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An equation for calculating the sound power radiated from a rectangular plate
with arbitrary boundary conditions is derived, in which the sound power radiated
from the plate is represented in terms of the normal velocity distribution on the
plate and a coupling matrix. The velocity distribution on the plate is expressed in
terms of the modal amplitudes and normal modes. The coupling matrix for arbi-
trary boundary conditions is developed mathematically using the Rayleigh integral.
Finally, an approach to compute the radiation efficiency for modes of vibration is
presented and the radiation efficiency of the first four most efficient vibration modes
for six different boundary conditions is presented.
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1. Introduction

The control of noise and vibration is of concern in industrial machines, ap-
pliances and different forms of transportation vehicles [1–8]. In many cases the
machines or vehicles have machine enclosures, vehicle cabin enclosures or other
structural systems comprised of beams, panels or plates which have geometries
approximating those of circular or rectangular shapes [9–14]. Thus the radiation
of sound from circular and rectangular plates and its suppression is of interest
in several practical problems. The sound radiation is sometimes suppressed by
damping the plate vibration through passive or active damping measures, once
the plate system parameters have been properly identified [15–18]. Alternatively
attempts can also be made to suppress the vibration and sound radiation through
a thorough understanding of the vibration and its optimized control through ap-
proaches such as statistical energy analysis [19].
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The radiation of the sound from a plate can be determined from knowledge
of the plate vibration and its radiation properties, usually known as radiation
resistance, impedance or efficiency. Many papers have been published in the last
50 years concerning these problems. Vogel and Skinner and Leissa published
well known early papers on plate vibration [20–22]. Pritchard, Greenspon
and Sherman, Thompson, Stephanishen and others published early work on
the radiation of sound from pistons [23–26]. More recently, papers have been
published by Rdzanek and others on these topics [27–44]. In the present paper
we study the sound power radiated from rectangular vibrating plates based on
the work of Wallace, Cunefare, Curry and Cunefare, Nikiforov, Gom-
perts, Magrab and Clark and Fuller [45–51]. The motivation behind this
study is the reduction of the noise radiated by plates.

If the sound power radiated by a plate can be represented in terms of the
normal velocity distribution on the plate, a way can be found to drive the plate
to a state (specific normal velocity distribution) to minimize the sound power
radiated. In this paper, the sound power radiated is represented in terms of the
normal velocity distribution of the plate and the radiation efficiency is determined
for arbitrary boundary conditions.

The calculation of the sound power and radiation efficiency for simply sup-
ported beams and plates was discussed by Wallace [45], Cunefare [46] and
Currey and Cunefare [47]. Currey and Cunefare have shown that the sound
power radiated from a plate can be represented in terms of the modal amplitudes
and a coupling matrix. The eigenvalue (of the coupling matrix) associated with
a given radiation mode is directly proportional to the radiation efficiency of that
radiation mode.

The calculation of the sound power and the radiation efficiency for a plate
with arbitrary boundary conditions becomes very complicated. Nikiforov has
shown that the radiation resistance of a clamped plate at low frequency is twice
that of a simply-supported plate [48]. Gomperts has presented an approach for
the determination of the radiation efficiencies of baffled, thin, rectangular plates
carrying two-dimensional resonant vibration patterns for five different kinds of
boundary conditions [49]. In the present paper, Cunefare’s equation for a plate
with simply supported boundary conditions is extended to six different bound-
ary conditions. The sound power radiated from a plate with arbitrary bound-
ary conditions can be represented in terms of the normal velocity distribution
on the plate and a coupling matrix. The velocity distribution on the plate is
expressed in terms of the modal amplitudes and normal modes. The key is-
sue is to find the coupling matrix for the boundary conditions of interest. In
this paper, a method to calculate the coupling matrix for six boundary condi-
tions is described. The method used to calculate the sound power radiated from
a plate and the radiation efficiency of the plate is based on the coupling ma-
trix.
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2. Velocity distribution

Currey and Cunefare assumed that any arbitrary normal velocity distri-
bution on the surface of a baffled and finite rectangular plate of length Lx and
width Ly, as shown in Fig. 1, vibrating at a single frequency, may be represented
by a series expansion [47]. Omitting the simple harmonic time dependence and
higher-order terms, the normal velocity distribution can be written as

u(x, y) = uTφ, (1)

where

uT = [A11 A12 . . . A1N A21 A22 . . . A2N . . . AM1 AM2 . . . AMN ], (2)

where uT represents a vector of modal amplitude coefficients, and φ is the vector
of corresponding basis functions. The only requirement on the selection of the
basis functions is that they be complete. One set of basis functions used by
Currey and Cunefare is [47],

