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In this work the Method of Source Simulation Technique was used to calculate the
scattering of a plane wave by a circular cylinder with random distribution of the surface
impedance. The scattering and radiation from vibrating bodies can be expressed by a
source system that is located within the envelope of the scatterer or radiator. The Method
of Comparative Sources, as is shown in this work, provides an appropriate prediction of
the sources strength and consequently of the sound �eld. The e�ciency of the method was
veri�ed through the comparison between numerical results and experimental data. The
calculation of the scattering was performed for the variants of the method: the single-layer
method and the one-point multipole method.

1. Introduction

The mathematical treatment of radiation and acoustic scattering represents a very old
and much studied problem of mathematical physics. Both phenomena were �rst treated
more than a century ago by Lord Rayleigh [1]. At this time, Rayleigh suggested that
the sound �eld radiated from a transverse vibrating rigid body is built up from spherical
wave functions. This is the basic idea of the source simulation technique, that is, to replace
the vibrating body by a system of radiating sources, which act in an equivalent way on
the surrounding medium as the original body. The sources are located inside the radiator,
and the problem consists to �nd the sources amplitude. As long as the sources amplitudes
are known, the pressure and the velocity can be mapped at each point in the �eld. The
scattering problem can also be calculated by the method of comparative sources, since
the scattering problem can be formulated as an equivalent radiation problem. Depending
on the positioning of the sources inside the body and their order, di�erent variants of
the method may outcome. If the approach includes the choice of multipole expansions
up to high orders at only one location, we have the one-point multipole method. On the
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other hand, if low order sources like monopoles are located at many points, we have the
single-layer method. This paper will be dealing with these two last methods.

The �eld generated by the sources should approximate the prescribed �eld as well as
possible. The error generated by this approximation should be thus minimized. In this
work the least square technique was used in order to minimize the boundary error.

The method of source simulation technique has been vastly used in purely theoret-
ical works, such as: Cremer [2], Kress and Mohsen [3], Heckl [4], Heckl [5] and
Ochmann [6]; and in numerical works, such as: Williams et. al. [7], Cremer and
Heckl [8] and Stepanhishen [9]. However, there is no literature demonstrating the e�-
ciency of the method through a comparison between numerical and experimental results.
In this line of thought there are only one work in which the acoustical radiation of a
rigid cylinder was studied [10] and only one in which the acoustical radiation of a rigid
sphrerical body was studied [11] both numerically and experimentally.

This work aimed at 1) showing the formulation of the radiaton problem and the
scattering problem with the method of source simulation technique and 2) presenting its
variants, the one-point multipole method and the single layer method. These variants
were employed in the calculation of the scattering by a rigid cylinder, an absorbent
cylinder, and by a cylinder with variable surface impedance. The cylinder was always
considered in�nite. The numerical results thus obtained were compared to experimental
data collected in an anechoic chamber.

Radiaton and scattering are present in all ondulatory phenomena (elastic waves in
rigid bodies, eletromagnetic waves, surface waves on the water, etc.). The present study,
however, deals only with "pure" acoustical waves, that is, acoustical waves in gases or
liquids. Another important limitation is that all steps of the solution of the problem are
considered linear. Consequently, the superposition principle is valid.

2. Description of the radiation and scattering problem

Consider the scatter or radiator with surface S. The interior from S is called Si and
the exterior �eld Se. The normal surface n is directed to the exterior �eld Se. In the
following, only exterior problems will be treated [12].

In the exterior �eld Se, the complex sound pressure p should satisfy the Helmholtz
equation

∆p + k2p = 0, (1)

where k = ω/c is the wave number, ω is the circular frequency, c is the speed of sound
and ∆ is the Laplace operator. All the variables as functions of time should obbey the
function e+jwt.

As long as the sound radiation in a free three-dimensional space is considered, the
pressure p should also satisfy the Sommerfeld radiation condition [12, 13]

Limr→∞r

[
∂p

∂r
+ jkp

]
= 0 (2)
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which could be considered as a boundary condition in the in�nity. Here r =
∣∣ρ
x

∣∣, ρ
x =

(x1, x2, x3) is a position vector and r denotes the distance from the center to each point
x in the �eld. The solutions of Eqs. (1) and (2) are called radiating wave functions [10].
Typical functions that represent this class are called spherical wave functions [10, 12,
14], which are generated when the solution of the wave equation is obtained in spherical
coordinates. For the sake of simplicity, radiating wave functions will be called sources.

