
Archives of Acoustics Vol. 48, No. 3, pp. 403–412 (2023), doi: 10.24425/aoa.2023.145247

Research Paper

VMD and CNN-Based Classification Model for Infrasound Signal

Quanbo LU, Mei LI∗

School of Information Engineering, China University of Geosciences
Beijing, China

∗Corresponding Author e-mail: maggieli@cugb.edu.cn

(received November 4e, 2022; accepted April 1, 2023)

Infrasound signal classification is vital in geological hazard monitoring systems. The traditional classifica-
tion approach extracts the features and classifies the infrasound events. However, due to the manual feature
extraction, its classification performance is not satisfactory. To deal with this problem, this paper presents
a classification model based on variational mode decomposition (VMD) and convolutional neural network
(CNN). Firstly, the infrasound signal is processed by VMD to eliminate the noise. Then fast Fourier transform
(FFT) is applied to convert the reconstructed signal into a frequency domain image. Finally, a CNN model is
established to automatically extract the features and classify the infrasound signals. The experimental results
show that the classification accuracy of the proposed classification model is higher than the other model by
nearly 5%. Therefore, the proposed approach has excellent robustness under noisy environments and huge
potential in geophysical monitoring.
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1. Introduction

Infrasound (≤20 Hz) is generated by natural dis-
asters and human activities, including earthquakes,
tsunamis, mudslides, tornados, volcano eruptions, nu-
clear explosions, missile launching, and ship naviga-
tion. Infrasound propagates through the atmosphere
thousands of kilometers. The attenuation in the prop-
agation process is small and its loss is less than a few
thousandths (Gi, Brown, 2017; De Angelis et al.,
2019). Consequently, infrasound can serve as monitor-
ing properties for geological hazards.

Infrasound has been widely applied in recent years
in geological hazard monitoring. Many scholars began
to pay attention to this topic. Leng et al. (2017) pre-
sented a debris-flow monitoring approach, which re-
lied on the characteristics of infrasound signal. Zhang
et al. (2020) designed an infrasound-based device for
monitoring landslides. Perttu et al. (2020) demon-
strated the use of remote infrasound in estimating
the height of volcanic plumes. Witsil and Johnson
(2020) extracted the infrasound features from the time
and frequency domains. Then the infrasound features
were clustered using the k-means algorithm. Ham et al.

(2008) used radial basis function (RDF) network as the
subnetworks of a parallel neural network classifier bank
to classify different infrasound events. With the wide
application of data mining classification algorithm in
the signal, feature extraction can be performed on the
signal to achieve a better classification effect. Zhu et al.
(2017) employed Hilbert-Huang transform (HHT) to
extract the infrasound related to earthquakes. Liu
et al. (2014) respectively used three kinds of feature
extraction techniques (spectral entropy, discrete wave-
let transformation (DWT) and HHT) to extract the
feature vector of four kinds of infrasound signals.
The signal feature extracted by back propagation neu-
ral network and support vector machines (SVM) for
classification, all of which have higher classification
accuracy, were studied (Thüring et al., 2015; Iezzi
et al., 2019).

Liu et al. (2021) constructed the feature vector set
and applied the K-nearest neighbor (KNN) to iden-
tify the landslide infrasound signal. Li et al. (2016)
performed spectral entropy on the infrasound signals
to extract the features and classify the infrasound
events. Witsil et al. (2022) introduced a physics-based
method that propagates infrasound sources through re-
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alistic atmospheres. Hupe et al. (2022) provided infra-
sound data products that can serve as observational
data for the atmospheric studies and scientific and ci-
vilian applications. Watson et al. (2022) reviewed the
progress and future direction of volcano infrasound
research. Garcia et al. (2022) presented the first
detection of seismic infrasound from a large-magnitude
earthquake on a balloon network of barometers. Eckel
et al. (2023) used pattern recognition techniques on
infrasound signals to monitor volcanic activity. Yang
et al. (2022) reviewed the research progress on infra-
sound generation mechanism, monitoring technology,
and application. Cofferb and Parker (2022) stud-
ied the infrasound signals in simulated nontornadic
and pre-tornadic phase of the tornadic supercells. As-
ming et al. (2022) overviewed methods and algorithms
for detecting, locating, and discriminating seismic and
infrasound events. Zhang et al. (2022) provided an in-
frasound source localization algorithm for improving
the location accuracy of the gas pipeline leakage detec-
tion system. Garcia et al. (2021) used coupled pres-
sure/ground deformation methods to search for the
infrasound signal. However, it can be difficult to au-
tomatically extract the features and classify the infra-
sound signals with all the above presented approaches.

