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The aim of this paper is to present the effect of acknowledging viscous damping, structural
internal damping and fluid loading on active vibration control of a circularplate in case of axi-
ally symmetrical vibrations. It was assumed that a planar vibrating structure located in a finite
baffle and interacting with fluid is driven by a periodic force with constant amplitude, so the
structure radiates the acoustic waves into a surrounding fluid and the axially-symmetrically
located circular piezoelectric actuators are used to reduce its vibrations. For the purpose of
control strategy designing process the continuous model derived from physical principles for
the system under consideration has been developed. Next, the linear statemodel was obtained
by reduction and approximation of the continuous model using the orthogonal series method.
After that, the acquired model was used to produce body plots and to solvecorresponding
Riccati equation. Obtained control forces led to significant reduction of the plate vibration
and attenuation of accompanied acoustic waves. The simulations of the active cancellation of
the plate vibrations were made with a Simulink/Matlab computer program.

Keywords: fluid loading, viscous damping structural internal damping, plate vibrationcon-
trol.

1. Introduction

The vibration and sound radiation of a circular plates have been studied bymany
researchers since it is a significant structural element in many industrial fields. Lord
Rayleigh was the first who analysed the “reaction of the air on a vibrating circular
plate” [14], showing that reaction to be equivalent to a virtual mass and radiation damp-
ing to be added to the plate mass and the mechanical damping. For the design of an
effective kind of control suppressing plates vibrations and related acoustic radiation,
the accurate modeling of the acoustic structural and coupling components is necessary.
Except of internal and viscous damping phenomenon, the major difficulty when treat-
ing acoustic radiation into fluid medium is the inclusion of the fluid structure coupling.
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As pointed out by JUNGER and FEIT [5] it should be noted that the structure/fluid in-
teraction in case of plates, where all plate modes are coupled by the fluid, maychange
plates responses in a significant way. The effect of the fluid loading as well as the in-
fluence of viscous and internal damping needs to be carefully examined if one wants to
design an effective kind of control.

Early solutions of the radiation of plates with fluid/structure coupling were given
by DAVIES [3] in case of a simply supported rectangular plate. He proposed to use
a wavenumber transformation of the fluid and structure governing equations and to ex-
press the radiation impedance in terms of thein vacuomodes of the plate. The classical
methods usingin vacuoplate eigenfunctions to formulae fluid/structure coupling, which
essentially involves the calculation of the radiation impedance, have been reported also
for a circular plate in an infinite baffle (LEVINE and LEPPINGTON [13], KWAK and
K IM [8], RDZANEK [16], more recently by DINGGUO and CROCKER [4]) and also for
the plate located in a finite baffle (LENIOWSKA [9]).

Furthermore, the problem of control of fluid-loaded circular plate has been exam-
ined by several authors FULLER [5], GU and FULLER [6], M EIROVICH [14]. It was
also solved by the author of this paper (LENIOWSKA [10–12]) for point and distributed
actuators and for different boundary conditions of the circular plate located in a finite
baffle.

The present work is a continuation of a previous study that considered active con-
trol of vibration and sound radiation from a clamped circular plate which radiates into
a “light” fluid medium. It is focused on the investigation how much the damping and
modal coupling may affect control performance. This study adds new understanding
to research in controlling the vibration and sound radiation from objects in questions.
It is demonstrated how the poles an zeros of object model can migrate on the complex
plane in dependence of changing parameters and what are the limits of a such moving.
This information is very useful for finding basic object properties as stability, etc. and
to design an effective kind of control. Moreover, on the base of this information the
feedback control law with feedforward correction is developed for sound and vibration
cancellation of the considered plate.

In this approach the solution is expressed in terms ofin vacuoplate eigenfunctions.
The resulting integral expressions can be calculated numerically and they are used to
form the state-space equation. The formal solution of the fluid-plate coupled equation
is presented in case of axially symmetrical vibrations, for a plate driven by auniform
harmonic primary force and controlled by a distributed secondary forcesgenerated by
piezodisks. Three parameters which characterize fluid density, plate material internal
damping and viscous fluid damping are included in the considered model. It is well-
known that the dynamic behavior of the linear systems depends strongly on the location
of the models’ roots (zeros and poles). To examine the stability of the system the roots
of the system with assumed parameters were plotted on a complex plane. The effects
of fluid-loading, internal and viscous damping on the system response are observed
and presented graphically. Finally, the feedback control law is developed for the plate
vibration cancellation.
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2. State-space system model

The structure under study is a vibrating circular plate of radiusa, having a constant
thicknessh, surrounded by a lossless medium with the rest densityρ0. In the case being
considered, the applied loading and end restraints of the circular plate areindependent
of the angleϕ, (axially symmetrical vibrations), thus we can write the governing differ-
ential equation of the forced motion of the plate as follows [11]:

B∇4w(r, t) + R
∂

∂t
[∇4w(r, t)] + γ

∂

∂ t
w(r, t) + ρh

∂2

∂ t2
w(r, t)

= fw(r, t) + fs(r, t) + fp(r, t), (1)

whereB = Eh3/12(1 − ν2) is the bending stiffness of the plate,E, ν andR are the
Young’s modulus, Poisson’s ratio and Kelvin–Voigt damping coefficient for the plate,
ρ is density for the combined structure, andγ is viscous fluid damping coefficient,r is
the radial variable. It is assumed that the plate, clamped in a flat, rigid and finitebaffle
of radiusb, (b > r > a, z = 0), is excited on one side by a uniform periodic force
with constant amplitudeF0: fw(r, t) = F0e

−iωt for 0 ≤ r ≤ a and it radiates into
free space filled with fluid of densityρo. The system model is formulated when taking
into account the coupling effect between the structure and the acoustic medium, so the
third component of the right hand side of Eq. (1),fp (r, t), represents the acoustic fluid-
loading acting on the plate as an additional force. The goal in the control problem is
to determine a control forcefs (r, t) which, when applied to the plate, leads to reduced
level of vibrations. The second component of the right hand side of Eq.(1) represents
such a wanted control force,fs (r, t), which will cancel the plate vibrations. The model
presented above can be expressed in the state-space format [11]:

ẋ(t) = Ax(t) + Bu(t) + Vz(t), (2)

where the dot denotes differentiation with respect to time,x is the (n × 1) state vector,
u is (m× 1) control vector, andA is (n×n) state matrix,B is the (n×m) control input
matrix,V is (1× n) disturbance matrix, described as follows:

A =

[
0 1

−(I + E)−1
Ω

2 −(µ2 + µ1Ω
2)(I + E)−1

]
,

B =

[
0

(I + E)−1K s

]
, V =

[
0

(I + E)−1Kw

]
.

(3)

In above expressionI denotes identity matrix,K s andKw are the coefficient vectors,
E represents fluid-plate interaction matrix,Ω = diag[ω1, ω2, .., ωN ], µ1 = R/B and
µ2 = γ/ρh.
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3. System dynamics and damping effects

It is convenient to plot the roots of the system for assumed parameters on acomplex
plane to examine the possibility of instability of the system and the influence of fluid
loading as well as structural internal damping and viscous damping. The plate is made of
aluminum. The surrounding fluids were water, propane and air representing respectively
strong, moderate and light coupling between the structural and acoustic response.

The location of poles and zeros of the eight-order system has been presented in air,
for two values of parameterµ1 and constantµ2 (Fig. 1). It can be seen that the values of
internal damping coefficientµ1 have considerable influence on systems’ root locations.

a) b)

Fig. 1. Distribution of poles and zeros of the considered system in air forµ2 = 0.5: a) µ1 = 0.0001,
b) µ1 = 0.00002; ◦ – zeros,� – poles.

On the basis of the pole locations we can make a conclusion about the system dy-
namics which may be observed on the Bode diagram (Fig. 2). It is worth to note that
the modification of parameterµ2, assuming the linear range 0.1–100 [sN/m3], does
not change root locations noticeably and can be observed on the Bode diagram in the
vicinity of the resonance peaks. The third parameter included in the model derived, the
fluid-loading term [2]:ε0 = ρ0/ρhk0, in which k0 is the acoustic wave number, is
helpful for examining the influence of the fluid surrounding the considered plate.

As the density of the surrounding fluid medium increases, the roots of the system
move to point (0, 0) on the complex plane (Fig. 3).

The Bode diagram reveals an additional feature which is important for the correct
design of controller transfer function, namely a phase shift, especially for low frequency
radiated acoustic waves. As a result of the fluid coupling the response ofthe plate in
fluid can be significantly different from responsesin vacuo. It can also be observed,
that the effect of the fluid-loading on the considered plate is dependent on the excitation
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Fig. 2. Bode diagram of the fluid-plate system in air: 1 –µ1 = 0.0001122, 2 – µ1 = 0.000022,
3 –µ1 = 0.000044.

Fig. 3. Distribution of poles of the considered system forµ1 = 0.00002, µ2 = 0.5 and three kinds of the
fluid density:∗ – ρ0 = 1000, ◦ – ρ0 = 500, + – ρo = 1.2.

frequency. In the case of lower frequencies, the shift of the resonance peaks is greater
and when the operating frequency increases it diminishes.

To illustrate this effect let us consider an example where the fluid is water, sothe
strong coupling can be theoretically assumed. The Bode diagrams of the system in ques-
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tion for the “lower” (Fig. 4) and “higher” (Fig. 5) frequencies of acoustic waves presents
as follows:

Fig. 4. Bode diagram of the fluid-plate system in water, forµ1 = 0.00002, µ2 = 0.1 and for the “lower”
frequencies: 1 –k0 = 0.42 (100 Hz), 2 –k0 = 1.26 (300 Hz), 3 –k0 = 2.09 (500 Hz).

