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Models simulating the propagation of acoustic waves in the successive stages of the
gelation process are presented. The early stage of gelation has been considered with scat-
tering theory for very low concentrations of suspensions. The system may be simulated
by the line of the independent Maxwell elements. When concentration of the suspension
increases, the interaction of the particles can be presented by an acoustic model, which
consist of a chain of coupled Maxwell elements. After the gelation point, the system be-
comes rigid, and three dimensional tensoral fields distribution of stress and strain was
used.

1. Introduction

This paper is aimed at the presentation of the possible applications of the ultrasonic
methods to the monitoring of the gelation process. New trends in material science of the
last years concern, among other things, the manufacturing of materials and composites
arranged in a nanometric scale. The application of nanotechnology has opened perspec-
tives of manufacturing materials of unique mechanical, electrical, optical and catalytic
properties. The application of the sol-gel method enabled the creation of materials of
parameters that can not be obtained by traditional methods, e.g. the titanic-silica glass.
Ceramic materials produced by this method are similar to the natural ones, e.g. to bones
and shells.

The gelation process has not been fully known so far, therefore its monitoring is essen-
tial for both the practical and scientific reasons. The application of acoustic methods to
this purpose requires an improvement of both the measuring methods and the theoretical
analyses.
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The peculiarity of the problem lies in the fact that during the separate stages of
the gelation process, the two-phase medium changes its structure continually. Beginning
from the nuclei present in the liquid, growing agglomerates of fractal structure are formed.
After reaching the gelation point, the system becomes a rigid spatial structure immersed
in a liquid. The knowledge of the propagation of acoustic waves in such a system is still
incomplete and requires further research.

This paper is confined to the general presentation of models simulating the propaga-
tion of acoustic waves in the separate stages of gelation.

2. Stages of the gelation process

Gelation may be defined as a secondary phase transition of the sol to a gel. In the sol
phase, there exist molecules or particles consisting of several monomers in the solution.
Approaching the gelation point, aggregation of the particles occurs and the measured
physical values achieve critical sizes.

After this phase of the transformation, an unique state of matter arises characterised
by a spatial expanded lattice filled up with gel. Macroscopically, the medium shows
elastic properties similar to solid bodies. The liquid phase contained in gel enables, after
exceeding a critical point, comparatively a relatively fast transport of ions. It means that
the diffusion coefficients are only slightly lower than in a liquid.

After the transition, the transport of the liquid phase contained in the gel is relatively
fast. This means that the diffusion coefficients of the ions in the gel are only a little smaller
than in a liquid. The evaporation velocity of the liquid from the system is so fast as if
there were only a liquid in the vessel. The energy of this transition is rather small, for
example, for silica gel it equals 10–20 kcal/mole depending on the conditions under which
the process occurs.

Together with the progress in the aging process, after crossing the gelation point the
rigidity increases, because residual oligomers of the gel present in the solvent, are bonded
in the main lattice, forming additional cross-links. This phenomenon is responsible for
the appearance of the elasticity of the system. The elastic properties of the gel on the
molecular level depend on the structure of the network, especially on the cross-links.

The sol-gel transitions discussed occur in several consecutive stages listed below:
• molecular aggregation and forming of clusters; the cluster is defined as a collection

of mutually connected bonds and nodes,
• further aggregation and growing of clusters; the life time of this stage depends on

the distribution and expansion of the clusters,
• proper transformation of the sol to gel, i.e. the formation of a large cluster that

consists of a continuous network filling the whole volume of the vessel; a space structure
of the system is formed,

• the formed extensive cluster becomes dense as the result of the formation of new
cross-linking bonds; this stage is named ageing during which the elastic properties of the
medium increase significantly.
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3. The fractal concept of gelation

The classical Flory’s theory of gelation has been applied until now to answer the fol-
lowing question: what is the fraction of all bonds (pc) that must formed before continuous
network structure appears. The general equation is

pc =
1

z − 1
, (1)

where pc — gel point, z — number of bonds in the monomer. This model predicts that
pc = 1/3 when z = 4 (for silica). This means that the point of gelation occurs when
one third of all the possible bonds are formed. The disadvantage of this theory is that it
neglects the formation of rings within the growing clusters and that it does not consider
the kinetics of gelation. Thus, the classical model does not provide a realistic image of the
cluster growth. These properties are considered in the fractal growth model of gelation.

