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The practical applications of sound relate to approximately periodic sounds. It is shown,
that theoretical results of acoustic streaming based on a periodic everywhere sound, should
be revised in spite of the experimental data demonstrating the essentially different velocities
of streaming. A new approach, which allows evaluating the streaming caused by sound of
every type, both periodic and non-periodic, leads to similar results. The results of numerical
calculations of streaming caused by modulated sound and series of pulses are compared with
those given by formulae for a periodic everywhere sound.
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1. Introduction

In the nonlinear viscous flows a transfer of the acoustic momentum and energy to
non-acoustic types of fluid motion, – a streaming (rotational) and heating (entropy)
occur. The recent point of view of both the secondary phenomena, that are widely ob-
served, is presented by MAKAROV in a comprehensive review [1].

The classic theories of heating and streaming are based on averaged conservation
equations that need an acoustic wave periodic everywhere in the space [2]. Averaging
over an integer number of periods of the sound wave occurs. All temporal derivatives
of acoustic values result in zero after averaging. This allows to separate non-acoustic
and acoustic inputs at the level of the conservation equations [1, 2]. This procedure is
not completely consequent: the energy per unit volume is a quadratic nonlinear form
but during the separation the overall energy is supposed to be a sum of non-acoustic
and acoustic parts. In this way governing equations for heating are derived in the classic
acoustics. Averaging over an integer number of periods of the sound wave is proceeded
while the number of periods should be large but provide a temporal interval much
less than the characteristic scale of heating and streaming. For a periodic everywhere
acoustic wave, both the secondary effects grow with time as nonlinearity develops and
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their characteristic temporal scale is in fact much greater than a period of the acoustic
source. A delicate temporal structure of heating and streaming is out of intertest and
cannot be evaluated in principle on the basis of averaged values.

Actually, all practical applications relate to the approximately periodic ultrasound,
namely to wave packets or series or pulses. Even close to a periodic sound, like a mod-
ulated infinite wave or wave packet, may be treated by the classic formulae only ap-
proximately. An infinite modulated sound is not strictly periodic if the frequencies of
the carrier wave and the envelope are not divisible. Anyway, the period is larger than
that of the carrier wave. A wave packet is periodic in the confined temporal and spacial
areas. There are experimental evidences that the velocity of streaming caused by series
of pulses differs essentially from that predicted by the classic theory. In a set of experi-
ments, the observed values are two times less or greater than the predicted ones [3].

Recently new results on acoustic streaming and heating caused by sound of every
nature were published [4, 5]. The main idea is to combine the equations of conserva-
tive laws accordingly to the specific features of the modes in order to derive evolution
equations governing the flow. A specific type of projecting is applied. No other type of
projecting like averaging over a period of sound is used. In this way governing equa-
tions of compressible fluids accounting all the possible interactions of modes were de-
rived. In the quasi-plane geometry of a flow relating to a small diffraction parameter
µ,
√

µ = λ/R (R means the radius of the transducer, and λ is a characteristic scale of
sound), the formula for the transversal component of the driving force sounds [4]:
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Here, x and y are dimensionless co-ordinates related to the dimensional X, Y in the

following way: x =
√

µX/λ, y = Y/λ, β =
ζ + 4η/3

ρ0cλ
+
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ρ0cλCv

is the attenuation

coefficient accounting loses due to the thermal conductivity as well, ζ, η are bulk and
shear viscosities, χ is thermal conductivity. The acoustic beam propagates along the y-
axis. The value p is the dimensionless pressure related to the dimensional P as follows:
p = P/(c2ρ0) with c being a small signal sound velocity and ρ0 is the unperturbed
density. Another transversal component of the driving acoustic force Fz has the form
analogous to (1). The formula is valid with an accuracy of the order

√
µβ and all terms

of higher order are omitted. A formal limit of the force given by the periodic everywhere
acoustic pressureas an example taken from the paper of RUDENKO and GUSEV [6]

p(x, y, t) = P0θ(x) exp(−βy/2) sin(t− y) (2)

has been traced in [4]. Here θ(x) is the cross section of the acoustic beam which is
supposed to be non-diffracting and is usually treated as the Gauss function. The govern-
ing equation for the transversal component of the velocity Vx includes hydrodynamic
nonlinearity and viscosity:
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∂Vx