A complete description of the problem requires a description of boundary conditions
on the surface of the radiator or scatterer. The Neumann boundary conditions will be
considered. In this case the normal velocity vn and the gradient of the pressure

∂p/∂n = −jωρvn (3)

on S are described. In Eq. (3), ρ is the density of the medium surounding S and ∂/∂n is
the derivative in the direction of normal n into the exterior �eld Se.

The problem of acoustic radiation is obtained if the normal velocity considered on
the surface of the body is di�erent from zero -> vn 6= 0. Equation (3) represents an
inhomogeneous boundary condition. Equations (1) and (2) describe the radiation problem
for the radiated pressure p. With respect to the scattering problem, one should consider
the inciding wave pi, which on its propagation encounters the surface S, then generating
the scattered wave ps. The scattering problem for the scattered wave ps is described by
Eqs. (1) and (2), but pressure p should be accordingly substituted by pressure ps in both
equations. Considering again the Neumann boundary value problem, the outcome is that
for a totally rigid body, the surface velocity should be equal to zero, that is, vn = 0. This
way,

∂p/∂n = 0. (4)

In Equation (4) the pressure p represents the total pressure pt = pi + ps. Equation (4)
thus represents an homogeneous boundary condition. The scattering problem can be
formulated as a radiation problem. One should then consider velocity vi of the inciding
wave pi on the surface S. If surface S vibrates with negative normal velocity (−vi),
radiated pressure is identical to pressure ps, originated from the incidence of pi on S [12].
As a consequence, it is possible to write instead of Eq. (4)

∂p/∂n = −jωρ(−vi) (5)

for the scattering problem. Equation (5), in a similar way to Eq. (3), represents an
inhomogenous boundary condition. Equations (1), (2) and (5) thus describe the scattering
problem in an equivalent way to a radiation problem with respect to the scattered wave
ps. The exterior problem de�ned by these equations is unique and complete [13].

3. Principle of the Method of Source Simulation Technique

The principle of the method here presented is based on a treatment of the radiation
problem or the scattering problem through a system of radiating sources, which should
be chosen so that they reproduce as well as possible the sound �eld generated by the
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body of Fig. 1. In the space previously occupied by body S, now the sources can be found,
the source region M in Fig. 1. The sources are taken as point sources, and therefore do
not represent an obstacle to the sound �eld. As a consequence the �eld generated by each
one can be summed without taking into consideration interference e�ects. As the sources
are known, i.e., their amplitudes, the sound �eld can then be easily calculated through
the sum of the �elds generated by each source individually. The true problem consists
then in �nding the sources that can best replace the original body. As a consequence,
two important questions arise:

a) Which is the type of source to be used and how should they be placed inside the
body?

b) Which optimization method should be employed for the results?

Fig. 1. Geometry of the radiation and scattering problem (Ochmann [12]).

Mathematically the problem is based on representing the sound �eld by summing up
the contributions of the individuals sources

p =
Nq∑
q=1

m=+∞∑
m=−∞

Aq,mΦq,m, (6)

where p represents the scattered pressure or the radiated pressure in the �eld; Aq,m is
the complex source strength of the qth source at a point xq in the �eld; m is the order of
each source and Φq,m is the sound �eld generated by the sources. In Eq. (6) Φq,m could
also be called the source function.

Equation (6) intrinsically has the condition that each �eld can be represented by
a sum of functions of the type Φq,m. This is naturally the case, only if all functions
Φq,m satisfy the wave equation and if they form a complete function system. The �rst
condition is certainly satis�ed if Φq,m, represents for example the �eld generated by a
monopole, dipole or quadrupole. The second condition, i.e., if it is possible to represent
any acoustic �eld as a sum in the form of Eq. (6), seems to be as yet unproven with all
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mathematical rigor (Ochmann, [10]). As no di�culty has been noted by other authors
[2, 4, 10, and others] when miltipole sources were used for the reconstruction of the
acoustic �eld, the same procedure will be used in the present work. In other words, the
multipole sources will be used to represent the radiation or scattering problem of the
original body.

