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Buzz, squeak and rattle (BSR) noise has become apparent in vehicles due to the significant reductions in
engine noise and road noise. The BSR often occurs in driving condition with many interference signals. Thus, the
automatic BSR detection remains a challenge for vehicle engineers. In this paper, a rattle signal denoising and
enhancing method is proposed to extract the rattle components from in-vehicle background noise. The proposed
method combines the advantages of wavelet packet decomposition and mathematical morphology filter. The
critical frequency band and the information entropy are introduced to improve the wavelet packet threshold
denoising method. A rattle component enhancing method based on multi-scale compound morphological filter is
proposed, and the kurtosis values are introduced to determine the best parameters of the filter. To examine the
feasibility of the proposed algorithm, synthetic brake caliper rattle signals with various SNR ratios are prepared
to verify the algorithm. In the validation analysis, the proposed method can well remove the disturbance
background noise in the signal and extract the rattle components with well SNR ratios. It is believed that the
algorithm discussed in this paper can be further applied to facilitate the detection of the vehicle rattle noise
in industry.
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1. Introduction

A vehicle interior noise is one of the most impor-
tant factors that affects the customers’ perception of
the vehicle quality. The vehicle interior noise may be
roughly divided into two categories: the persistent type
and the transient or come-and-go style (Trapp, Fang,
2012; Liang et al., 2020a). Persistent noise such as en-
gine or road boom noise or wind noise will occur con-
stantly during wide-ranging operation conditions. It is
annoying and discomforting to customers, and should
be eliminated primarily. With recent signi?cant reduc-
tions in the persistent type of noise, the come-and-go
kind of noise, including the buzz, squeak and rattle
noise, becomes more apparent and needs to be elimi-

nated to further improve the vehicle quality (Choi
et al., 2013; Chaudhari et al., 2018; Shin, Cheong,
2010; Liang et al., 2020b).

BSR may occur at any two contact surfaces that
can have relative motions in vehicle. It is an issue in-
volving various components and systems in vehicle.
Rattle, the impact-induced noise, accounts for most
of the BSR issues in vehicle (Duan et al., 2020; Liang
et al., 2021a). It is a type of broad-band frequency
noise with the majority content at low frequency. It is
generated by the low frequency vibration contact.

In general, BSR noises may have very low SNR ra-
tios even under normal operating condition. Further-
more, masking will also occur when the perception of
a sound is affected by the presence of another sound
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(Liang et al., 2021b). All these factors make it a chal-
lenge for the detection of the BSR noises. Thus, it
is necessary to introduce an effective signal denoising
method to extract the rattle components in the sig-
nal. Generally, wavelet packet analysis can meet the
requirements of rattle signal denoising and extraction.
The idea behind the wavelet packet denoising is laye-
red noise reduction. It can ensure that the noise is
suppressed while retaining the effective components in
the signal to achieve better SNR ratios. Hashim et al.
(2020) used Shannon entropy to select the best basis
function for the wavelet packet decomposition. And
the optimal decomposition level of wavelet packet de-
composition was determined by the ratio of the maxi-
mum energy to the Shannon entropy of each layer de-
composition coefficient. Yue et al. (2019) proposed
a Bayesian wavelet packet denoising method based on
the minimum mean square error. Besides, they con-
structed an index based on kurtosis and skewness to
determine the best wavelet packet decomposition le-
vels. The proposed method was successfully used in the
analysis of track fault signals. Zhang et al. (2021) pro-
posed a wavelet packet decomposition noise reduction
method based on Teager energy operator and kurto-
sis, which can effectively detect the impact component
in the signal. The proposed method was applied to
the bearing fault diagnosis successfully. Huang et al.
(2016) also introduced wavelet packet transform to ex-
tract the squeak and rattle feature of the suspension
shock absorber. Most of these applications and op-
timization methods are suitable for the noise reduc-
tion of low-frequency noise or Gaussian noise. Howe-
ver, the background noises of rattle signals are always
the broadband in-vehicle noises. The overlapping fre-
quency bands of the in-vehicle noises and the rattle sig-
nals are relatively wide, thus the separation is difficult.

