation time [s], V – room volume [m3],Ab – absorption of the room
[m2]. The Schroeder frequency [Hz] versus acoustic absorption of the room is presented
in Fig. 1.
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Fig. 1. Schroeder frequency [Hz] versus acoustic absorption [m2].

3. Parameters A, B, C and D

The analysis was performed in two ways: for all modal frequencies (axial, tangen-
tial, and oblique) and for axial modes separately (as they have higher energy). Hence,
for the enclosures analysed (Table 1), the following four parameters were calculated:

A – for axial, tangential and oblique modes (ψ, Eq. (4)),
B – for axial, tangential and oblique modes (Ω, Eq. (5)),
C – for axial modes separately (ψ, Eq. (4)),
D – for axial modes separately (Ω, Eq. (5)).
Determination of the parameters A, B, C and D was performed taking into regard

the eigenmodes in the frequency range up to the Schroeder frequency and calculated
for each enclosure individually. Fourteen different classrooms (p1–p14) were compared
with the cube (p15), the cuboid on a square base (p16), and with the best Bolt’s propor-
tions (p17, p18).

Calculations were compared in the two ranges: for twenty-five lowest eigenmodes
(first bar in the pair) and up to the Schroeder frequency (second bar in the pair), see
Fig. 2. The Schroeder frequency was calculated by RoomModeCalculator013 [5]. The
maximum frequency spacing of all modes varied from 7 Hz (p14) to 21 Hz (p2), while
for axial modes from 16 Hz (p11) to 42 Hz (p15).

The lower the value of parameter A, the higher the regularity of frequency spacing.
The value ψ = 1 gives the ideal distribution of the eigenmodes. The highest value of A
was found for a cubic room (ψ = 4.7).

Analysis of twenty-five lowest eigenmodes has shown that the most advantageous
distribution was in room p3, p13, p14 and p18, what was consistent with the Bolt cri-
teria. When the frequency range analysed was extended up to the Schroeder frequency,
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Table 1. Geometric dimensions of the classrooms analysed.

room
geometric size

(height, width, length)
[m]

geometric
proportion
(1 : x : y)

volume
[m3]

p1 3.3 × 4.15 × 7.3 1 : 1.26 : 2.21 100

p2 3.0 × 6.07 × 7.0 1 : 2.02 : 2.33 127

p3 3.34 × 5.1 × 7.05 1 : 1.53 : 2.11 120

p4 2.6 × 4.75 × 4.65 1 : 1.83 : 1.79 57

p5 2.6 × 4.7 × 9.6 1 : 1.81 : 3.69 117

p6 2.6 × 3.13 × 9.6 1 : 1.2 : 3.69 78

p7 3.3 × 5.65 × 6.4 1 : 1.71 : 1.94 119

p8 2.6 × 4.6 × 9.45 1 : 1.77 : 3.63 114

p9 3.05 × 6.8 × 9.2 1 : 2.23 : 3.02 191

p10 2.9 × 6.3 × 8.7 1 : 2.17 : 3 159

p11 4.1 × 7.6 × 8.7 1 : 1.85 : 2.12 271

p12 4.1 × 5.85 × 6.05 1 : 1.43 : 1.48 145

p13 4.1 × 5.85 × 9.0 1 : 1.43 : 2.2 216

p14 4.1 × 6.6 × 8.7 1 : 1.61 : 2.12 235

p15 4.1 × 4.1 × 4.1 1 : 1 : 1 69

p16 3 × 6 × 6 1 : 2 : 2 108

p17 4 × 6 × 10 1 : 1.5 : 2.5 240

p18 3 × 3.78 × 4.77 1 : 1.26 : 1.59 54

the values changed. For example, parameter A for room p13 (consistent with the Bolt
criterion) was higher than for rooms p10 and p11 (not satisfying the Bolt criteria). If the
values of parameter A were equal for some rooms, parameter B was calculated (Fig. 4,
Eq. (5)).

The values of parameter A were almost the same for rooms p3, p10 and p11, but
the lowest parameter B was for room p3. It means that the frequency spacing was most
regular in this enclosure (Fig. 5).

As the axial modes are characterised by the highest energy, their distribution on the
frequency scale seems to be important. Parameters C and D (Fig. 6), analogous to A
and B but referring only to the axial modes, can bring additional information on the
frequency response.

For rooms p2, p8, p9 and p10, parameter C took the same value but the parameter
D was the lowest for room p8. It means that among these rooms, p9 was characterised
by the greatest regularity of the axial eigenmode distribution.
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Fig. 2. Statistical fluctuation in frequency spacing for two frequency ranges: for the twenty-five lowest
eigenmodes and up to the Schroeder frequency (parameter A).

Fig. 3. Frequency spacing in a cubic enclosure (p15).
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Fig. 4. Calculated values of Ω for the 25 lowest eigenmodes and for frequencies up to the Schroeder
frequency (parameter B).

Fig. 5. Frequency spacing in room (p3).
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a)

b)

Fig. 6. Parameters C (a) and D (b) for analyzed enclosures.

4. Conclusion

The curve proposed by R. H. Bolt as the criterion of regularity of distribution of
eigenmodes in a given room seems to be not precise enough because it takes into ac-
count only about twenty-five lowest modes. A new criterion based on the values of
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parameters A, B, C and D seems to be more accurate in determination of the regularity
of eigenmodes distribution. For the enclosures with the same parameter A, the value of
B determined the room which had the best acoustic properties.

As the axial modes have the greatest energy, their distribution on the frequency scale
seems to be important. For this reason parameters C andD bring additional information
on the response function. What was most important: parameters A, B, C and D depend
on the Schroeder frequency. It is possible that their values may be different for two
enclosures with the same geometrical size, because the Schroeder frequency depends on
the total acoustic absorption of a room related to the time of reverberation T60. Hence,
a comparison of the geometrical sizes of rooms makes sense only if the rooms have the
same absorbing properties of the surfaces. The greater the acoustic absorption, the lower
the Schroeder frequency and the narrower the band of different frequency response. The
curves analogous to the Bolt curve but based on the new procedure taking into account
the acoustic absorption of a given room will be a subject of a separate paper.
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