We have then two distinct situations:
a) one can use a variable order multipole localized in a single point inside the body,

that is, in Eq. (6) Nq = 1 and M is very large,
or

b) one can use only monopole sources positioned in several points inside the body,
which renders Nq very large and M = 1 in Eq. (6).

One can also have a combination of both extreme cases presented in a) and b), that
is, to use a multipole (for example, monopole + dipole) positioned in several points.
Variants of the method will be discussed in the next section.

Together with the choice of the type and the positioning of the sources, the choice of
the optimization criterium also imposes a fundamental question for the use of the source
simulation technique. Basically the idea is to try to approximate the �eld generated by
the sources, determining its source strength (which are ultimately the solution of the
problem), to the real �eld generated by the original body. The error derived from those
approximation should be minimized. Several methods can be used to that end, such as
the null �eld method, the collocation method, the Cremer's method. In this work we
have used the least squares minimization.

4. Variants of the Method of Source Simulation Technique

As explained in the last section, depending on the choice with respect to the number
of sources and/or order of the source function, di�erent variants of the method can be
generated.

If only one point source and one multipole of larger order is used, the so called �
one-point multipole method is obtained [10]

p =
m=+∞∑
m=−∞

AmΦm. (7)

If, on the other hand, many point sources and a multipole of zero order, the so called
monopole, is used, then the single-layer method is generated [6]

p =
Nq∑
q=1

Aq,0Φq,0. (8)

The two cases represented by Eqs. (6) and (7) can be added, resulting in the so
called multi-point multipole method. In this case one has a multipole of variable order
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positioned on many point sources

p =
Nq∑
q=1

m=+∞∑
m=−∞

Aq,mΦq,m. (9)

In the numerical calculation the in�nite series are substituted by a �nite number of
functions. Then one has for Eq. (9)

p =
Nq∑
q=1

m=+M∑

m=−M

Aq,mΦq,m. (10)

A double-layer method could also be constructed, if for example two layers of mono-
poles or a layer of monopoles plus a layer of dipoles are apllied. It should however be
noted, that the one-point multipole method and the single layer method represent the
extreme conditions of the Method of Source Simulation. In this work only these variants
are used.

5. The Source Function System

The basic idea of the Method of Source Simulation Technique is to replace the scat-
terer or the radiated body by a source function system, which acts in an acoustically
equivalent way on the surrounding medium. If a source alone generated the sound pres-
sure Aq,mΦq,m, then the sum

p =
Nq∑
q=1

m=+M∑

m=−M

Aq,mΦq,m (11)

should aproximate the original �eld as well as possible. Each of the individual source func-
tions Φq,m, is supposed to meet the radiation condition in Eq. (2) and the wave equation
in Eq. (1) in the exterior �eld domain Se. When these conditions are satis�ed, one can
take them from any complete function system. In practical terms, source functions which
can be written in conventional coordinate systems can be used: spherical coordinates (for
three-dimensional problems) and cylindrical coordinates (for two-dimensional problems).
It is also possible to use spheroidal coordinates [14]. One has then for Φq,m, the following
representations:

• spherical coordinates � independent from φ

Φm = Pm(cos ν)h(2)
m (kr); (12)

• spherical coordinates - generical

Φm = h(2)
m1

(kr)Pm2
m1

(cos ν)e+jmφ ; (13)

• cylindrical coordinates � two-dimensional

Φm = H(2)
m (kr)e+jmφ . (14)
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In Eqs. (13) and (14) = ω/c is the wave number, ω is the circular frequency, c the
sound velocity, P is the Legende polynomial, hm is the spherical Hankel function and
Hm is the cylidrical Hankel function of the second kind of order m [16].