Fig. 5. Bode diagram of the fluid-plate system in water, forµ1 = 0.00002, µ2 = 0.1 and for the “higher”
frequencies: 1 –k0 = 25.13 (6000 Hz), 2 –k0 = 41.88 (10000 Hz), 3 –k0 = 62.83 (15000 Hz).
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It can be observed that for higher frequencies the characteristics have not shifted.
It leads into conclusion that the frequency spectrum is not an uniform domain. A fur-
ther examination of the system dynamics shows that it divides into two regions.Below

the frequency defined as [2]:fn =
ρ0c0

2πρh
, the surrounding fluid mass-loads the plate.

In this case the resonances peaks and corresponding phases are shifted towards lower
frequencies on the Bode diagram (Fig. 4). On the other hand, for frequencies of acoustic
response, the fluid acts as dampener – the effect of the fluid-loading is small and curves
on Bode diagram cover each other (Fig. 5).

4. Plate vibration control

The aim of the project is to design a control system to modify the response ofthe
plant in some desired fashion. The closed-loop setup is sketched in Fig. 6.

Fig. 6. Block diagram of the simulated system.

The object is to minimise the plate vibrations and the far-field acoustic pressure
p(Po, t), in plate axis. This is to be achieved by the control forcefs(t) = u(t) acting
on the plate surface. For the system modelled as (2)–(3) the problem is to determine
the necessary controlu(t) which will minimise in timetk the following performance
index [11]:

J =
1

2

tk∫

0

[
xTQx + uTRu + ϑẋTPẋ

]
dt, (4)

whereQ, R denote weighting matrices andP is the far-field acoustic pressure matrix
corresponding top(P0, t) [11]. The control input that minimises this performance index
is derived by applying Hamilton’s principle and by solving Riccatti equation using Shur
tuning technique [1]. Finally we obtain the following control law [11]:

u = −R∗−1
[(

Q∗T
AB + BTK

)
x + Q∗

BVz + BTv
]
. (5)

The obtained control contains three components. The first one is a matrix coefficient
BTK with an additional weighting matrixQ∗T

AB multiplied by the state vector. The next
two components make additional feedforward correction with PI-structure.
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In the case of feedforward controller the gain coefficients are achieved from the
analytical computations according to the expression [11]:

v(t) =

tk∫

0

eA∗(t−τ)B∗u(τ)dτ. (6)

The integral and the proportional part of the wanted controlu(t) in (5) is calculated
directly from the excitation signal.

In simulations the model including the eight modes of the aluminum plate of a 0.4 m
diameter and 1 mm thickness was applied. The time response of the system on sinu-
soidal disturbance of 100 Hz has been obtained using the Simulink/Matlab computer
program.

The plate displacement (sum of eight modes) is plotted in Fig. 7a. It can be seen that
the uncontrolled plate response vibrates significantly while the switching on theLQR
controller (after 0.4 sec) causes that plate vibrations have been reduced about 50%. The
acoustic pressure generated by the plate inz axes at Fraunhofer’s zone is plotted in the
Fig. 7b. It is attenuated after 0.4 sec about 40%, except of the points where the controller
starts. The feedforward corrector which starts after 1.2 seconds improves both results
significantly.

a) b)

Fig. 7. The time response of the open-loop system (0–0.4 s), the close-loop system with LQR controller
(0.4–1.2 s) and the close-loop system with LQR controller and feedforward corrector (1.2–2 s) to the sinu-
soidal signal of 100 Hz fora1/a = 0.07: a) the plate displacement (sum of eight modes), b) the acoustics

pressure generated by the plate at Fraunhofer’s zone.

5. Concluding remarks

This paper is focused on the investigation how much the damping and modal cou-
pling may affect control performance. The structure under consideration was a thin
circular plate with distributed control forces located in its center. The application of
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optimal linear quadratic theory to the problem of plate vibrations, inducing acoustic
noise in the audible frequency range, shows that this control technique led to a very
good reduction of plate vibration, but the response of the plate in fluid can be sig-
nificantly different from responsesin vacuo. It can be observed, that the effect of the
fluid-loading on the considered plate is dependent on the frequency of the vibration.
In the case of lower frequencies, the shift of the resonance peaks and corresponding
phases is greater and when the operating frequency increases it diminishes. A further
examination of the system dynamics shows that the frequency spectrum canbe divided

into two regions. Below the border frequency:fn =
ρ0c0

2πρh
, the surrounding fluid mass-

loads the plate, and above – the fluid acts as dampener. It can be also statedthat the
values of internal damping coefficientµ1 have considerable influence on systems’ root
locations.
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