To address it, a novel method based on variational
mode decomposition (VMD) and convolutional neural
network (CNN) is proposed for infrasound signal clas-
sification. Firstly, the infrasound signal is processed by
VMD to eliminate the noise, and fast Fourier transform
(FFT) is employed to convert the reconstructed signal
into a frequency domain image. Then the obtained fre-
quency domain image is used as the input of the CNN.
Finally, a CNN model is established to automatically
extract the features and classify the infrasound signals.

The rest of this paper is organized as follows. In
Sec. 2, the basic theory of VMD and CNN used in this
paper is shortly described. Section 3 compares the per-
formance of the described methods in an experiment.
Further, the experiment results are shown through the
analysis of different methods in Sec. 4. Finally, conclu-
sions are drawn in Sec. 5.

2. Methods

2.1. VMD

VMD decomposes an input signal f into a group
of discrete modes uk, and each mode is compressed
to obtain a central frequency wk (Dragomiretskiy,
Zosso, 2014). The constrained variational model is
shown in Eq. (1):

min
{uk},{wk}
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k

∥∂t [(δ(t)+
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)uk(t)] e

−jwkt∥

2
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}
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where {uk} = {u1,⋯, uk} are the k mode components
obtained by decomposition and {wk} = {w1,⋯,wk} are
the center frequencies of each mode; δ(t) is the Dirac
delta function.

The augmented Lagrange function is introduced by
Eq. (2), and the solution of Eq. (1) is obtained by the
alternating direction method of multipliers:
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where secondary penalty item α ensures the signal re-
construction accuracy under the Gaussian noise, the
Lagrange multiplier λ is the constraint value, and ⟨ ⟩

is the inner product calculation.
The VMD algorithm process is as follows:

Step 1. Set the number of decomposition modes. Ini-
tialize frequency domain {û1

k}, center fre-
quency {w1

k}, and the Lagrange multipliers λ̂1.
Modal uk and center frequency wk are calcu-
lated by Eq. (3) and Eq. (4). Initialize, λ̂1,
n← 0.

Step 2. Set n ← n + 1, k ← k + 1 and execute the
whole cycle. Update ûk and wk for all w ≥ to
reach the preset decomposition number. When
k = K, the cycle ends. The updated formula
of the narrow-band component and the corre-
sponding center frequency is:
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Step 3. Update λ according to the formula:

λ̂n+1
(w)← λ̂n(w) + τ (f̂(w) −∑

k

ûn+1
k (w)) . (5)

Step 4. Return to step 2 and repeat the above pro-
cess until the whole iterative process meets the
constraints, and a series of narrow-band eigen-
mode component signals are obtained. Equa-
tion (6) is the constraint condition, where ε is
set to 10–6:

∑
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k − ûnk ∥

2

2
/ ∥ûnk ∥

2
2 < ε. (6)
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Fig. 1. Structure of CNN.

2.2. CNN

CNN is an important part of deep neural networks
(Lawrence et al., 1997). It is composed of a multi-
level structure that can be trained. Due to its strong
feature extraction ability, CNN has been widely used
in the field of signal processing. Each level of CNN
generally consists of a convolution layer, pooling layer,
fully connected layer, and softmax layer. The feature
extraction is obtained by multiple alternating opera-
tions. Finally, through the fully connected layer and
classifier, the infrasound signal classification is real-
ized. The structure of CNN is shown in Fig. 1.