Based on the characteristics of rattle signal and
the background noise in vehicle, a rattle signal denois-
ing and enhancing method based on wavelet packet
decomposition and mathematical morphology filter is
proposed in this paper. The proposed method includes
the denoising process and the signal enhancing process.
Here, we present a brief workflow of the proposed sig-
nal denoising and enhancing strategy. As illustrated in
Fig. 1, the noise signal is decomposed by the improved
wavelet packet decomposition firstly. The decomposi-
tion structure of the improved wavelet packet decom-
position method is under the guidance of critical fre-
quency band. After the decomposition, the improved
wavelet packet thresholding method based on informa-
tion entropy is performed on the wavelet packet coeffi-
cients. Then the reconstructed signal can be obtained.
To further improve the SNR ratio of the signal, the
multi-scale compound mathematical morphological fil-
ter is established to enhance the processed signal. The
proposed method is verified with synthesized rattle sig-
nal with various SNRs levels.

Fig. 1. The workflow of the proposed rattle signal denoising
and enhancing strategy.

2. Improved wavelet packet thresholding method

Rattle noises often occur under strong background
noise in vehicles. To remove the undesired noises, se-
veral signal processing methods have been introduced
and achieved ideal results. These methods include the
discrete wavelet transform (Bi et al., 2019; Liang
et al., 2020a), the empirical wavelet decomposition
(EWD) (Chen, Song, 2018; Pan et al., 2016), em-
pirical mode decomposition method (EMD) and so on
(Yang et al., 2015; Yaslan, Bican, 2017). Neverthe-
less, few methods are verified to be effective to preserve
the impact characteristic and remove the in-vehicle
background noises. In this study, we propose a wavelet
packet denoising method based on critical frequency
band and information entropy.

2.1. Basic theory of wavelet packet decomposition

Wavelet transform is a mathematical tool efficiently
used in non-stationary signal processing. It converts
a signal into a different form with the goal to reveal the
characteristics or ‘features’ hidden within the original
signal and represent the original signal more succinctly
(Gao, Yan, 2011a). A basic wavelet function is needed
in order to realize the wavelet transform. These wavelet
functions are small waves that have oscillating wavelike
characteristics and have their energy concentrated in
time. A set of wavelets is called a wavelet family. It is
a family of orthogonal functions which can be obtained
as Eq. (1)

ψs,τ(t) =
1
√
s
ψ (

t − τ

s
) , s > 0, τ ∈ R, (1)

where s and τ are the scale factor and the translation
factor, respectively, and R is the set of real numbers.
2
√
s
ensures that the energy of the wavelet family will

remain the same under different scales.
Given a finite-energy signal x(t), the continuous

wavelet transform of the signal x(t) can be defined as

Ws,τ(t) =
1

√
∣s∣

∞

∫
−∞

x(t)ψ (
t − τ

s
) dt. (2)
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To obtain the discrete wavelet transform (DWT),
we need to discretize the scale factor and the trans-
lation factor (Gao, Yan, 2011b; Wang et al., 2007;
Xing et al., 2016). This type of discretization is ex-
pressed as

⎧⎪⎪
⎨
⎪⎪⎩

s = sj0,

τ = kτ0,
s0 < 1, τ0 ≠ 0, j ∈ Z, k ∈ Z, (3)

where Z is the set of integers.
The corresponding family of the basic wavelet is

then expressed as

ψj,k(t) =
1

√

sj0

ψ (
t − kτ0s

j
0

sj0
) . (4)

Generally, s0 = 2 and τ0 = 1 (Addison, 2002). Con-
sequently, the wavelet function can be expressed as

ψj,k(t) =
1

√
2j
ψ (

t − k2j

2j
) . (5)

As a consequence, the discrete wavelet transform
of the given signal x(t) can be acquired as

Wj,k(t) = ⟨x(t), ψj,k(t)⟩

=
1

√
2j

∞

∫
−∞

x(t)ψ∗ (
t − k2j

2j
)dt, (6)

where the symbol ⟨⋅⟩ refers to the inner product oper-
ation.

The signal x(t) can be reconstructed through the
inverse discrete wavelet transform as

x(t) =
∞

∑
j=−∞

∞

∑
k=−∞

Wj,k(t)ψj,k(t). (7)

While discrete wavelet transform provides flexi-
ble time-frequency resolution, it suffers from a rela-
tively low resolution in the high-frequency region. This
deficiency leads to difficulty in differentiating high-
frequency transient components. The wavelet packet
transform (WPT), in comparison, further decomposes
the detailed information of the signal in the high-
frequency region, thereby overcoming this limitation.

