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In this paper, the response of a plate with arbitrary boundary conditions to PZT
actuators is derived. It is assumed that the plate and the actuators are rectangular
and the edges of the PZT actuators are parallel to the respective edges of the plate.
The response of the plate is decomposed into normal modes. The modal amplitude of
the normal mode is represented in terms of the shape function of the actuator and the
normal mode. The shape function of the actuator is given as a singularity function.
The normal modes for the boundary conditions with which we are concerned are
calculated based on theoretical analyses of Magrab. The results of this paper are
useful in designing an active noise control system in which the PZT actuators are
used as the control sources.
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1. Introduction

Noise and vibration are of concern with many mechanical systems includ-
ing industrial machines, home appliances, transportation vehicles, and building
structures [1–3]. Many such structures are comprised of beam and plate like el-
ements. The vibration of beam and plate systems can be reduced by the use of
passive damping, once the system parameters have been identified [3–7]. In some
cases of forced vibration, the passive damping that can be provided is insufficient
and the use of active damping has become attractive. The rapid development
of micro-processors and control algorithms has made the use of active control
feasible in many practical situations [8]. The field of active control is now of con-
siderable interest to researchers, for example in ships, rotating systems, industrial
machinery and flexible structures [9–13].
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In vibration problems, the vibration must be sensed and control forces must be
applied with actuators using suitable control algorithms [14–18]. One possibility is
to use piezoelectric materials for the sensors and actuators needed. PZT actuators
and PVDF sensors have been shown to have potential to reduce the sound power
radiated from vibrating structures. It has been shown by Jones and Fuller that if
the primary source is structural vibration, structural control sources offer better
control than acoustic control sources [19]. This is because the secondary structural
sources are more likely to produce a sound field that matches the primary sound
field. The distributed actuators and sensors can reduce spillover into higher order
modes. Also the PZT actuators and PVDF sensors can be embedded into the
vibrating structure and the control system can be made very compact. Therefore,
PZT actuators and PVDF sensors are of great interest in active noise control.

Most of the previous research studies have concentrated on one-dimensional
vibration excitation and control problems. Crawley and Luis analyzed the
stresses, strains and loads generated on a cantilevered beam when piezoelectric
segments were bonded symmetrically to both sides [20]. They reported that the
effective moments resulting from the piezo-actuators can be seen as concentrated
on the two ends of the actuator. Bailey andHubbard developed an equation for
the response of a cantilevered beam with a layer of PVDF bonded to one complete
side of the beam [21].Clark et al. analytically and experimentally studied the re-
sponse of a simply supported beam driven by multiple piezoelectric actuators [22].

Two-dimensional excitation and control problems were investigated by Dimi-
triadis and Fuller [23] and Lee andMoon [24]. Dimitriadis and Fuller derived
a dynamic analysis model for an undamped thin rectangular plate with simply
supported boundary conditions excited by a rectangular piezoelectric patch. Lee
and Moon presented an important equation to model the effect of actuators.

Because a PZT ceramic actuator can generate a stronger force or moment
than a PVDF actuator, usually actuators are made from PZT ceramic material.
However, PZT ceramic material is very fragile, and it is hard to cut it into
complicated shapes. In practice, rectangular PZT actuators are used extensively
in active noise control applications. The dynamic analysis model for a vibrating
plate excited by rectangular actuators is of considerable importance.

In this paper, Dimitriadis and Fuller’s dynamic analysis model [23] is
extended to other boundary conditions.

2. Mathematical preliminaries

To help readers understand the following derivation, the properties of singu-
larity functions (generalized functions) are discussed first.

The family of singularity functions can be written as [25]

fn = 〈x− a 〉n =
{

0 if x < a
(x− a)n if x ≥ a

}
. (1)
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The function fn is defined to have a value only when the argument is positive.
Singularity functions obey the laws of integration.

x∫

−∞
〈x− a〉n dx =

〈x− a〉n+1

n + 1
, n ≥ 0. (2)

The functions 〈x− a〉−1 and 〈x− a〉−2 are exceptions. They are equal to zero
everywhere except when x equals a, where they are infinite, so that Eqs. (1)
and (2) are valid.

Table 1 presents a list of singularity functions of different degrees and their
common properties as given by Burke et al. after some corrections [25].

Table 1. Singularity functions and their properties.