The velocity generated by the source function system at the radiator surface is cal-
culated by inserting Eq. (11) in Eq. (3). For reasons fo simplicity, we have taken the
one-point multipole method, so that q = 1

vn = − 1
jωρ

m=+M∑

m=−M

Am
∂Φm

∂n
. (15)

We can rewrite Eq. (15), since k = ω/c, as

vn = − 1
ρ0c0

m=+M∑

m=−M

AmZm, (16)

where Zm = (1/jk)∂Φm/∂n is a function de�ned in a similar way as in [4]. For example,
the function Zm in the commonly cylindrical coordinates for two-dimensions is given by

Zm = +
1
j

[
H
′(2)
m (kR)e+jmφ ∂r

∂n
+

m

k
H(2)

m (kR)e+jmφ ∂φ

∂n

]
, (17)

where R is the radius from the radiated body.
For the scattering problem, the calculation go in a similar way. The total velocity

generated on the scatterer surface is given by

vt(n) = vi + vs, (18)

where vt(n) is the total generated velocity on the scatterer surface in the direction of the
normal, vi is the velocity from a wave normaly incident at the surface of the body, and
vs is the scattered velocity when the body is present in the �eld

vt(n) = − 1
jωρ

∂(pt)
∂n

= − 1
jωρ


∂(pi)

∂n
+

Nq∑
q=1

m=+M∑

m=−M

Aq,m
∂(Φq,m)

∂n


, (19)

where pt is the total pressure on the scatterer surface. The total pressure pt is given by

pt = pi + ps, (20)

pt = pi +
Nq∑
q=1

m=+M∑

m=−M

Aq,mΦq,m, (21)

where pi is the pressure from the inciding wave and ps is the scattered pressure in the
�eld. For reasons of simplicity, we have taken again the one-point multipole method, so
that q = 1,

pt = pi

m=+M∑

m=−M

AmΦm (22)
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and

vt(n) = − 1
jωρ

∂(pt)
∂n

= − 1
jωρ

[
∂(pi)
∂n

+
m=+M∑

m=−M

AmZm

]
. (23)

The function Zm is the same as in Eq. (17) for the two-dimensional problem with cylin-
drical coordinates. If the inciding wave is a plane wave in cylindrical coordinates

pi = p0e
−jkR cos(φ) (24)

so, vt(n) is rewritten as

vt(n) =
p0

ρ0c0
cos(φ)e−jkR cos(φ) − 1

ρ0c0

m=+M∑

m=−M

AmZm. (25)

The requirement that the velocity distribution given by Eqs. (16) and (25) generated
by the sources at the surface should aproximate the prescribed normal velocity as well as
possible leads to a linear system of equations through which the complex source strength
will be determinated.

6. Optimization criteria

Several methods can be used in order to minimize the error in the surface velocity
aproximation. In [6] the mathematical description of the use of the Cremer equations can
be found, as well as the null-�eld equations, the collocation method and the least squares
minimization technique. In the literature this technique is the most commonly used and
will be used also in this work. The technique consists in minimizing the surface integral
error ∫

S

|vt(n) − vb|2dS = Min (26)

which sums the erros generated in the approximation of the surface velocity. In Eq. (26)
S is the surface of the scatterer, dS a surface element and vt(n) is the velocity generated
by the source simulation technique. For the special case of scattering from a rigid body,
the surface velocity is zero, so that vb = 0

∫

S

|vt(n)|2dS = Min. (27)

The velocity vt(n) has the same form as in Eq. (23) for the one-point multipole mehtod.
The system of equations for the determination of the sources strength Am is obtained
through the calculation of the partial derivative of the integral in Eq. (27) with respect
to Am, and making the result equal to zero

∂

∂Am




∫

S

|vt(n)|2dS


 = 0. (28)
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The solution of the linear system of Eq. (28) gives us the sources strength Am, which
when substituted in Eqs. (22) and (23) allow the calculation of the sound pressure and
the sound velocity for each point in the acoustical �eld. Thus, the problem is perfectly
solved.

For the somewhat general case, that the body is not rigid, but has a constant relation
on the whole surface between the total sound pressure and the total sound velocity in
the direction of the normal, this leads Eq. (26) to

∫

S

∣∣∣vt(n) −
pt

Z

∣∣∣
2

dS = Min, (29)

where Z is the surface impedance of the scatterer.
The condition imposed to impedance is that it should not have lateral couplings, that

is, it should be locally reacting. This means that one part of the surface is not aware of
the motion of another part, and the reaction of one part of the surface is proportional
to the local pressure at that point. This condition indicates the non-inclusion of elastic
surfaces (for example, surfaces where �exion waves are possible). This extremely rigid
limitation should be veri�ed in each case. It certainly is not satis�ed by elastic bodies, as
for example a thin-walled cylinder immersed in water. For porous materials (for example
foam) one can in priciple assume that for air borne sound there is no lateral coupling,
that is, the materials are locally reacting.