2.2.1. Convolution layer

The convolution layer uses convolution kernels to
perform convolution on input data and obtains the fea-
ture maps. Each convolution kernel outputs a feature
map, which is conformed to a class of the extracted fea-
tures. The mathematical expression of the convolution
is as follows:

xlj = f
⎛

⎝
∑
i∈Mj

xl−1
i ∗ klij + b

l
j

⎞

⎠
, (7)

where l is the l-th convolution layer, xli is the l-th out-
put, xl−1

i is the l-th input, klij is the weight matrix, blj
is the bias term, Mj is the j-th convolutional region of
the l−1-th feature map, and f (⋅) is the activation fun-
ction. In the CNN model, the activation function usu-
ally uses the ReLU function. The activation function
is represented as:

f(x) = max(0, x). (8)

2.2.2. Pooling layer

When the convolution layer finishes the convolu-
tion, the pooling layer performs downsampling on the
input eigenvectors through the pooling kernels. It can
reduce the dimension of the data and further highlight
the extracted features. Generally, the pooling opera-
tions are divided into two types: max pooling and av-
erage pooling. The pooling is expressed as:

xi+1 = f (β∗ down (xi) + b) , (9)

where xi is the input, down (⋅) is the pooling function,
β is the multiplicative bias, b is the additive bias, and
f (⋅) is the activation function.

2.2.3. Fully connected layer and softmax layer

The fully connected layer and softmax layer are ap-
plied in the classification stage of CNN. It can connect
the feature maps obtained after a series of convolu-
tion and pooling operations into the one-dimensional
feature vector. The classification results are gained by
the softmax layer. The mathematic model of the fully
connected layer and softmax layer can be described as:

yk = softmax (wk ∗ xk−1
+ bk) , (10)

where xk−1 is the input of the fully connected layer,
yk is the output of the fully connected layer, wk is the
weight coefficient, bk is the additive bias, and k is
the k-th network layer.

2.3. The proposed approach

Infrasound signals collected from the International
Monitoring System (IMS) usually exhibit non-linear
and non-stationary characteristics. It makes feature ex-
traction difficult and the classification performance un-
satisfactory (Mayer et al., 2020). This paper proposes
an intelligent infrasound signal classification method
based on VMD and CNN. The flowchart of the pro-
posed method is shown in Fig. 2. The general proce-
dures are summarized as follows:

Step 1. Collect the infrasound signal with sensors.

Step 2. The collected infrasound signal data is con-
verted into U modes using VMD to eliminate
the noise.

Step 3. FFT is applied to convert the reconstructed
signal into a frequency domain image.

Step 4. The preprocessing data is separated into the
training and testing samples. The proposed
approach is used to extract deep features
from the training samples based on CNN. The
trained model is deployed for the infrasound
signal classification.

Step 5. The t-distributed stochastic neighbor embed-
ding (t-SNE) is employed to visualize features
in softmax layers (Van Der Maaten, Hin-
ton, 2008).

Step 6. The classification results are presented to com-
pare the performance of different methods.
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Infrasound signal Pre-processing by VMD The obtained frequency
domain image by FFT

Feature learning with CNN

Feature visualization by t-SNE
Accuracy comparison

Fig. 2. Flowchart of the proposed approach.

2.4. Data set

The data used in this study comes from IMS
with the help of the Comprehensive Nuclear-Test-Ban
Treaty Beijing National Data Center. Three categories
of infrasound events are classified in this study. The
data are collected from six different infrasound sensor
arrays with different locations around the world. This
study uses 611 sets of data. Table 1 shows the details
of infrasound data collected from different areas. The
three categories of infrasound events are earthquake,
tsunami, and volcano. The sampling frequency of all
611 infrasound signal recordings is 20 Hz. The map of
the infrasound stations is showed in Fig. 3.

Fig. 3. Map of the infrasound stations.

Table 1. Infrasound data summary.