Names Definition
and integration property Graphical representation

Doublet
Dipole
Concentrated Moment function

〈x− a〉−2 = 0 if x 6= a
xZ

−∞

〈x− a〉−2 dx = 〈x− a〉−1

Dirac delta
Delta function
Impulse
Concentrated force function

〈x− a〉−1 = 0 if x 6= a
xZ

−∞

〈x− a〉−1 dx = 〈x− a〉0

Unit step function

〈x− a〉0 =

(
0 if x < a

1 if x ≥ a
xZ

−∞

〈x− a〉0 dx = 〈x− a〉1

Ramp function

〈x− a〉1 =

(
0 if x < a

x− a if x ≥ a
xZ

−∞

〈x− a〉1 dx =
〈x− a〉2

2

General Macauley notation

〈x− a〉n =

(
0 if x < a

(x− a)n if x ≥ a
xZ

−∞

〈x− a〉n dx =
〈x− a〉n+1

n + 1
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Assume that a shape function is defined as

F1 =
(〈x− x1 −∆〉0 − 〈x− x2 + ∆〉0). (3)

The parameter ∆ is an infinitesimally small quantity that vanishes in the
limit. This means that F1(x) is identically equal to zero at the system bound-
aries. A continuous function is given as R1(x). Then the following equation is
valid.

L∫

0

R1(x)F ′′
1 (x) dx =

x2∫

x1

∂2R1(x)
∂x2

dx, (4)

where F ′′
1 (x) is the second derivative of F1(x) with respect to x.

3. Differential equation of motion of a plate with piezo-actuator patches

Using classical thin plate theory [25, 26], the equation of motion of the plate
with piezoelectric patches can be written as

D∇4η + ρ η̈ =
∂2Mx

∂x2
+

∂2My

∂y2
, (5)

where Mx and My are the effective bending moments applied to the plate by
the piezo-actuators, D is the plate flexural rigidity and η is the plate transverse
displacement.

Equation (5) can be developed further as [24, 25]

D

(
∂4η

∂x4
+

∂4η

∂2x∂2y
+

∂4η

∂y4

)
+ ρ

∂2η

∂t2

= G(t)hpZ̄p

(
e31

∂

∂x2
(FP0) + e32

∂

∂y2
(FP0)

)
, (6)

where the terms e31 and e32 can be considered as the electric constants with
respect to the x and y axes, G(t) is the time signal of the applied electric field,
hp is the thickness of the PZT lamina and Zp is the moment arm of PZT. The
polarization profile P0 = P0(x, y) is introduced to model the effect that PVDF or
PZT are ferroelectric, which means that the piezoelectric strength can be changed
or reversed by poling. In our case, P0 is set equal to one. The F (x, y) is equal
to one if (x, y) is covered by an electrode on both sides of the lamina. Otherwise
F (x, y) is zero.

The panel and the PZT ceramic patch mounted on it are shown in Fig. 1.
The shape function F of the PZT ceramic patch for this configuration is given as

F =
(〈x− x1〉0 − 〈x− x2〉0

)(〈y − y1〉0 − 〈y − y2〉0
)
. (7)
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Fig. 1. Plate and piezoelectric actuator.

Here the Macauley notation has been used to represent the generalized
functions [28]. From the properties of the singularity functions above, the second
derivatives of F (x, y) with respect to x and y can be developed as

∂F 2(x, y)
∂x2

=
(〈x− x1〉−2 − 〈x− x2〉−2

)(〈y − y1〉0 − 〈y − y2〉0
)
, (8)

and
∂F 2(x, y)

∂y2
=

(〈x− x1〉0 − 〈x− x2〉0
)(〈y − y1〉−2 − 〈y − y2〉−2

)
. (9)

To make the derivation clear, the right hand side of Eq. (6) is defined as

PZTR(x, y, t) = G(t)hpZp

(
e31

∂

∂x2
(FP0) + e32

∂

∂y2
(FP0)

)
. (10)

Assuming G(t) = G0e
jωt, and substituting Eqs. (8) and (9) into Eq. (10) gives

PZTR(x, y, t) = G0e
jωthpZp

(
e31

(〈x−x1〉−2−〈x−x2〉−2
)(〈y−y1〉0−〈y−y2〉0

)

+ e32

(〈x−x1〉0−〈x−x2〉0
)(〈y−y1〉−2 − 〈y − y2〉−2

))

= PZTR(x, y)ejωt, (11)

where

PZTR(x, y) = G0hpZp

(
e31

(〈x−x1〉−2−〈x−x2〉−2
)(〈y−y1〉0−〈y−y2〉0

)