The wavelet packet is expressed as

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

u
(j)
2n (t) =

√
2∑
k
h(k)u

(j)
n (2t − k),

u
(j)
2n+1(t) =

√
2∑
k
g(k)u

(j)
n (2t − k),

(8)

where u
(0)
0 (t) = φ(t) is the scaling function, and

u
(0)
1 (t) = ψ(t) is the wavelet function; j denotes the
j-th level of the wavelet packet decomposition, and
there will be 2j wavelet packet sub-bands at the j-th
level; h(k) is the scale filter which is a low-pass filter,
and g(k) is the wavelet filter which is a high-pass filter.

Here specifies the wavelet packet {un(t)∣n ∈ Z+}.
The orthogonal basis can be given by

{uj,m,n(t) = 2j/2um(2jt −m)∣ j, m ∈ Z+} ,
where j,m, and n are the scale, translation, and the os-
cillation parameters, respectively, and Z+ is the set of
positive integers. The decomposed coefficients of the
signal x(t) can be defined as Cj,n = {Cj,nm }

m∈Z
, and

Cj,nm = ⟨x,uj,m,n⟩. Therefore, the wavelet packet de-
composition of the signal can also be defined as

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

Cj,2nm =
∞

∑
k=−∞

h∗2m−kC
j+1,n
k ,

Cj,2n+1
m =

∞

∑
k=−∞

g∗2m−kC
j+1,n
k .

(9)

Conversely, the reconstruction formula of the
wavelet packet can be expressed as

Cj+1,n
m =

∞

∑
k=−∞

h2m−kC
j,2n
k +

∞

∑
k=−∞

g2m−kC
j,2n+1
k . (10)

The structure of the wavelet packet decomposition
tree can be manually designed by splitting or combin-
ing some nodes from a complete wavelet packet decom-
position tree according to the aim of the research or
some particular requirements.

2.2. Improved wavelet packet decomposition

The rattle signals often cover a wide frequency
range, such as the background noise in vehicles. The
audible background noise in vehicles includes the low-
frequency road noise and wind noise, high-frequency
motors noises, and electrical equipment noises. In
this study, an improved wavelet packet decomposition
method based on the critical frequency band is pro-
posed. The frequency characteristics of the sub-signals
decomposed by the improved wavelet packet decom-
position method are more in line with the subjective
perception of sound by the human ear.

In this section, the optimal subtree of an initial
wavelet packet decomposition tree with respect to the
critical bank criterion is designed. The one-third octave
is introduced to substitute the critical bands assuming
the human auditory system (Xing et al., 2016). The
first step to construct the decomposition method is
to choose the sample rate of the signal. In this study,
the sampling rate was chosen to be 48 kHz. Within
this bandwidth, there are approximately 21 critical
bands that cover the audible frequency range of 20 Hz –
20 kHz. The specific process of the improved wavelet
packet decomposition is described as follows:

Step 1: The selection of wavelet packet decomposi-
tion parameters: in this study, the “db5” wavelet basis
function was chosen to carry out 6-layer wavelet packet
decomposition on the signal. The complete wavelet
packet decomposition tree can be obtained. The fre-
quency range of each sub-band of the decomposed sig-
nal is 375 Hz.
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Step 2: The establishment of the optimal wavelet
packet decomposition structure: based on the band-
width characteristics of the critical frequency band, the
optimal wavelet packet decomposition structure was
designed. Figure 2 shows the optimal wavelet packet
decomposition tree.

Step 3: Rearrangement of the wavelet packet nodes:
in the wavelet packet decomposition, the frequency
ranges of the decomposition nodes do not completely
follow the order from small to large. The sequence

Table 1. Approximate frequency ranges of the modified wavelet.