Event type Data source
(IMS Station Code) Geographic coordinate Number

of signals Total Sampling frequency
[Hz]

Earthquake
I14CL
I30JP
I59US

(−33.65, −78.79)
(35.31, 140.31)
(19.59, −155.89)

74
124

6
203

20
20
20

Tsunami

I10CA
I22FR
I30JP
I52GB

(50.20, −96.03)
(−22.18, 166.85)
(35.31, 140.31)
(−7.38, 72.48)

4
53

113
66

218

20
20
20
20

Volcano I30JP (35.31, 140.31) 189 189 20

3. Experiments

3.1. Experiments setup

According to the description of CNN in Subsec. 2.2,
the main parameters of the CNN are summarized in
Table 2. The simulation verification is devoted to ap-
plying the infrasound signal data mentioned above to
evaluate the feature learning performance of the pro-
posed CNN model. Every infrasound signal contains
10 400 data points. The data sets are divided into train-
ing samples and testing samples. The size of the input

Table 2. The parameters of CNN.

No. of layer Layer type Kernel size Filters
1 Convolution 1 10× 10 4
2 Maxpooling 1 3× 3 –
3 Convolution 2 5× 5 4
4 Maxpooling 2 3× 3 –
5 Convolution 3 3× 3 8
6 Convolution 4 3× 3 8
7 Convolution 5 3× 3 8
8 Maxpooling 3 3× 3 –
9 Flattened – –

10 Fully-connected – –
11 Softmax – –
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map to the CNN model is 129× 129× 1. The iteration
number is 50.

3.2. Data preprocessing

The VMD is employed to decompose the infrasound
signal. When the mode number U is different, the cen-
ter frequency is different. The relationship between U
and the center frequency is depicted in Fig. 4.
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Fig. 4. Relationship between mode number and center fre-
quency: a) earthquake after VMD; b) tsunami after VMD;

c) volcano after VMD.

In the earthquake, tsunami, and volcano decompo-
sition results, when the value of U starts from 6, the
center frequency is close. This is an over-decomposition
phenomenon. Hence, the U value taken in the test
is 5. Based on VMD experience, the balance param-
eter constrained by data fidelity adopts the default
value of 2000, and the time step of double rise is 0.1.
Figure 5 demonstrates the results of the original signal
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Fig. 5. Original signal and reconstructed signal:
a) earthquake; b) tsunami; c) volcano.
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and reconstructed signal. Compared with the original
signal, the reconstructed signal eliminates the noise.
Then, FFT is employed to convert the reconstructed
signal into the frequency domain.

3.3. Model application results and analysis

In this study, the CNN structure contains five con-
volutional layers, three pooling layers, a flattened layer,
a fully connected layer, and a softmax layer. The pa-
rameters on each layer are presented in Table 2, which
are determined based on comparative trials and ex-

a)

b)

c)

Fig. 6. Classification accuracy of the 2-class catalog af-
ter VMD-FFT-CNN: a) earthquake and tsunami; b) earth-

quake and volcano; c) tsunami and volcano.

perience. The CNN model is written in Python 3.5
and runs on Windows 64 with the Core (TM) i5-
8250U CPU and 8G RAM.

The classification accuracy of the 2-class catalog
after VMD-FFT-CNN is presented in Fig. 6. Figure 7
shows the classification accuracy of the 3-class catalog
after VMD-FFT-CNN, respectively.

Fig. 7. Classification accuracy of the 3-class catalog after
VMD-FFT-CNN.

In order to better illustrate the feature learning
process of the proposed model, the t-SNE technique
is applied to visualize the output of the softmax layer.
It is a machine learning algorithm for high dimensional
data visualization using a non-linear dimensionality re-
duction technique. The feature visualizations of the
2-class catalog and 3-class catalog after VMD-FFT-
CNN are shown in Figs. 8 and 9, respectively. It can
be seen that the distribution of the points with the
same color is relatively closely grouped and easy to
distinguish.