In the same way, we can calculate the radiation problem with the least squares tech-
nique. This leads to the surface integral

∫

S

|vb − vn|2 dS = Min (30)

and again the surface error should be minimized. In Eq. (30) vb is the velocity of the
vibrating body and vn is the velocity generated from the sources. For the one-point
multipole method and for the two-dimensional case in cylindrical coordinates vn is the
same as in Eqs. (16) and (17). As in the case of scattering, if the partial derivative in
Eq. (30) is calculated with respect to source strength Am and making the result equal to
zero, one has a system of linear equations through which the complex sources strengths
are determined. Substituting them in Eqs. (11) and (16) we have the pressure and the
velocity at each point in the acoustic �eld. This way the acoustic radiation problem is
perfectly solved.

7. Calculation of the scattering with the source simulation technique

The next issue to be addressed is the problem of calculating sound scattering for an
in�nite circular cylinder, in which the random distribution of the surface impedance is
considered. The calculation will be performed for the one-point multipole method and
for the single layer method.
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7.1. One-Point Multipole Method

In this case the approach includes the choice of multipole expansions up to high orders
at only one location. Using the symmetry of the circular cylinder, the location point
coincides with the center of the cylinder. The condition of an in�nite cylinder means
that the problem is treated independently of the axial direction, that is, ∂(...)/∂z = 0.
Another important point is that we only consider plane harmonic waves as the inciding
waves.

The total pressure pt can be written as a sum of the inciding plane wave pi and the
scatterer wave ps

pt = pi + ss. (31)

The inciding plane wave traveling in a direction perpendicular to the cylinder's axis
is given by pi = p0e

−jkx, where p0 is the amplitude. The scatterer wave ps is given by
Eq. (7) and Eq. (14), so that

pt = p0e
−jkr cos(φ)

m=+M∑

m=−M

AmH(2)
m (kr)ejmφ. (32)

Since we used cylindrical coordinates, x = r cos(φ), and r is the distance between the
center of the cylinder and any point in the surrouding medium. In this case the medium
is air.

The expression for the velocity is obtained through Eq. (3), since the normal direction
coincides with the radial direction and on the surface r = R

vt(n) =
p0

Z0
cos(φ)e−jkR cos(φ) − 1

Z0

m=+M∑

m=−M

AmH
′(2)
m (kR)e+jmφ, (33)

where Z0 = ρ0c0 is the speci�c acoustical impedance in air and H
′(2)
m (kR) = ∂

(
H

(2)
m (kR)

)

∂(kr)
∣∣∣
r=R

. All time-varying quantities should obey the time dependence e+jωt. As the
exponencial factor is shared by all �eld quantities, it can be omitted.

As explained in the last section, it is here assumed that the surface impedance is
locally reacting. Therefore, the boundary conditions for each surface element and for
each angle φ on the surface, should obey the condition

vt(n) =
pt

Z
, (34)

where Z is the surface impedance.
In this work we consider that the impedance is randomly distributed on the surface.

Hence, the impedance could be in�nite, that is, for a rigid surface in the interval φ0 ≤ φ ≤
φ1, or could be �nite, assume the value Z in the interval φ1 ≤ φ ≤ φ2. The impedance
Z was measured with the standing wave apparatus for a 5 cm-thick foam, and will be
used in the numerical calculation as entry data in the search for the solution of the
problem.
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Considering the optimization criterion given by Eq. (29), we have

R




φ1∫

φ0

|vt(n)|2dφ +

φ2∫

φ1

∣∣∣vt(n) −
pt

Z

∣∣∣
2

dφ


 = Min. (35)

Diferentiating Eq. (35) with respect to the unknown source strength and making the
result equal to zero, we obtain the following system of linear equations

+
poR

jZ2
o

H(1)′
m (kR)