+ e32

(〈x−x1〉0−〈x−x2〉0
)(〈y−y1〉−2−〈y−y2〉−2

))
. (12)
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4. General solution of the differential equation

The solution of Eq. (6) can be written as

w(x, y, t) =
ejωt

ρ

∞∑

n=1

∞∑

m=1

AmnWmn(x, y), (13)

where

Amn =

Lx∫

0

Ly∫

0

PZTR(x, y)Wmn(x, y) dx dy

ρNmn(ω2
mn − ω2)

, (14)

Lx is width of the plate, Ly is length of the plate, ωmn is the natural frequency,
Nmn is the norm, which is the integration of the square of the normal mode over
the plate, Wmn is the normal mode, PZTR(x, y) is defined in Eq. (12).

The numerator of Amn can be developed further.

Lx∫

0

Ly∫

0

PZTR(x, y)Wmn(x, y) dx dy

= G0hpZp


e31

Lx∫

0

Ly∫

0

(〈x−x1〉−2−〈x−x2〉−2
)(〈y−y1〉0−〈y−y2〉0

)
Wmn(x, y) dx dy

+ e32

Lx∫

0

Ly∫

0

(〈x−x1〉0−〈x−x2〉0
)(〈y−y1〉−2−〈y−y2〉−2

)
Wmn(x, y) dx dy


. (15)

Apparently, to compute Amn, it is necessary to find the normal mode Wmn(x, y)
for the boundary conditions with which we are concerned. Fortunately, we can
calculate the normal mode Wmn(x, y) based on Magrab’s analysis for seven spe-
cial cases [29]. Additional results for various other combinations of boundary
conditions can be found in Ref. [30].

For the seven special cases given by Magrab, the edges x = 0 and x = Lx

are hinged (simply supported). The edges y = 0 and y = Ly can be free edges,
clamped edges, elastically supported edges, simply supported edges or some other
combinations.

When Ωmn > M, where Ωmn is the natural frequency coefficient, which is
proportional to the square root of the natural frequency [29], and M = mπLy/Lx,
the corresponding normal modes are

Wmn(x, y) =
(
C1mn cos h(δmny/Ly) + C2mn sin h(δmny/Ly)

+ C3mn cos(εmny/Ly) + sin(εmny/Ly)
)
sin(mπ x/Lx). (16)
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Substituting Eq. (16) into (15) and applying Eq. (4) yields

Lx∫

0

Ly∫

0

PZTR(x, y)Wmn(x, y) dx dy

= G0hpZp


e31

y2∫

y1

(
C1mn cosh(δmny/Ly) + C2mn sinh(δmny/Ly)

+ C3mn cos(εmny/Ly) + sin(εmny/Ly)
)
dy

x2∫

x1

(〈x− x1〉−2 − 〈x− x2〉−2) sin(mπx/Lx) dx

+ e32

x2∫

x1

sin(mπx/Lx) dx

y2∫

y1

(〈y−y1〉−2−〈y−y2〉−2
)(

C1mn cosh(δmny/Ly)

+ C2mn sinh(δmny/Ly) + C3mn cos(εmny/Ly) + sin(εmny/Ly)
)
dy

)
, (17)

= G0hpZp

(
e31

(
C1mn

Ly

δmn

(
sinh

(
δmn

y2

Ly

)
− sinh

(
δmn

y1

Ly

))

+ C2mn
Ly

δmn

(
cosh

(
δmn

y2

Ly

)
− cosh

(
δmn

y1

Ly

))

+ C3mn
Ly

εmn

(
sin

(
εmn

y2

Ly

)
− sin

(
εmn

y1

Ly

))

− Ly

εmn

(
cos

(
εmny2

Ly

)
− cos

(
εmny1

Ly

)))

(
mπ

Lx

) (
cos (mπx2/Lx)− cos (mπx1/Lx)

)

− e32

(
Lx

mπ

) (
cos (mπx2/Lx)− cos (mπx1/Lx)

)

(
C1mn

δmn

Ly

(
sinh

(
δmn

y2

Ly

)
− sinh

(
δmn

y1

Ly

))

+ C2mn
δmn

Ly

(
cosh

(
δmn

y2

Ly

)
− cosh

(
δmn

y1

Ly

))

− C3mn
εmn

Ly

(
sin

(
εmn

y2

Ly

)
− sin

(
εmn

y1

Ly

))

+
εmn

Ly

(
cos

(
εmny2

Ly

)
− cos

(
εmny1

Ly

))))
. (18)
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The norm (Nmn), the natural frequency (ωmn), C1mn, C2mn, C3mn, εmn and
δmn for seven boundary conditions have been discussed by Magrab [29]. Thus
the modal amplitude of the mode (m, n) caused by the rectangular piezoelectric
actuator can be obtained accordingly.