∂t
− δ

∂2Vx

∂y2
+ (V∇)Vx = Fx. (3)

The value V is dimensionless, a dimensional velocity divided by the small signal sound
velocity, t is the dimensionless time related to the dimensional T in the following way:
t = Tc/λ; δ is the dimensionless viscous coefficient δ = η/ρ0cλ with η being shear
viscosity. Equation (3) is rather complicated for an analytical solution. As the first ap-
proximation, the velocity may be found by simple integration of the driving force over
time:

Vx(x, y, t) =

t∫

o

Fx(x, y, τ)dτ. (4)

In the case of a periodic sound, the essential disease of formula (4) with the averaged
value in place of the driving force Φx = 〈Fx(x, y, t)〉 is that it results in an infinite
growth of velocity, while the hydrodynamic nonlinearity actually provides a constant
limit of the velocity when t → ∞. Large values of the streaming velocity are hardly
expected when the driving sound is a single pulse or a bounded wave packet, so the
hydrodynamic nonlinearity is rather insignificant. Without this term, Eq. (3) is a linear
equation of thermal conductivity with an acoustic source on the right-hand side. All
other components of streaming may be found by the use of the condition of vortex flow:

∇V = 0. (5)

2. Streaming caused by a non-periodic sound.
Calculations and comparison with results predicted

by the theory based on averaged values

In this section some non-periodic acoustic sources (modulated sound and wave
packet) that are not periodic everywhere, but are actually widely used in the experi-
ments, are treated by the formulae (1), (4) suitable for every type of sound, and by
the formulae of the classic theory based on averaged values. The results of numerical
calculations are compared.

2.1. Modulated sound

The pressure of two-dimensional modulated non-diffracting sound beams at the
transducer is given by the following formula:

p(x, y = 0, t) = p0 exp(−x2)(1 + m · cos(Nt)) sin(t), (6)

where p0 is the amplitude, m is the depth of modulation, N is the frequency of the
envelope, both being dimensionless. In the leading order, the sound in all the space is:
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p(x, y, t) = p0 exp(−x2 − βy/2) sin(t− y)

+ 0.5mp0 exp(−x2 − β(1−N)2y/2) sin((1−N)(t− y)

+ 0.5mp0 exp(−x2 − β(1 + N)2y/2) sin((1 + N)(t− y)). (7)

The formula (7) accounts for the nonlinear distortion of every harmonics but does
not account their nonlinear interaction. In a set of calculations of transversal velocity
of the sound beam based on formulae (1) and (4) with a pressure of sound in the form
of (7), the following values were accepted: γ = 1.4, β = 0.004, N = 1/33, m = 1,
c = 331.45 m/sec (sound speed in the air at T = 0◦C). The value β corresponds
to the propagation of a strongly attenuated sound of frequency f = 2 MHz : f =

πβ

c(α/f2)
with the attenuation α/f2. It is a constant available in the literature: for air

α/f2 = 1.85 · 10−11s2/m [7]. The unperturbed density of air at T = 0◦C is ρ0 =
1.29 kg/m3. The formula (7) is correct beyond some vicinity of the transducer with
an amplitude which does not depend on the amplitude of the pressure at the transducer
p0 = 4β/(γ +1). The velocity obtained by integration of the driving force of streaming
is averaged, in accordance with formula (4), over one period of the carrier sound in
order to compare the results with those given by the classic formulae on periodic sound.
The other set of calculations relates to the classic formula for the driving force if the
sound were periodic in the whole space:

Φx =
√

µ
∂

∂x

〈
p2(x, y, t)

〉
. (8)

The velocity is then calculated according to (8) and (4). The results of calculations
are shown in the figures below. Figure 1 shows the pressure of modulated sound at the
transducer y = 0. All pictures below relate to a transversal co-ordinate x = 0.5.

Fig. 1. Sound pressure at the transducer y = 0 (x = 0.5).
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As an example, a non-diffracting beam is taken, so the velocity in another transversal
co-ordinate may be calculated taking into account that Vx(x, y, t) ∼ x·exp(−2x2). This
function achieves a maximum of the absolute value at x = ±0.5. At the upper half-
space, the velocity is negative: a flow turns to the axis of propagation. Figure 2 presents
spatial distribution of the transversal velocity of streaming in different times, Fig. 3
presents the temporal behavior of velocity at two different distances from the transducer.
As for the spatial distribution, the difference between both the sets is noticeable at the
beginning of the evolution and becomes less with time passing. The temporal behavior
exhibits a growth of the velocity in different ways. All the figures present the dynamics
of Vx(x, y, t)/

√
µ, so the values of velocity vary with the radius of the transducer and

with the characteristic wavenumber.