φT =[sin(kx1x) sin(ky1y) . . . sin(kx1x) sin(kyN y)

sin(kx2x) sin(ky1y) . . . sin(kx2x) sin(kyN y)
. . . . . .

sin(kxM x) sin(ky1y) . . . sin(kxM x) sin(kyN y)], (3)

where kxm = mπ/Lx may be interpreted as the structural wavenumber of themth
basis function in the x direction and kyn = nπ/Ly as the structural wavenumber
of the nth basis function in the y direction. The vectors u and φ are of length
MN, where M and N denote the indices for the highest-order basis function in
each dimension included in the summation. Although Currey and Cunefare
emphasize that this analysis is completely independent of the physical charac-
teristics and boundary conditions of a physical plate, and only depends on the

Fig. 1. Rectangular plate in an infinite baffle.
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geometry of its “wetted” surface, they did not show how the analysis can be used
for plates with other boundary conditions, and they did not discuss how to choose
the basis functions for other boundary conditions [47].

It is well known that the normal velocity distribution on a plate with some
specific boundary conditions can be expressed as the summation of the products
of modal amplitudes and normal modes [50]. If the vector u represents the modal
amplitude coefficients as defined in Eq. (2) and the vector φ is defined as a vector
of normal modes, not basis functions, then Eq. (1) can be used to represent the
normal velocity distribution of a plate with arbitrary boundary conditions. The
vector φ is defined as:

φT = [W11 . . . W1N W21 . . . W2N . . . . . . WM1 . . . WMN ], (4)

where Wmn are the normal modes.
Equation (4) reduces to Eq. (3) for the case of a simply supported plate.

3. Sound pressure distribution

Using the Rayleigh integral, the sound pressure at a point in the far field is
given in terms of the surface velocity,

p = −ikρ c
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where
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Substituting Eqs. (1), (2) and (4) into Eq. (5) yields
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For a simply supported plate, Eq. (11) reduces to Cunefare’s equation

bmn = − k

kxmkyn

eikr

2r
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) (
1− (−1)ne−iβ
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)
. (12)

4. Radiated sound power

For a baffled finite flat plate, the total sound power radiated from the plate
can be obtained by integrating the sound intensity over a hemisphere in the far
field,

W =

2π∫

0

π/2∫

0

|p|2
2ρc

r2 sin(θ) dθ dϕ, (13)

where p is the sound pressure, r is the distance, ρ is the density of air, and c is
the speed of sound.

Substituting Eq. (9) into Eq. (13) yields

W = ρcuTC ′u∗, (14)

where

C ′ =
1

2π2

2π∫

0

π/2∫

0

bbHr2 sin(θ) dθ dϕ, (15)

and the θ, ϕ and r are shown in Fig. 1.
The coupling matrix C may be defined to be

C = ρcC ′. (16)

Then the sound power radiated from the vibrating plate may be represented as

W = uTCu∗. (17)

The coupling matrix is dependent on the frequency of excitation and the
characteristics of the vibrating plate. In an active control system, with PZT
actuators applied on a plate, the velocity vector u is dependent on the vibrating
noise source and the placement of the actuators, assuming that the other features
of the actuators, such as their width, length, and thickness and the piezoelectric
strain constants are fixed. If the exciting frequency and the characteristics and
boundary conditions of the vibrating plate are known, the optimal placement of
the actuators to minimize the sound power radiated from the vibrating plate can
be found.

It can be seen from Eq. (13) that W is always real and greater than zero so
that the coupling matrix is real and positive definite. It is very easy to prove that
the coupling matrix is symmetric (it is obvious from Eq. (15)). Therefore, the
coupling matrix C can be diagonalized.