When Ωmn < M , the corresponding normal modes are

Wmn(x, y) = ((C ′
1mn cosh(δmny/Ly) + C ′

2mn sinh(δmny/Ly)

+ C ′
3mn cosh(ε′mny/Ly) + sinh(ε′mny/Ly)) sin(mπx/Lx), (19)

Substituting Eq. (19) into (15) and applying Eq. (4) yields

Lx∫

0

Ly∫

0

PZTR(x, y)Wmn(x, y) dx dy

= G0hpZp


e31

y2∫

y1

(
C ′

1mn cosh(δmny/Ly) + C ′
2mn sinh(δmny/Ly)

+C ′
3mn cosh(ε′mny/Ly) + sinh(ε′mny/Ly)

)
dy

x2∫

x1

(〈x− x1〉−2 − 〈x− x2〉−2) sin(mπx/Lx)dx

+ e32

x2∫

x1

sin(mπx/Lx) dx

y2∫

y1

(〈y−y1〉−2−〈y−y2〉−2
)(

C ′
1mn cosh(δmny/Ly)

+ C ′
2mn sinh(δmny/Ly) + C ′

3mn cosh(ε′mny/Ly) + sinh(ε′mny/Ly)
)
dy

)
,

= G0hpZp

(
e31

(
C ′

1mn

Ly

δmn

(
sinh

(
δmn

y2

Ly

)
− sinh

(
δmn

y1

Ly

))

+ C ′
2mn

Ly

δmn

(
cosh

(
δmn

y2

Ly

)
− cosh

(
δmn

y1

Ly

))

+ C ′
3mn

Ly

εmn

(
sinh

(
ε′mn

y2

Ly

)
− sinh

(
ε′mn

y1

Ly

))

+
Ly

ε′mn

(
cosh

(
ε′mny2

Ly

)
− cosh

(
ε′mny1

Ly

)))

(
mπ

Lx

)(
cos (mπx2/Lx)− cos (mπx1/Lx)

)

− e32

(
Lx

mπ

)(
cos (mπx2/Lx)−cos (mπx1/Lx)

)
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·
(

C ′
1mn

δmn

Ly

(
sinh

(
δmn

y2

Ly

)
− sinh

(
δmn

y1

Ly

))

+ C ′
2mn

δmn

Ly

(
cosh

(
δmn

y2

Ly

)
− cosh

(
δmn

y1

Ly

))

+ C ′
3mn

ε′mn

Ly

(
sinh

(
ε′mn

y2

Ly

)
− sinh

(
ε′mn

y1

Ly

))

+
ε′mn

Ly

(
cosh

(
ε′mny2

Ly

)
− cosh

(
ε′mny1

Ly

))))
. (20)

5. Special case for simply supported boundary condition

For the special case of simply supported boundary conditions,

εmn = nπ, n = 1, 2 . . . (21)

Substituting Eqs. (18), (21)–(23) into (14), the following are obtained:

C1mn = C2mn = C3mn = 0, (22)

Nmn =
1
4
LxLy, (23)

Amn =
4G(t)hpZp

ρLxLy(ω2
mn − ω2)

(
e31

γm

γn
+ e32

γn

γm

)(
cos(γ mx1)

− cos(γ mx2)
)(

cos(γ ny1)− cos(γ ny2)
)
, (24)

where
γm = (mπ/Lx) and γn = (nπ/Ly). (25)

Equation (24) is identical to the equation derived by Dimitriadis and Ful-
ler [23].

6. Conclusions

An equation for the response of a plate excited by a rectangular PZT actuator
has been derived. The theory can be applied to a plate supported with any
of seven boundary conditions. The theory can be extended to other boundary
conditions in a similar manner.

If the size and position of the actuators are known in addition to the input
voltages applied to the actuators, the response of the plate can be computed.
This equation provides a mathematical foundation for calculating the optimal
placement of actuators to minimize the sound power radiated from the plate.

It can be concluded from Eq. (13), that the modal amplitudes excited by
the PZT actuator depend very much on the position of the actuator and the
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input voltage applied to the actuator. In principle, some modes can be selectively
excited or suppressed.
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