To better analyze the classification performance
of the proposed method, the infrasound signals are
processed by FFT-CNN. The classification accuracy
of the 2-class catalog after FFT-CNN is presented in
Fig. 10. Figure 11 shows the classification accuracy of
the 3-class catalog after FFT-CNN. The feature visual-
izations of the 2-class catalog and 3-class catalog after
FFT-CNN are shown in Figs. 12 and 13, respectively.

In order to verify the stability of the proposed
method, the proposed model is tested ten times to
derive the final classification result. The classification
accuracies on the 2-class catalog consisting of earth-
quake and tsunami (1), earthquake and volcano (2),
and tsunami and volcano (3) are shown in Fig. 14.
The classification accuracies of the two architectures
on the 3-class catalog consisting of signals from earth-
quake, tsunami, and volcano (4) are also presented in
Fig. 14. As shown in Fig. 14, the classification accu-
racy of VMD-FFT-CNN is higher than the FFT-CNN
model by nearly 5%, which shows that the VMD de-
noising process is effective. This implies that VMD-
FFT-CNN has a good classification performance.



Q. Lu, M. Li – VMD and CNN-Based Classification Model for Infrasound Signal 409

a)
Fe

at
ur

e 
po

si
tio

n 
in

 y
-d

ire
ct

io
n

Feature position in x-direction

b)

Fe
at

ur
e 

po
si

tio
n 

in
 y

-d
ire

ct
io

n

Feature position in x-direction

c)

Fe
at

ur
e 

po
si

tio
n 

in
 y

-d
ire

ct
io

n

Feature position in x-direction

Fig. 8. Feature visualization of the 2-class catalog after
VMD-FFT-CNN: a) earthquake and tsunami; b) earth-

quake and volcano; c) tsunami and volcano.
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Fig. 9. Feature visualization of the 3-class catalog after
VMD-FFT-CNN.

a)
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c)

Fig. 10. Classification accuracy of the 2-class catalog after
FFT-CNN: a) earthquake and tsunami; b) earthquake and

volcano; c) tsunami and volcano.

Fig. 11. Classification accuracy of the 3-class catalog after
FFT-CNN.
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Fig. 12. Feature visualization of the 2-class catalog after
FFT-CNN: a) earthquake and tsunami; b) earthquake and

volcano; c) tsunami and volcano.
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Fig. 13. Feature visualization of the 3-class catalog after
FFT-CNN.
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Fig. 14. Accuracy of two methods.

4. Discussion

VMD-FFT-CNN outperforms the FFT-CNN ap-
proach in the denoising process. VMD-FFT-CNN has
high performance for infrasound signal identification
and can achieve 97.75% and 81% of the 2-class cata-
log and 3-class catalog classification accuracies, respec-
tively. The proposed approach shows excellent perfor-
mance in classification accuracy compared with other
methods and shows a good robustness under noisy
environments. For example, the classification accu-
racy of VMD-FFT-CNN on the 2-class catalog consist-
ing of earthquakes and volcanic increases by 23.25%
compared with CNN (ALBERT, LINVILLE, 2020).
This result demonstrates that the model presented in
this paper has good accuracy for infrasound signal clas-
sification. As shown in Fig. 3, the source locations are
widespread but their number is small. Due to the lim-
itation of the data, the proposed approach may not be
generalized for global hazard monitoring.

5. Conclusion and future work

This paper proposed a valid classification and iden-
tification method for the infrasound signal of disas-
ters. The infrasound signal was processed by VMD
to eliminate the noise. FFT was used to convert the
reconstructed signal into a frequency domain image.
A CNN model was constructed for automatically ex-
tracting the features and classifying the infrasound sig-
nals. The experiment results show that the proposed
approach improves the accuracy of geophysical moni-
toring.

Due to the limitations of the existing conditions,
tests can only use small samples and a few infrasound
types, which will affect the reliability of the test re-
sults. In order to obtain more accurate results, more
infrasound data and infrasonic event types should be
analyzed. For future work, real-time infrasound sig-
nal classification will be carried out and further study
on infrasound types will be performed. Deep learning
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should be developed for global infrasound signal clas-
sification.
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