No. Original nodes Rearranged
nodes

Critical band
rate (Bark)

Approximate
frequency ranges

[Hz]

Critical bands
of the 1/3 octaves

[Hz]

Center frequency
of the 1/3 octaves

[Hz]
1 (8,0) (8,0) 1 20–93.75 20–90 25, 32, 40, 50, 63, 80
2 (8,1) (8,1) 2 93.75–187.5 90–180 100, 125, 160
3 (8,2) (8,3) 3 187.5–281.25 180–280 200, 250
4 (8,3) (8,2) 4 281.25–375 280–355 315
5 (9,8) (8,6) 5 375–468.75 355–447 400
6 (9,9) (8,7) 6 468.75–562.5 447–562 500
7 (8,5) (8,5)

7 526.5–703.125 562–708 630
8 (8,6) (9,9)
9 (8,7) (9,8)

8 703.125–843.75 708–891 800
10 (8,8) (8,12)
11 (8,9) (8,13)

9 843.75–1125 891–1120 1000
12 (7,5) (7,7)
13 (8,12) (7,5)

10 1125–1406.25 1120–1410 1250
14 (8,13) (8,9)
15 (7,7) (8,8)

11 1406.25–1875 1410–1780 160016 (7,8) (7,12)
17 (7,9) (7,13)
18 (6,5) (6,7) 12 1875–2250 1780–2240 2000
19 (7,12) (6,5)

13 2250–2,812.5 2240–2820 2500
20 (7,13) (7,9)
21 (6,7) (7,8)

14 2812.5–3562.5 2820–3550 315022 (5,4) (6,12)
23 (5,5) (7,27)
24 (6,12) (7,26)

15 3562.5–4500 3550–4470 4000
25 (7,26) (5,7)
26 (7,27) (5,5)

16 4500–6000 4470–5620 5000
27 (5,7) (5,4)
28 (5,8) (5,12)

17 6000–7500 5620–7080 6300
29 (5,9) (5,13)
30 (4,5) (4,7) 18 7500–9000 7080–8910 8000
31 (5,12) (4,5)

19 9000–11250 8910–11200 10000
32 (5,13) (5,9)
33 (4,7) (5,8)

20 11250–13500 11200–14100 12500
34 (2,2) (4,12)
35 (4,12) (4,13)

21 13500–18000 14100–17800 16000
36 (4,13) (3,7)
37 (3,7) (2,2) / / / /

of the wavelet packet nodes follows the sequence of
the Gray code (Ying, Jin-yan, 2007). Thus, the
frequency-band of the wavelet packet nodes needs to be
adjusted in sequence. Table 1 shows the approximate
frequency range of the rearranged nodes and the corre-
spondence between wavelet packet nodes and the cri-
tical frequency band.

As can be seen in Fig. 2 and Table 1, the first 36
wavelet packet decomposition nodes are grouped into
21 sub-signals based on the frequency range of the cri-
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Fig. 2. The structure of the wavelet packet decomposition tree.

tical frequency bands and the wavelet packet decom-
position nodes. Table 1 shows the results of wavelet
packet node division and the corresponding frequency
range. Among them, (8,0), (8,1), (8,3), (8,2), (8,6),
and (8,7) correspond to the first six critical frequency
bands (z = 1, 2, 3, 4, 5, 6). The seventh critical band
is composed of node signals (8,5) and (9,9), and the
eighth critical band is composed of node signals (9,8)
and (8,12).

2.3. Improved wavelet packet thresholding

The selection of threshold function and threshold
in wavelet packet denoising directly influences the de-
noising effect. If the threshold is too large, the rattle
components will be filtered out as noise. On the con-
trary, if the threshold is too small, the noise reduction
effect will be poor, which will impair the accuracy of
the rattle signal detection.

Traditionally, there are four methods for the
threshold estimation, namely the general threshold
based on sqtwolog criterion, the heuristic stein unbia-
sed risk threshold based on heursure criterion, the stein
unbiased risk threshold based on rigrsure criterion, and
the minimaxi threshold based on maximum and mini-
mum criterion. The general sqtwolog criterion thres-
hold proposed by Donoho (1995) is currently the most
commonly used threshold. The expression of the sqtwo-
log criterion threshold is defined as

λ = σu
√

2 ln(N), (11)

where N is the length of the noise signal, and σu is the
standard deviation of the noise signal. The expression
of σu is shown as

σu =
median (∣dj(k)∣)

0.6745
, (12)

where median(⋅) refers to the median operation, j re-
fers to the decomposition scale of the wavelet packet,

and dj(k) is the decomposition coefficient of the k-th
wavelet packet in the j-th layer of the wavelet packet
decomposition.

The sqtwolog criterion-based threshold calculation
method mainly pays attention to the standard devi-
ation and the length of the signal, ignoring the cha-
racteristic of the rattle component in the signal. Thus,
this thresholding method cannot adjust the threshold
value adaptively. In this study, the information entropy
is introduced to improve the sqtwolog criterion thres-
holding method.