A fractal is a paradigm for describing the morphology and evolution of the shape
and the growth processes. A fractal dimension of 1.0 which defines the cluster growth
(D) represents a linear growth. If the fractal dimension is equal to 3, the cluster density
is uniform (nonfractal growth). A fractal growth imply a decrease in the density with
increasing radius of the cluster (D < 3).

The mass (M) in the gelation process with fractal radius (r) is growing according to
the relation

M = krD, (2)

where k is a constant.
The rate of the cluster growth and the cluster–cluster aggregation growth for silica

gels, according to Connel and Aubert, increases exponentially

r = r0 exp(qrt),
(3)

M = M0 exp(qrt),

where t is time and qr is a constant, M is the fractal mass or the average molecular weight,
M0 is the mass (molecular weight) of the monomer, r0 is the radius of the monomer (core
radius).

Below the gel point, the molecular weight and cluster size can be calculated from the
viscosity as a function of time.

The decrease in density (ρ), as the fractal increases in size, can be calculated from
the relation

F =
ρ

ρ0
=

(r0

r

)3−D

. (4)

In the evolution of solids from solutions, a different type of structures, depending
on the degree of cross-linking, can be formed. Recently, various experimental techniques
of microscopy, small-angle X-ray scattering, small-angle neutron scattering and rheology
have been applied to elucidate fractal structures in the aggregation and gelation of sys-
tems. According to the fractal theories, the network structure of gels is a collection of
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Fig. 1. Fractal relative density versus relative radius as a function of variations in the fractal
dimension. From E.J.A. Pope [2].

fractal aggregates closely packed throughout the system. The rheologic measurements
are easy, especially in the high concentration range of the clusters.

During the thermal treatment at small oscillatory deformation with shear strains of
frequency (ω), the shear modulus (G∗), which is a complex number with a real part G′

(stiffness modulus) and an imaginary part G′′ corresponding to shear losses, is measured
for gels. The G′ values are larger that the G′′ this generally only one of the characteristic
properties of gel is described.

4. Models simulating the propagation of acoustic waves in the successive stages
of the gelation process

From the acoustical point of view, the whole gelation process can be divided in several
stages. For each of them, somewhat different models of the acoustic wave propagation
give the best simulation. These stages correspond to the stages of the cluster nucleation
and the particles aggregation presented in Sec. 2 of this work.

There are no sharp limits between the ranges of evolution where the acoustic model
fits best, except the rapid change of the system at the gelation point. The models simulate
the behaviour of the propagation velocities and the attenuation of acoustic waves. The
generation of acoustic emission was beyond the scope of the present investigations.

The main problem is the dependence of the parameters of the acoustic wave prop-
agation on the elastic or visco-elastic moduli of the two-phase network in the sol-gel
system.

The following consecutive models are taken into account.



THE POSSIBILITY OF APPLYING OF ACOUSTIC METHODS 87

4.1. A fluid with very low concentration of suspensions

This case corresponds to an initial state of the sol with few suspended particles (nuclei)
per volume unit of very small size (compared with the acoustic wave length). The system
can be considered to be homogeneous; if is a liquid phase with a volume elasticity (bulk
elasticity modulus) K and the viscosity η related to the imaginary part G′′ of the shear
modulus G∗. The imaginary part of the modulus, K∗, which corresponds to the volume
viscosity, K ′′, and the real part of the shear modulus related to the shape stiffness can
be omitted. The system has the same parameters as a pure liquid not affected by the
suspension. The usual classical model of a homogeneous fluid is valid.

4.2. A fluid with the increasing concentration of suspensions

The system becomes a two phase system, its viscosity depends on the number and size
of particles according to the Einstein formula. The formula is applicable for a uniform
concentration and size of particles when the volume concentration is less then 0.1. When
the formation of the surface fractal structure of the clusters takes place, this process can
be expressed in the acoustic model by assuming a change in the size and density of the
particles, as already shown.

The main feature of the system at this stage is that the vibrations of the particles are
independent from each other, and there is no mutual interaction between the particles.

The system may be simulated by the line of the independent Maxwell elements
(Fig. 2).

Fig. 2. The line of the independent Maxwell elements, as a model of a fluid with concentration
of suspensions less than 0.1.