ϕ1∫

ϕ0

cos(ϕ)e−(kR cos(ϕ)+mϕ)dϕ

+ R

(
po

jZ2
o

H(1)′
m (kR)− po

ZoZ∗
H(1)

m (kR)
) ϕ2∫

ϕ1

cos(ϕ)e−j(kR cos(ϕ)+mϕ)dϕ

+ R

(
po

ZZ∗
H(1)

m (kR)− po

jZoZ
H(1)′

m (kR)
) ϕ2∫

ϕ1

e−j(kR cos(ϕ)+mϕ)dϕ

+
R

Z2
o

H(1)′
m (kR)

+N∑

n=−N

AnH(2)′
n (kR)




ϕ1∫

ϕ0

e−j(m−n)ϕdϕ +

ϕ2∫

ϕ1

e−j(m−n)ϕdϕ




+ R

(
1

ZZ∗
H(1)

m (kR)− 1
jZoZ∗

H(1)′
m (kR)

) +N∑

n=−N

AnH(2)
n (kR)

ϕ2∫

ϕ1

e−j(m−n)ϕdϕ

+
R

jZoZ∗
H(1)

m (kR)
+N∑

n=−N

AnH(2)′
n (kR)

ϕ2∫

ϕ1

e−j(m−n)ϕdϕ = 0. (36)

The Eqs. (36) give us the the complex sources strength, that is, the solution of the
posed problem.

Figure 2 shows the problem described above:

Fig. 2. One-point multipole method for the rigid and absorbing circular cylinder.
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7.2. Single Layer Method

In this case the approach is to take several monopole sources and to position them on
an auxiliary surface. The auxiliary surface is positioned inside the body. Note that the
auxiliary surface should not coincide with the surface of the original body. If the auxiliary
surface coincides with the surface of the body, we have another problem that cannot be
solved by the source simulation technique, but by the boundary element method (BEM).
The auxiliary surface has the same form as the surface of the body being studied, that
is, the circular cylinder.

For the total pressure we have

pt = p0e
−jkR cos(φ) +

Nq∑
q=1

AqH
(2)
0,q (kr), (37)

where r is the distance between a point with polar coordinates (R,φ) on the cylinder
surface and a source point q with the polar coordinates (r(q), φ(q)). R is the radius from
the circular cylinder.

The cossinos law (see Fig. 3) gives us r =
√

R2 + r2
(q) − 2Rr(q) cos(φ(q) − φ) and the

normal component of the velocity on the surface at a point (R, φ) is

vt(n) =
p0

Z0
cos(φ)e−jkR cos(φ) − 1

Z0

Nq∑
q=1

AqH
′(2)
0,q (kr)r′(R) (38)

where r′(R) = ∂(r)/∂R and H
′(2)
0 (kr) is the derivative of the Hankel function of the

second kind of zero order. Inserting Eqs. (37) and (38) into Eq. (35), the partial derivatives
with respect to the unknown source strength are equated to zero, and then we obtain a
system of linear equations symilar as Eqs. (36). This system of equations give us the the
complex sources strength, that is, the solution of the problem.

Figure 3 shows us schematically the posed problem.

Fig. 3. Single Layer Method for the rigid and absorbing circular cylinder.
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8. Experimental methodology

The assays were performed in an anechoic chamber with a rigid cylinder 3 m long
and with a radius of 15 cm (see Fig. 4). Posteriorly the cylinder surface was covered with
a porous absorbing material 5 cm thick. The impedances of the aborbing material were
measured for di�erent frequencies (200 � 8000 Hz) by a standing wave apparatus. The
absorbing cylinder was covered in a half of its perimeter with a metal plate, thus result-
ing in a half-rigid/half-absorbing cylinder. This characterization depends on which face
of the cylinder is primarily in contact with the incident wave. The sound was generated
by a noise generator in 1/3 Octave and after being ampli�ed it was irradiated through

Fig. 4. The rigid cylinder and the turning table.
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a loudspeaker. Sound was measured by a microphone mounted on a turning table which
can face either the shadow zone or the light zone. The sound pressure levels were mea-
sured at each 10◦ of approach of the turning table, �rst without the cylinder in the �eld
and next with the cylinder in the �eld. The di�erence between these measurements gives
us sound attenuation due to the presence of the cylinder, which is dependent on the fre-
quency, the surface impedance, and the distance from the microphone (measuring point)
to the center of the cylinder.