The concept of information entropy was proposed
by Shannon (1948). For the discrete 1-D signals, infor-
mation entropy describes the complexity of the signal
and the amount of information it contains. For exam-
ple, the noise signals usually have high entropy, since
they carry little new information and many similar se-
quences. Conversely, the BSR signals have lower en-
tropy because of the occurrences of new patterns. In
other words, the information entropy has the capacity
to indicate the BSR component in the signal. Given
a discrete signal x(n), the information entropy is de-
fined as

I = −
n

∑
i=1

Pi log (Pi), (13)

where P (xi) is the probability of possible events, and
n is the number of events.

The thresholding method based on the information
entropy is defined as

λ =
α ⋅ I

(σu
√

2 ln(N))
β
, (14)

where I is the information entropy, N is the length of
the noise signal, σu is the standard deviation of the
noise signal, α and β are adjustment factors. In this
study, α = 0.8, β = 2.

The modified threshold can adaptively adjust the
threshold based on the information entropy of the sig-
nal.
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The traditional threshold function includes the soft
threshold and hard threshold function. Figure 3 shows
the curves of soft threshold function and hard thresh-
old function.

-� �

Hard thresholding
Soft thresholding

O
ut
pu
t

Input

Fig. 3. The curves of the hard and soft thresholding
function.

The hard threshold function completely keeps the
parts where the absolute value of the wavelet packet
coefficient is greater than the threshold, and sets the
parts to zeros where the absolute value of the wavelet
packet coefficient is less than the threshold. The hard
threshold function is defined as

ŵj,k =

⎧⎪⎪
⎨
⎪⎪⎩

wj,k, ∣wj,k ∣ ≥ λ,

0, ∣wj,k ∣ < λ.
(15)

The soft-threshold function shrinks and keeps the
part where the absolute value of the wavelet packet
coefficient is greater than the threshold, and sets the
parts to zero where the absolute value of the wavelet
packet coefficient is less than the threshold. The soft
threshold function can be defined as

ŵj,k =

⎧⎪⎪
⎨
⎪⎪⎩

sign(wj,k) (∣wj,k ∣ − λ) , ∣wj,k ∣ ≥ λ,

0, ∣wj,k ∣ < λ,
(16)

where λ is the threshold, wj,k is the wavelet packet
coefficient, ŵj,k is the thresholded wavelet packet co-
efficient, and sign(⋅) is the sign function.

The hard threshold function is discontinuous at the
threshold value, which will cause the reconstructed sig-
nal to oscillate. The soft thresholding method is prone
to produce excessive smoothing to the signal which will
lead to the loss of some high-frequency information.

In order to overcome the above shortcomings of the
threshold function, an improved wavelet packet thresh-
olding method based on information entropy is pro-
posed in this study. The optimized threshold function
achieves the goal to adjust the thresholding strategy
with respect to the information entropy of the signal.

The optimized threshold function is defined as

ŵj,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wj,k − (1 − I) ⋅ sign(wj,k) ( λ
1

1−I

∣wj,k ∣
1
I
−1 ),

∣wj,k ∣ ≥ λ,

I ⋅ sign(wj,k) (
∣wj,k ∣

1
1−I +1

λ
1

1−I
),

∣wj,k ∣ < λ,

(17)

where sign(⋅) is the sign function, wj,k is the wavelet
packet coefficient, ŵj,k is the thresholded coefficient,
λ is the threshold, I is the normalized information en-
tropy within range (0,1].

Figure 4 shows the curves of the optimized thresh-
old function based on information entropy. Analyzed
from Fig. 4, the sequence will be shrunk and atten-
uated when the wavelet packet coefficient is less than
the threshold value. On the contrary, when the wavelet
packet coefficient is greater than the threshold value,
the signal is shrunk and retained. As mentioned be-
fore, the larger the value of I, the more noise compo-
nents in the signal, and the cut-off method of the im-
proved threshold function is closer to the hard thresh-
old function, which can better retain high-frequency
rattle components. Conversely, the smaller the value
of I, the more rattle information contained in the
wavelet packet coefficients, and the improved thresh-
old function is closer to the soft threshold function with
stronger contraction ability, which can better smooth
the signal. Therefore, the improved threshold function
proposed in this study can perform adaptive noise re-
duction based on the characteristics of the rattle com-
ponents in the wavelet packet coefficients.