Each element has its own relaxation time with a random spectral distribution, however
the previous, still valid, assumption of a uniform size of the particles suggest that the
distribution has a distinct maximum. The shear modulus is treated here as a complex
number, G∗ = G′ + jG′′, and the system viscosity is η = G′′/ω, but its real part G′ is
still not significant.

The bulk viscosity K ′′ and the scattering of the longitudinal wave on the suspended
particles can be neglected. The system should be analyzed as a inhomogeneous visco-
elastic liquid.

4.3. The beginning of the interaction between particles

When the concentration of the suspension increases, the appearance of the mutual
links is caused by changes of the particles structure. They are no longer uniform balls
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but mass fractals of very complicated shape connected by chemical bonds. An exact
theoretical evaluation of the scattering and attenuation of an acoustic wave is impossible
in this case, however acoustic measurements provide valuable information about changes
in the behaviour of the whole system. The interaction of the particles can be presented
by an acoustic model which consist of a chain of coupled Maxwell elements, i.e. the so-
called “ladder” model (Fig. 3) equivalent to a delay-line model used in electronics. Due to
the interacting particles, the discrete spectrum of relaxation times (DRS) is an ordered
one, in contrast to the random spectrum as in the previous stage. The links between the
particles (clusters) has still a large compliance, nevertheless the shear modulus should
be count as a complex number, G∗ = G′ + jG′′, and the measurements of velocity and
attenuation of the shear wave are relevant for the evaluation of the viscosity. The system
is a two-phase system but the solid state phase is not yet stiff enough to be treated as
a solid framework, rather the presentation as a visco-elastic-liquid with the “bounded”
mass fractals is more correct. The scattering of the longitudinal wave on the clusters
is now perceptible. The general theory of the acoustic wave scattering is applicable.
The particle is considered to be an inclusion of defined cross-section. The calculation of
the size and number of the cross-sections as complex units enable the evaluation of the
attenuation and dispersion of the acoustic wave.

Fig. 3. The chain of coupled Maxwell elements, i.e. the “ladder” model of a fluid with interacting
clusters of a mass fractal structure.

4.4. Increase of the bonds stiffness between the clusters

The two-phase system is now similar to a solid elastic space framework plunged in
the liquid. The large number of the relaxation times τ , has a statistical distribution Hτ ,
and the resultant viscosity can be evaluated from the formula

(5) η =

∞∫

0

Hτ (ln τ).

To take into account both the solid state and fluid parameters of the system, an acoustic
model similar to that of Mervin seems to be most convenient (Fig. 4).

The model can be applied to transverse (shear) waves and to longitudinal ones. For
this reason, it can be considered, assuming certain simplifications, as the joint Maxwell–
Voigt model (Burgers model).
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Fig. 4. The chain of Burgers elements; the completed Mervin model of the solid elastic network
planged in a fluid.

4.5. The rigid porous structure saturated by the fluid

This case corresponds to the system after crossing the gelation point. The pores of the
solid structure are partially open; thus the flow of the fluid is possible. The previous one-
dimension models are not applicable, because it is necessary to analyze three dimensional
tensoral fields of stress and strain. The approach, presented first by Biot completed by
Willis, is used as the basis of the following investigation. The idea consist in a stepwise
consideration of the quasistatic and dynamical system treated first as a purely elastic
one and than as a viscoelastic one.

The quasistatic case. When the system is treated as a homogeneous two-phase one,
its elastic properties are determined by four constants: λ and µ — the Lamé coefficients,
B — the penetration volume coefficient defined as the pressure required to force a certain
volume of the fluid into the porous structure while the total volume remain constant. Q

— the coefficient characterizing the coupling between the volume change of the solid and
that of the fluid. The second Lamé constant, µ, is equivalent to the shear modulus G,
but for the description of the continuous medium it is more convenient.

An important parameter is also the porosity. The mass porosity β is defined by the
formula

ρ1 = (1− β)ρs , ρ2 = βρf , ρ = ρ1 + ρ2 , (6)
where ρs — solids state density, ρf — fluid density, ρ1 and ρ2 the solid and fluid parts
of the resultant density of the system ρ, respectively.

