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Effect of Rotation on the Piezoelectric Wave Impedance Characteristics
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The dependence of piezoelectric wave impedance on the rotation speed is investigated theoretically and
numerically. The Coriolis force due to rotation is introduced into the piezoelectric motion equations, which is
solved by the harmonic plane wave solution. It is shown that the wave impedance variations of longitudinal and
transverse waves due to rotation are clearly different. The longitudinal wave impedance continuously increases
with a small rotation ratio and one transverse wave impedance is almost irrespective of a rotation ratio. In
contrast, the rotation applies a big impact on the other transversal wave impedances in the piezoelectric crystal
which decreases monotonically with the rotation speed. Such characteristics are significant in piezoelectric
transducers and sensors.
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1. Introduction

Under ordinary conditions, the solid-to-gas ultraso-
nic transmission encounters the problem of large acous-
tic impedance mismatch and makes it difficult to trans-
fer the ultrasonic wave energy commutatively.

It is due to the close to zero transmission coeffi-
cient of an equation expression in the form of wave
impedance, for the linear wave field, defined by di-
viding wave pressure with the particle velocity at
some position. In an unbounded medium, the wave
impedance is independent of the position and is nu-
merically equal to the product of density and wave
velocity, i.e., Z = ρv [Pa ⋅ sec ⋅m−1] known as “the spe-
cific or characteristic wave impedance”.

Consequently in the gas sensor field, it is difficult
to use directly the piezoelectric crystal device to detect
gas features, etc., (Lynnworth, 1965). One may turn
to the medium of slower density, like P(VDF/TrFE)
(Takahashi, Ohigashi, 2009), or other technologies,
i.e., adding the chemical reaction film (Wang et al.,
2021), the transition layer (Surappa et al., 2018), or
a resonance cavity (Dong et al., 2003) for the specific
kind of gas.

In essence, the fundamental solution is to slow the
piezoelectric wave impedance in order to interact be-
tween solid and gas, which is a problem of equal sci-
entific and practical significance as well as helpful for
the above technology.

Unfortunately no one attempts to slow the wave ve-
locity to obtain smaller wave impedance in the acous-
tic field. In the field of solid mechanics, the authors
of references (Yuan, 2016; 2019; Yuan, Jiang, 2017;
Yuan et al., 2016; 2020; Yuan, Li, 2015a; 2015b) in-
vestigated the propagation, refection and transmission
processes of bulk waves in the rotating piezoelectrics
and pyroelectrics, from which it is found that the
Coriolis force due to rotation can change the bulk wave
velocities.

Accordingly, the objective of the present study con-
sists in investigating the piezoelectric wave impedance
characteristics in the acoustic field using the Coriolis
force.

2. Problem formulation and results

The object of investigation is an infinite piezoelec-
tric medium (Fig. 1), in which the computational co-
ordinates (x1, x2, x3), ni, θ, and Ωi are indicated.
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Fig. 1. Wave propagation in the infinite piezoelectric crys-
tal: ni wave propagation vector, θ wave propagation angle,

Ωi rotation speed vector.

We introduce the Coriolis force Ki due to rotation
(Suchkov et al., 2011; Yuan, Jiang, 2017)

Ki = 2ρεirkΩr
∂uk
∂t

(1)

to the piezoelectric motion equation and obtain:

Cijkluk,li + ekijφ,ki = ρ [
∂2uj

∂t2
+ 2εjikΩi

∂uk
∂t

],

−εijφ,ji + eikluk,li = 0,

(2)

where ρ represents mass density, t is time, uj is the dis-
placement vector, φ is the electric potential, εjik, Cijkl,
ekij , εij indicate the tensors of permutation, elasticity,
piezoelectricity, and permittivity constant. Ωi is the
rotation speed vector whose unit is the same with
the wave frequency ω, so the dimensionless quantity
of the rotation ratio ηi = Ωi/ω is used in the following.

Without loss of generality, we seek a harmonic
plane wave solution in the form:

{u1, u2, u3, φ} = {U1, U2, U3, Φ} eIω(sixi−t), (3)

where si is the slowness vector, ω is the wave frequency
and I equals to

√
−1. (Ui, Φ) are amplitudes of the

displacement and the electric potential {u1, u2, u3, φ}.

Table 1. Lithium niobate (LiNbO3) material parameters (James, 1975).

Elasticity tensor Cij [GPa]
C11 C33 C44 C12 C13 C14

203 245 60 53 75 9

Piezoelectric stress tensor eij [C/m2]
e15 e22 e31 e33

3.7 2.5 0.2 1.3

Normalized permittivity tensor εij/ε0
ε11/ε0 ε33/ε0

44 29
Vacuum permittivity ε0 [F/m] 8.854 × 10−12

Density ρ [kg/m3] 4700

After substituting Eq. (3) in (2), we obtain:

⎡⎢⎢⎢⎢⎢⎣

slsi
○

Cirkl − ρδrk − 2Iεrikηi sjsi
○

ejir

slsi
○

eikl −sjsi
○

εij

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨⎪⎪⎩

Uk

Φ

⎫⎪⎪⎬⎪⎪⎭
=
⎧⎪⎪⎨⎪⎪⎩

0

0

⎫⎪⎪⎬⎪⎪⎭
, (4)

where

si = ni/v, (5)

ni denotes the wave propagation vector (Fig. 1), and
v is the wave velocity. Replacing the slowness vector
in Eq. (4) by Eq. (5) and considering the condition of
non-vanishing (Ui, Φ), we obtain an associated charac-
teristic polynomial equation about v.