Fig. 4. The curves of the improve threshold function.

After the thresholding, the denoised signal can
be obtained by constructing the thresholded wavelet
packet coefficients. Generally, the performance of the
denoising method can be estimated by the Signal-to-
Noise ratio (SNR) of the denoised signal. The SNR is
denoted as
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SNR = 10 lg(
N

∑
i=1

y2
i

(x̂i − yi)
2
). (18)

The Root Mean Square Error (RMSE) is also in-
troduced to estimate the performance of the proposed
method. The RMSE is denoted as

RMSE =
1

N

¿
Á
ÁÀ

N

∑
i=1

∣x̂i − xi∣
2
, (19)

where N represents the data length of the signal, yi re-
presents the original signal, x̂i represents the denoised
signal, and xi represents the noise signal.

3. Enhancing method based on mathematical
morphology filter

3.1. Basic theory of mathematical morphology filter

Mathematical morphology was developed to quan-
tify the mineral characteristics from thin cross sections
by Matheron and Serra in 1964 (Serra, 2008). Sub-
sequently, this work resulted in a novel practical ap-
proach, as well as theoretical advancement in image
processing and machine vision field (Davies, 2012).
The mathematical morphological filter (MMF) was de-
rived from mathematical morphology, and it is usually
seemed as a nonlinear filter. Mathematical morphologi-
cal filter is popular in processing binary and gray-tone
images. Recently, the mathematical morphology was
also introduced to one-dimensional signal processing
such as speech signal, EEG signals (Xu et al., 2007),
power system, seismic data (Li et al., 2016), magneto-
telluric data (Li et al., 2020), vibration signal (Li et al.,
2017) and many other fields. Mathematical morpholo-
gy can extract the shock components in time-domain
signal with rational computation complexity.

The basic idea behind the MMF is to use a pre-
defined segment slide on each trace, and draw con-
clusion on how this segment fits or rejects the signal.
This segment is called the structure element (SE). The
structure element used for the 1-D signal is also 1-D
type. The widely used structure elements include flat,
triangle, semicircle structure element. The two most
basic operations in mathematical morphology are ero-
sion and dilation. Here, we hypothesize that the one-
dimensional signal is F = [x1, x2, ..., xN ]T, and the
structure element is G = [k1, k2, ..., kM ]T. The dilation
and the erosion operations can be expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(f ⊕ g)(n) = max
m=1,2,...,M

[f(n −m) + g(m)],

n = 1,2, ..., (N −M + 1),

(f ⊙ g)(n) = min
m=1,2,...,M

[f(n +m) − g(m)],

n = 1,2, ..., (N +M − 1),

(20)

where N > M . Symbols ⊕ and ⊙ denote the dilation
and the erosion operation, respectively.

It can be noticed that the dilation (erosion) pro-
cess is equivalent to the maximum (minimum) filter-
ing of the signal within the sliding filter window (or
the structural element). Thus, the dilation operation
is also known as an expansion process, which fills the
concave part of the curve. On the contrary, the erosion
operation can remove burrs and spikes in the signal.

By combining these two operations, new operations
can be produced. The opening operation and closing
operation are shown in Eq. (21). The opening opera-
tion processes the signal by an erosion operation fol-
lowing a dilation operation. The closing operation is
accomplished by carrying out a dilation operation and
an erosion operation:

⎧⎪⎪
⎨
⎪⎪⎩

(f ○ g) = (f ⊙ g)⊕ g,

(f ⋅ g) = (f ⊕ g)⊙ g,
(21)

where the symbol ○ and ⋅ represent the opening and
closing operation, respectively. The opening operation
flattens the positive impulses and matches the negative
ones, and the closing operation can flatten the negative
impulses and matches the positive ones (Tang et al.,
2020).

3.2. Multi-scale compound mathematical
morphological filter

By performing the opening and closing operations
in sequence, the opening-closing (OC) filter and the
closing-opening (CO) filter can be obtained (Eq. (22)).
To be more specific, the OC filter is accomplished by
performing the opening operation first and then the
closing operation. The CO filter is achieved by per-
forming the closing operation and then the opening
operation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

OC(f(n)) = (f ○ g ⋅ g) (n)

= ((f ⊙ g ⊕ g)⊕ g ⊙ g) (n),

CO(f(n)) = (f ⋅ g ○ g) (n)

= ((f ⊕ g ⊙ g)⊙ g ⊕ g) (n).