9. Results and discussion

In order to verify the e�ciency of the Method of Source Simulation Technique, the re-
sults it had generated for the classical case of a rigid in�nite circular cylinder are compared
to the analytical solution. Figures 5 and 6 show the directivity pattern of the scattered
wave from a rigid circular cylinder of radius R calculated with the source simulation
technique (left side) and the analytical solution (right side) obtained by Morse [17]

Fig. 5. Comparison between the calculation of sound scattering with the source simulation technique
and the analytical solution for λ = 2πR.

Fig. 6. Comparison between the calculation of sound scattering with the source simulation technique
and the analytical solution for λ = (2/5)πR.

As observed, the results obtained with the source simulation technique are in very
good agreement with the analytical solution. Another possibility for the veri�cation of the
e�cacy of the Method of Source Simulation Technique for the calculation of acoustical
�elds is to compare the numerical results with the experimental data. In this sense,
sound attenuation (shadow zone) produced by the presence of the cylinder in the �eld
was both measured and calculated. It is impossible to present all the results obtained
due to the great number of factors involved, such as frequency, distance from the point of
measurement to the center of the cylinder, position angle, and surface impedance. Only
some results obtained for the 1) rigid cylinder, 2) absorbing cylinder, 3) absorbing and
rigid, and 4) mixed case will be presented here. The coming results were calculated using
the single-layer method, which were not essentially di�erent from the ones obtained using
the one-point multipole method.
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Figures 7 to 11 show that although there is a very good agreement between the
numerical results obtained with the Method of Comparative Sources and the experimental
data, some discrepancies can be noted. Possible causes are discussed in the following text.
One possible reason for the di�erences in the values obtained for the sound attenuation
in Figs. 7 to 11 is that the calculation was undertaken for a bi-dimensional problem,
while the measurements were performed in a three-dimensional model.

The numerical calculation is always valid for a single frequency. However, in the
measurements the sound generated by a band of 1/3 octave was used. This fact can
lead to the appearance of problems in the numerical calculation, as the acoustical �eld
generated by the scatterer changes too rapidly with the frequency and the angle of the
measuring point. This happens especially in high frequencies, as can be observed in
Fig. 12.

Fig. 7. Sound attenuation and scattering from a rigid cylinder: kR = 13.7; distance from a point in the
�eld to the center of the cylinder: 47 cm, number of monopoles: N = 55.

Fig. 8. Sound attenuation and scattering from an absorbing cylinder: kR = 14.65; distance from a point
in the �eld to the center of the cylinder: 130 cm, number of monopoles: N = 59, surface impedance:

Z = 250.3 � j 200.



142 P.H.T. ZANNIN

Fig. 9. Sound attenuation and scattering from an absorbing cylinder: kR = 18.3; distance from a point
in the �eld to the center of the cylinder: 132 cm, number of monopoles: N = 73, surface impedance:

Z = 267.3 + j 92.8.

Fig. 10. Sound attenuation and scattering from a half-absorbing and half-rigid cylinder: kR = 14.65;
distance from a point in the �eld to the center of the cylinder: 47 cm, number of monopoles: N = 59,

surface impedance: Z = 250.3 � j 200.

This numerical di�culty can be avoided if we take the mean of the results for several
frequencies inside each band of frequencies. In other words, the central frequency of the
band of interest is considered and the frequencies below and above the central frequency
are harmonically calculated, as is shown next:

......
fc

21/4
,

fc

21/8
,

fc

21/16
, fc, fc21/16, fc21/8, fc21/4......,

where fc is the central frequency of the band. Several numerical tests were performed
and we could reach the conclusion that a good approximation of the theoretical and
experimental results was obtained when the mean was calculated out of 5 frequencies
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Fig. 11. Sound attenuation and scattering for a mixed case: kR = 9.16; distance from a point in the
�eld to the center of the cylinder: 47 cm, number of monopoles: N = 37, surface impedance: Z = 564

+ j 542.3.

Fig. 12. The mean of �ve frequencies.