As an computational example, the material param-
eters of piezoelectric medium lithium niobate are listed
in Table 1 and their Voigt notation matrices were pre-
sented in (Ledbetter et al., 2004).

The computation was carried out under the follow-
ing conditions: the rotation ratio ηi = Ωi

ω
, in which the

subscript i indicates that the rotation axis is the xi
axis; ω – wave frequency – (= 1 MHz) and the wave
propagation vector of (sin θ, 0, cos θ) lies on the x1–x3

plane without loss of generality.
According to the computation results of Eqs. (4)

and (5), it is found that when the rotation ratio
about any axis is above 0.00235, the real part of ve-
locity of the longitudinal wave vanishes, which implies
that it does not propagate and becomes the harmonic
form of vibration in the angular frequency ω.

Therefore, in Fig. 2, a dimensionless quantity of
Z(ηi = 0.002)/Z0 is defined as the ratio between wave
impedances in the case of ηi = 0.002 and the case of
ηi = 0.

Figure 2 exhibits the variations of wave impedance
ratios of L, T1, and T2 waves as function of the prop-
agation angle θ in the case of η1, η2, η3 = 0.002, respec-
tively. We see that the increases of L wave impedance
due to rotation are different with θ especially in the
case of η3; in contrast, the wave impedance of T2 wave
drops remarkably below the half of the case of without
rotation almost at any θ. The feature of T1 wave is
similar to T2 wave in the case of η2 and shows a big
change with θ in the case of η3.
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Fig. 2. Wave impedance ratio variations with wave prop-
agation angle: a) indicates the case of rotation about the
axis x1; b) the axis x2; c) the axis x3. L represents the lon-

gitudinal wave, and T1, T2 the transverse waves.

Next, setting θ = π
2
, we can investigate the wave

impedances as a function of the rotation ratio as shown
in Figs. 3, 4, and 5.

The L wave only exists for a low rotation ratio, i.e.,
η < 0.00235. The changes of L wave impedance initially
are not obvious and then become large especially in the
case of rotating about x2, x3 as shown in Fig. 3.

Figure 4 shows the variation of the wave impedance
ratio of T1 wave as a function of the rotation ratio.
We see that T1 wave is not sensitive to rotation ex-
cept for small η: the wave impedance ratio of η1

grows rapidly to be in the vicinity of 1.4, and then
remain unchanged; in the cases of η2 and η3 their wave
impedances are similar.
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Fig. 3. Wave impedance ratio of L wave rotating about x1,
x2, and x3 axis, 1 indicates axis x1, 2 – x2, 3 – x3.
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Fig. 4. Wave impedance ratio of T1 wave rotating about x1,
x2, and x3 axis, 1 indicates axis x1, 2 – x2, 3 – x3.
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Fig. 5. Wave impedance ratio of T2 wave rotating about
x1, x2, and x3 axis, 1 indicates axis x1, 2 – x2, 3 – x3.

From Fig. 5, we see that the wave impedance ratio
of T2 wave is a monotone decreasing function of the
rotation ratio of η1, η2, and η3.

Analyzing the curves of Figs. 3–5, we assert the fol-
lowing: the numerical results presented indicate that
the rotation influence on wave impedance is remark-
able; however, wave impedance variations of longitu-
dinal and transverse waves due to rotation differ dis-
tinctly. For instances, the longitudinal wave impedance
continuously increases within a small rotation ratio.
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For transverse waves, one transverse wave impedance is
almost irrespective of the rotation ratio η except for the
small interval of the rotation ratio η, out of which it ac-
quires a horizontal line irrespective of the rotation ra-
tio. On the other hand, T2 wave impedance of the other
transverse wave between the interval of η = 0 and 1
drops monotonically (Fig. 5). When the rotation ratio
η is 1, its wave impedance decreases by 95%. Thus, the
application of this wave of a transverse mode is partic-
ularly advantageous to acquire small wave impedance
in the associated technologies.

3. Conclusions

The wave impedances in the rotating piezoelec-
tric crystal are studied theoretically and numerically.
We note that, characteristically, the Coriolis force in-
duced by rotation is justified to significantly alter
wave impedances, particularly to that of the transverse
wave. As the rotation increases, the wave impedance of
T2 wave become small monotonically, this, in essence,
increases the transmission coefficient and accordin-
gly enhances the interaction between gas and the piezo-
electric crystal. Such distinct attributes are very valu-
able from the viewpoint of the practical utilization, i.e.,
in the acoustic electronic devices like the piezoelectric
transducer and acoustic sensors, which have never been
reported and put into application before.
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