(22)

Both the OC and the CO filter can basically filter
out the impact components of the signal, while the OC
filter decreases out the positive impacts and the CO fil-
ter removes the negative impacts. Generally, the CO
filter amplifies the output signal while the OC filter
results in smaller output (Li et al., 2020). Therefore,
the combined morphological filter (CMF) is proposed
with the ability to remove the positive and negative
impacts in the signal simultaneously. The combined
morphological filter is defined as

CMF(f(n)) =
1

2
[OC(f(n)) +CO(f(n))] . (23)

It was verified that the single-scale structural
element can successfully extract the effective low-
frequency signals (Li et al., 2020). Nevertheless, it is



50 Archives of Acoustics – Volume 47, Number 1, 2022

necessary to develop multiscale morphological filters
to achieve more effective signal enhancing. Thus, we
introduced the scale ε to the structure element. The
multiscale combined morphological filter (MCMF) can
be defined as

B = MCMF(f(n))

=
(f ○ εg ⋅ εg)(n) + (f ⋅ εg ○ εg)(n)

2
, (24)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f ○ εg(n) = (f ⊙ εg ⊕ εg)(n)

= ((f ⊙ g ⊙ ...⊙ g)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(ε−1)times

⊕g ⊕ ...⊕ g
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(ε−1)times

)(n),

f ⋅ εg(n) = (f ⊕ εg ⊙ εg)(n)

= ((f ⊕ g ⊕ ...⊕ g)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(ε−1)times

⊙g ⊙ ...⊙ g
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(ε−1)times

)(n).

(25)

The result of the multiscale morphological filter is
the impact-excluded signal which concentrates at low
frequency range. In this study, the effective signal is the
impact signal, thus we define the output signal of the
multiscale morphological filter as the residual signal.
The effective impact signal can be obtained by sub-
tracting the output signal B of the multiscale morpho-
logical filter from the original signal F. Consequently,
the effective impact signal X can be expressed as

X = F −B. (26)

The mathematical morphology has attracted much
attention in the signal and image processing commu-
nities, but it is still new in the rattle signal enhancing
field. The scale ε and the length L of the structural
element both affect the performance of the enhancing
method. The rattle component in the signal usually ex-
hibits impact characteristics. The kurtosis Kr is sen-
sitive to the impact component in the signal. Kr > 3
indicates that there are prominent rattle components
in the signal. In this study, the kurtosis is introduced
as the target of the optimization problem. When the
kurtosis value of the enhanced signal reaches the max-
imum value, the corresponding scale and the length of
the structural element are the optimal parameters for
the filter. Kurtosis is the fourth-order central moment
of the signal. For discrete signals x, the expression of
kurtosis is

Kr =
E(x − µ)4

σ4
=

1
n

n

∑
i=1

(xi − x)
4

( 1
n

n

∑
i=1

(xi − x)
2
)

2
, (27)

where σ is the standard deviation of the signal, µ is the
mean value, and E(x) represents the expected value.

4. Experimental validation for the proposed
method

4.1. Experiments and data collection

In order to verify the proposed rattle signal denois-
ing and enhancing methods vehicular test and compo-
nent test were carried out to collect the noise signals. In
this study, the brake caliper rattle noise was collected
in the semi-anechoic chamber, and the in-vehicle back-
ground noise was also collected in the road test. The
measured in-vehicle background noise is superimposed
on the brake caliper rattle signal according to certain
SNR ratios.