(see Fig. 12). However, one should not discard the possibility that, in some cases, the mean
should be calculated from a larger number of frequencies, especially in high frequencies.

As in the shadow zone (φ = 0) sound attenuation reached values above 20 dB, it was
questioned whether possible re�ections from the walls of the chamber could be interfer-
ing with the experimental data. The cylinder was placed in other positions, at longer
distances from the walls, but the new measurements have not shown any signi�cant
di�erence from the results obtained previously.

Equation (35) has its fundament in the hypothesis that the surface impedance is
locally reacting. This hypothesis was also considered for the 5 cm thick foam with which
the cylinder was covered, thus generating an absorbing cylinder. In order to con�rm that
hypothesis, �ssures were made in the surface of the foam, but the sound pressure levels
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measured afterwards showed no signi�cant modi�cation when compared to the values
obtained previously. One may thus conclude that the material used behaves as locally
reacting.

An ideal agreement between calculation and measurement is obtained if the indexes
M in Eq. (32) or the index Nq in Eq. (37) grow in�nitely. That is, however, in practical
terms impossible because of the immense computer time it would consume. Numerical
simulations have shown that a good agreement between calculation and measurement is
found for Mmax = 4πE/λ, and for Nq(max) = 6πR/λ, where R is the cylinder's radius
and λ is the wavelength. Exceptions to this rule are some regions in the shadow zone
between −10◦ ≤ φ ≤ +10◦.

Another important reason for the diferences between the numerical results and the
experimental data resides in the fundamental principle of the method, that is, of not
reconstructing exactly at each surface element the given boundary conditions, but to
minimize the error through an integration, like that in Eq. (26), over the whole perimeter
of the body. Equation (26) corresponds to the optimization of the error in the surface
velocity approximation in the least mean square procedure. Equation (26), and thus
the Method of Comparative Sources, allow the control of the error as they satisfy the
boundary conditions for every computation. This is a very important characteristic of
this method, mainly when an analytical solution to the problem is not available. Heckl
[5, 18] and Ochmann [6] indicate this property of the Method of Source Simulation as
the great advantage of this method with respect to the other method often employed in
the calculation of the radiation and scattering problems, the Boundary Element Method
- BEM. The BEM doesn't display this property. For practical cases, however, it would be
important to assure a controlled accuracy not only of the surface velocity as in Eq. (26),
but also in the determination of the sound power. The use of an in�nite number of sources
would certainly allow the precise reconstruction not only of the surface velocity, but also of
the sound power. Nevertheless, in the use of a �nite number of sources (a maximum value
for M and Nq), it is possible that this number would be su�cient for the reconstruction
of the surface velocity, but not for the determination of the sound power. This should be
the case, especially, if there is a too rapid variation with respect to the position and the
distribution of the surface velocity. Keeping in mind this limitation, one has in hand a
very e�cient method for the reconstruction of the acoustic �eld, as has been shown in
the works of Cremer [11] and Ochmann [10] for the radiation problem, and here for
the scattering problem.

10. Conclusions

This work has presented the study of the scattering in a rigid and in�nite cylinder
with variable surface impedance, both numerically and experimentally. The theoretical
method used was the Method of Source Simulation Technique. This method has been
frequently used in the last decade for the solution of purely theoretical and/or numeri-
cal radiation and scattering problems. Very few works are found in the literature which
allow a comparison between the numerical results obtained with the source simulation
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technique and experimental data. The contribution of the present work is then to present
a comparison between numerical results and experimental data for the theoretical basis
and the practical use of the source simulation technique. An important pratical property
of the source simulation technique is the controlled accuracy: the error is directly deter-
mined as a discrepancy in the boundary conditions on the surface of the body in each
speci�c case. This property is very important especially if analytical solutions are not
available.

The principle of the method is very simple. However, research should be done to
investigate the in�uence of the type of source, type of surface over which the sources
are positioned (single-layer method), the existence or not of resonance frequencies as
is the case with BEM, and the applicability of the method for more complex surfaces.
The great disavantage in the use of the Method of Source Simulation Technique is in
the fact that rules for the positioning of the source surface are not known a priori. The
positioning of the source surface and in consequence of the sources themselves is based
on the experience of the programmer.
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