30 D. Zou, M.J. Crocker

5. Radiation efficiencies

If the radiation efficiencies for the vibration modes of concern are known,
more effort can be spent to control the efficient radiating modes than the in-
efficient ones in active noise control studies. Also, knowledge of the radiation
efficiencies for a range of the vibration modes can help with the analysis of noise
control problems in which structural radiation of noise is important. Normally, it
is difficult to reduce the amplitudes of all of the structural modes simultaneously.
In many cases, a spillover problem will be encountered. When the amplitudes
of some of the modes are reduced, the amplitudes of some of the other modes
will be increased at the same time. The amplitudes of the vibration modes can
be plotted for the control system on and off. If the amplitudes of the modes
with high radiation efficiencies decrease and the amplitudes of the modes with
low radiation efficiencies increase, the control system can be said to be really
working.

In this section, the radiation efficiencies of the first four most efficient vibration
modes are plotted for six boundary conditions. The abbreviations which are used
in Magrab’s study [50] are followed here: SS = simply supported edge; F =
free edge; C = clamped edge and ES = elastically supported edge. Then the
abbreviation SS-C-SS-F, for example, identifies a plate that is simply supported,
clamped, simply supported and free along each of the four edges, respectively.
The following dimensions and properties are assumed for the plate: 1) the width
(Lx) and length (Ly) of the plate are equal to 1 m, 2) the thickness of the plate
is 0.002 m, 3) the plate is made of steel, 4) the Young’s modulus is 19.5×1010 Pa,
and 5) Poisson’s ratio is 0.3.

The general expression for the radiation efficiency σ of an acoustic radiator is

σ =
W

ρ cLxLy〈|u(x, y)|2〉 , (18)

where 〈|u(x, y)|2〉 is the spatial mean-square velocity and W is the sound power
radiated from the plate. To calculate the first four most efficient vibration modes,
it is sufficient to use a 4 by 4 coupling matrix C. To obtain the radiation
efficiencies of the odd-odd, odd-even, even-odd and even-even modes, set the
vector uT = [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0] and [0, 0, 0, 1] re-
spectively. The spatial mean square velocity for individual vibration modes is
also required for the computation of the radiation efficiency of the individual
modes.

5.1. SS-SS-SS-SS

For this special SS-SS-SS-SS plate case, which represents a plate simply sup-
ported on all four edges, the calculation of the radiation efficiencies of the first
four most efficient radiating modes is discussed by Wallace [45], Currey and
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Cunefare [47] and Clark and Fuller [51]. The radiation efficiencies for the
SS-SS-SS-SS case for the first four most efficient radiating modes are shown
in Fig. 2.

Fig. 2. Radiation efficiencies of the first four most efficient radiating modes of a simply-
supported plate for increasing frequency with Lx/Ly = 1.

Note that in Fig. 2 and the rest of the figures in this paper, “odd-odd” means
an odd mode in the x axis and an odd mode in the y axis direction, “odd-even”
means an odd mode in the x axis and an even mode in the y axis direction,
“even-odd” means an even mode in the x axis and an odd mode in the y axis
direction, and “even-even” means an even mode in x axis and an even mode in y
axis direction.

5.2. SS-C-SS-C

The radiation efficiencies for the SS-C-SS-C plate case (a plate simply sup-
ported on two opposite edges and clamped on the other two opposite edges) for
the first four most efficient radiation modes are shown in Fig. 3. It can be seen
that when kLy/π is less than two, the radiation efficiency of the mode (1, 1) is
a little smaller than in the SS-SS-SS-SS case. However, when kLy/π is greater
than two, the radiation efficiency of the mode (1, 1) is a little larger than that
in the SS-SS-SS-SS case. The radiation efficiency of the mode (1, 2) is a little
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larger than that in the SS-SS-SS-SS case when kLy/π is greater than four. The
radiation efficiency of the mode (2, 1) is a little smaller than in the SS-SS-SS-SS
case. The radiation efficiency of the mode (2, 2) is larger than in the SS-SS-SS-SS
case when kLy/π is greater than four.

Fig. 3. Radiation efficiencies of the first four most efficient radiating modes for SS-C-SS-C
boundary condition with Lx/Ly = 1, where Lx is the width of the plate and Ly is the length of
the plate. The kLy/π in the diagram represents the nondimensionalization of the wavenumber,

k = ω/c.