The dynamic case. The system parameters are evaluated when an acceleration of the
system as a whole occurs. In general case, when the mobilities of the solid and fluid are
different, the corresponding displacements are us and uf . This is caused by the additional
force, F , caused by the flow resistance of the fluid through the solid framework

F = ρ12
∂2u

∂t2
, (7)

when u = uf − us.
The factor ρ12 corresponds to the apparent additional density (with positive of neg-

ative sign) of the parts ρ11 and ρ22 of the resultant density ρ; this means:

ρ11 = ρ1 + ρ12 and ρ22 = ρ2 + ρ12 . (8)
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The substitutional dynamic moduli of the system can be calculated by usual method of
the theory of elasticity.

Acoustic wave propagation in the lossless system. The velocity of the acoustic wave
propagation is calculated from the dynamic parameters of the system described above.
The shear waves excite the rotational acoustic fields in the coupled fluid and solid; the
apparent density of the system is smaller than in the quastistatic case. The velocity of
the transverse (shear) wave is equal to

c2
T =

µ

ρ11




1

1− ρ2
12

ρ11ρ12


. (9)

The dilatational wave can be described approximately as a longitudinal plane wave
propagating in the x-direction. It is convenient to introduce a reference velocity c0L,
calculated for the dilatational wave in the system when the so-called “dynamic compat-
ibility” is fulfiled, and the mutual solid-fluid displacements are equal to zero

c0L =
λ + 2µ + B + 2Q

ρ
. (10)

In the general case, the bulk dilatations of the solid, εs, and of the fluid, εf , are different
for the longitudinal wave

εs = Cs exp(kx + ωt) and εf = Cf exp(kx + ωt). (11)

The expression for the wave velocity should fulfil the usual equations of motion for a solid
and fluid. This condition yield to the complicated second order equation for the variable

w =
(

c0L

cL

)2

.

The two roots of this equation define the two dilatation waves having the different ve-
locities

c1L = w
−1/2
1 c0L and c2L = w

−1/2
2 c0L . (12)

The terms of the high-velocity or first kind wave for c1L and the low-velocity or second
kind wave for c2L are admitted.

Acoustic wave propagation in the visco-elastic system. The energy dissipation depend
only on the relative motion of the solid framework in relation to the saturated fluid and
can be expressed by the formula

D = b(v2
f − v2

s). (13)

The coefficient b is a measure of the degree of viscosity of the system and has the value

b =
ηβ2

q
, (14)
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where η — viscosity of the fluid, β — mass porosity of the solid framework, q — the
coefficient of permeability.

It is worth introducing several reference values and to express the acoustic wave
parameters as relative magnitudes.

a) For the shear wave the reference velocity

c2
0T =

µ

ρ
(15)

corresponds to the condition υf = υs.
b) The reference frequency of the acoustic sinusoidal wave corresponds to the coeffi-

cient b

fc =
b

2πρ
. (16)

c) The reference attenuation coefficient results from the preceding quantities

α0T =
2πfc

c0T
. (17)

For given values of the reference velocity and the reference frequency, the numerical
solution of the complicated theoretical formula are calculated by M.A. Biot. It enables
the evaluation of the frequency dependence of the shear wave velocity. The attenuation
coefficient for this wave versus frequency is equal approximately to

αT

α0T
=

1
2
(ρ22 + ρ12)

(
f

f0

)2

. (18)

However, the assumed here exponent is for some systems less than 2.
For the dilatational wave, a similar method can be applied. The reference velocity is

the same as for the lossless system, c0L, the reference frequency is equal to f0, and the
reference attenuation coefficient

α0L =
2πf0

c0L
. (19)

However, the problem is much more complicated, because the two kinds of waves
have different frequency dependences and the variable w in the second order equation of
motion has roots with the complex magnitudes for the second kind wave; the attenuation
coefficient and propagation velocity are both proportional to the factor (f/f0)1/2. For the
wave of the first kind the attenuation coefficient is, similarly as for the shear wave, pro-
portional to (f/f0)2, but the reduced velocity is proportional to the term

[
1−A(f/f0)2

]
,

while the factor A can be either positive or negative.
The present theoretical investigation serves for the evaluation of the general behaviour

of the acoustic wave propagation during the consecutive stages of the gelation process.
An exact quantitative evaluation of the velocity and attenuation of those waves (usually
ultrasonic waves) can be achieved only by experiment.
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