Fig. 2. Transversal velocity of streaming via dimensionless distance from the transducer 2πY/λ, thin line
marks calculations according to the formula (8) suitable for periodic sound, bold line marks calculations
according to the general ones (1), (4): a) at T = 2π/f , b) at T = 2π ·100/f , curves are undistuingishable.

Fig. 3. Transversal velocity of streaming via dimensionless time 2πfT , thin line marks calculations
according to the formula (8) suitable for periodic sound, bold line marks calculations according to the

general ones (1), (4): a) at Y = λ · 1000/2π, b) at Y = λ · 1500/2π.

2.2. Wave packet

As an example of an wave packet, a set of single positive two-dimensional pulses
propagating along the y-axis is considered. Every pulse is a solution of the Burgers
equation multiplied by the transversal Gauss function exp(−x2). A non-diffracting
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beam is considered as well. The pressure of a single pulse is therefore defined by the
formula:

pn(x, y, t) = −
√

2β

π
exp(−x2)

exp(−(τ + τn)2/2ξ)
ε
√

ξ/β
(
C − Erf

(
(τ + τn)/

√
2ξ

)) , (9)

where C is a constant responsible for the shape and the polarity of the curve, τ = t− y
is retarded time, ξ = βy, ε = (γ + 1)/2. A choice of τn allows to form a set of
pulses with a delay between every two ones. In spite of the nonlinearity of the flow, it
is important to consider the spatial domain and temporal intervals, where pulses do not
cover each other. Series of ten pulses {pn}10

n=1 with τn = τ0n, τ0 = 100 are considered.
The driving force of streaming is calculated as a superposition of forces caused by
every pulse. The same set of pulses gives an averaged driving force if it were treated as
a periodic field. The transversal component of this force looks as follows:

Φx =
√

µ
∂

∂x

n=10∑

n=1

〈
p2

n(x, y, t)
〉
. (10)

Here, square brackets mean averaging over the temporal delay τ0. Calculations based on
(10) are compared with calculations based on formula which does not need a periodic
everywhere acoustic source (1). The driving acoustic source given by (1) is averaged
over τ0 for a consequent comparison with the results obtained by formula (10). A set
of acoustic pulses at a non-dimensional distance from the transducer Y = λ · 100/2π
is shown in Fig. 5. Here, λ and f should be understood as effective the wavenumber
(width) and frequency (f = c/λ) of a single pulse These are rather approximate values
since a pulse is widening during its propagation. All calculations below relate to the
value β = 0.1.

The stationary levels of Vx(x, y, t)/
√

µ after passing a set of pulses are quite differ-
ent when calculated either on the basis of the formula for periodic sound (10) or on the

Fig. 4. Acoustic pressure as a function of dimensionless time 2πfT at Y = λ · 100/2π, x = 0.5.
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Fig. 5. Transversal velocity of streaming via dimensionless time 2πfT at Y = λ · 100/2π, x = 0.5.
Thin line marks calculations according to the formula (10) suitable for periodic sound, bold line marks

calculations according to the general ones (1), (4).

general basis (1). The more sound differs from the periodic everywhere one, the more
results of calculations differ. In many practical applications of non-periodic sound, the
predictions of streaming and heating by the classic formulae of periodic sound should
be revised.

3. Conclusions

Examinations of secondary processes caused by sound in lossy media reveal the
importance of using formulae based on instantaneous values. Examples of calculations
due to the original formula (1) governing the acoustic streaming compared to the cal-
culations based on the well-used formula for averaging values (8) reveal a noticeable
difference. As acoustic sources, a set of pulses and a modulated waveform are consid-
ered. Moreover, there exists a great variety of acoustic sources that in principle can not
be treated by the well-used formula, including single pulses or a wavepacket. The ad-
vance in the theory of secondary phenomena in attenuating flow – acoustic streaming
and heating – becomes possible by the application of projecting at the level of initial
conservation equations which essentially deals with instantaneous values.
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