5.3. SS-C-SS-SS

The radiation efficiencies of the first four most efficient radiating modes of
a SS-C-SS-SS plate (a plate simply supported on three edges and clamped on
the other edge) are shown in Fig. 4. Comparing this figure with Figs. 2 and 3,
it is seen that when kLy/π is small, the radiation efficiency of the mode (1, 1)
is a little smaller than in the SS-SS-SS-SS case and it is larger than in the SS-
C-SS-C case. However, when kLy/π is large, the radiation efficiency of the mode
(1, 1) is a little larger than in the SS-SS-SS-SS case and it is smaller than in the
SS-C-SS-C case. The radiation efficiency of mode (1, 2) is larger than in the SS-
SS-SS-SS case or the SS-C-SS-C case when kLy/π is small. It is seen that plates
with greater boundary constraints do not always have larger radiation efficiencies
than plates that have smaller boundary constraints.
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Fig. 4. Radiation efficiencies of the first four most efficient radiating modes for SS-C-SS-SS
boundary condition with Lx/Ly = 1.

5.4. SS-C-SS-F

The radiation efficiencies of the first four most efficient radiating modes of the
SS-C-SS-F plate (a plate simply supported on two opposite edges and clamped
on one of the other edges and free on remaining edge) are shown in Fig. 5. The
radiation efficiency of the mode (1, 1) is higher than in SS-C-SS-SS case. The
radiation efficiencies of the mode (1, 2) is lower than in the SS-C-SS-SS case when
kLy/π is less than 0.03. The radiation efficiencies of the mode (2, 1) is greater
than in the SS-C-SS-SS case when kLy/π is less than one.

5.5. SS-SS-SS-F

The radiation efficiencies of the first four most efficient radiating modes of the
SS-SS-SS-F plate (a plate simply supported on three edges and free on the other
edge) are shown in Fig. 6. Comparing this figure with Fig. 5, it can be seen how
the radiation efficiencies change when a clamped edge is replaced with a simply
supported edge.

In this case, the radiation efficiency of the mode (1, 1) is smaller than in the
SS-C-SS-F case. The radiation efficiency of the mode (1, 2) increases dramatically
and reaches that of the most efficient radiating mode (1, 1). Also the radiation
efficiency of the mode (2, 2) reaches that of the more efficient radiating mode
(2, 1).
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Fig. 5. Radiation efficiencies of the first four most efficient radiating modes for SS-C-SS-F
boundary condition with Lx/Ly = 1.

Fig. 6. Radiation efficiencies of the first four most efficient radiating modes for the SS-SS-SS-F
boundary condition with Lx/Ly = 1.



Sound Power Radiated from Rectangular Plates 35

5.6. SS-F-SS-F

The radiation efficiencies of the first four efficient radiating modes of the SS-
F-SS-F plate (a plate simply supported on two opposite edges and free on the
other two opposite edges) are shown in Fig. 7. Comparing this figure with Fig. 6,
it can be seen that when kLy/π is greater than 0.15, the radiation efficiency of
the mode (1, 1) is smaller than in the SS-SS-SS-F case. The radiation efficiencies
of mode (1, 2) and mode (2, 2) are smaller than those in the SS-SS-SS-F case.

Fig. 7. Radiation efficiencies of the first four most efficient radiating modes for SS-F-SS-F
boundary condition with Lx/Ly = 1.

6. Conclusions

Cunefare’s equation has been extended to several new boundary conditions.
The sound power radiated from a vibrating plate can be expressed in terms of
the modal amplitudes and the coupling matrix. The computation of the coupling
matrix is presented in this paper.

To help evaluate the usefulness of noise control measures, the radiation ef-
ficiencies have been plotted for the first four most efficient modes for the six
boundary conditions of a vibrating plate. From these diagrams, it is evident why
the active noise control system works well only in the low frequency range. At low
frequency, only a few modes will radiate sound power very efficiently and these
efficient modes can be controlled easily. At high frequency, all of the plate modes,
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especially the higher-order modes, radiate sound power very efficiently and it is
very hard to control all of the modes at once.

Knowledge of the expression for the sound power radiated (Eq. (17)) in terms
of modal amplitudes and the coupling matrix is useful in active noise control
studies. It should be noted that the expression is approximate because the higher
order terms are truncated. If it is desired to determine the sound power radiated
more precisely, higher-order modes must be included, and then the dimension
of the coupling matrix will increase. As the dimension of the coupling matrix
increases, the computation effort to obtain the coupling matrix will increase dra-
matically.
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