Figure 5 shows the set-up of the brake caliper rat-
tle signal recording test, and Fig. 6 shows the layout
of the in-vehicle background noise recording test. In
these data recording tests, the free-field microphone of
G.R.A.S. Sound & Vibration, the microphone calibra-
tor of B&K, the quiet BSR energizer of MB Dynamics,
and the eight-channel data acquisition system of Head
Acoustics were used to collect noise samples. As shown
in Fig. 5, the brake caliper assembly is installed on
the test bench in line with the actual installation state
in a vehicle to simulate the actual vertical vibration
of the road excitation. The calibrated free-field micro-
phone is aligned at the center of the brake caliper, and
its front end is 300 mm away from the brake caliper.
The acceleration sensors are placed near the installa-
tion point of the brake caliper to achieve the closed-
loop control of the test bench. The excitation signal
is the road excitation collected in vehicular road test,
and a silent vibration exciter is used in the experiment
to generate the signal. The in-vehicle background noise
was collected on the rough road with speed of 40 km/h.
As shown in Fig. 6, the placement of the calibrated
free-field microphone meets the requirements of GB/T
18697-2002 “Acoustics – Method for measuring vehi-
cle interior noise” (General Administration of Quality
Supervision, 2002). The sampling frequency of these
tests is 48 kHz, and the sampling length is 30 s. The
collected signals will be segmented for further analysis.

Fig. 5. Brake caliper rattle signal recording.
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Fig. 6. In-vehicle background noise recording.

4.2. Signal process

In order to simulate the real conditions in vehi-
cle, the measured background noise is superimposed
on the rattle signal according to certain SNR ra-
tios. To show the effect of the algorithm proposed in
this paper, the signal with a duration of 1 s is inter-
cepted for analysis. Besides, the noise signal is stan-
dardized with the z-score standardization criterion.
Figure 7 shows the curves of the original rattle sig-
nal and the signal superimposed with background
noise (SNR = −30 dB). Figure 8 shows the Short-Time
Fourier Transform of the original rattle signal and the
synthesized signal. As can be seen in Fig. 7b, the rattle
signal is completely masked by the background noise.

a)

b)

Fig. 7. The curves of the original rattle signal and the syn-
thesized signal: a) original rattle signal, b) synthesized sig-

nal (SNR = −30 dB).
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Fig. 8. The Short-Time Fourier Transform: a) original rattle
signal, b) synthesized signal (SNR = −30 dB).

The synthesized signal is then processed by the
improved wavelet packet threshold denoising method.
After the wavelet packet decomposition, 36 wavelet
packet coefficients are obtained. The wavelet packet
thresholding method is performed on the wavelet
packet coefficients. The comparison of the time-domain
curves between the synthesized signal and the recon-
structed signal is shown in Fig. 9. Significantly, the
background noise is greatly reduced after the denoising
process. It is evident that the improved wavelet packet
thresholding method proposed in this paper can re-
duce the background noise to the greatest extent and
retain the rattle components in the signal.

To achieve better SNR ratio, the multi-scale com-
pound mathematical morphological filter is performed
on the reconstructed signal. In this study, linear struc-
tural element is selected to filter the signal with multi-
scale compound morphology filter.

The optimal scale ε of the filter and the length L
of the structural element need to be determined first.
The kurtosis value is introduced to perform a two-
dimensional optimization of these two parameters. Set
the value range of ε to [1,10] and the value range of L
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a)

b)

Fig. 9. The curves of the signals: a) full view, b) locally
enlarged view.

to [1,20]. Figure 10 shows a three-dimensional map-
ping surface with the filter scale ε as the x coordina-
te, the structural element length L as the y coordi-
nate, and the kurtosis value Kr as the z coordinate.
The highest point of the surface is the maximum kur-
tosis value. The point of the corresponding structural
element length L = 1 and filter scale ε = 4 are the op-
timal parameters of the filter.

Fig. 10. The mapping surface between Kr and L, ε.

Figure 11 shows the comparison of the time-domain
curves between the synthesized signal and the en-
hanced signal. The SNR ratio of the enhanced signal
shows a leaping promotion, which is 10.8105 dB.

a)

b)

Fig. 11. The curves of the signals: a) full view, b) locally
enlarged view.

Figure 12 shows the comparison of the time course
of the original signal and after processing, and it can
be seen that the proposed denoising and enhancing
algorithms can reconstruct the rattle noise well. The
Short-Time Fourier Transform of the enhanced signal
is shown in Fig. 13. The interference components in the
signal are effectively smoothed out. The low-frequency
background is cleaned and the rattle components are
enhanced sharply.

Figure 14 shows the performance of the denois-
ing method between the proposed method and the
traditional hard and soft thresholding wavelet packet
denoising methods. Analyzing Fig. 14, the proposed
method shows steady noise reduction performance
compared with the other two methods. The proposed
method has better denoising effects on signals with dif-
ferent SNR ratios, and both the SNR ratios and the
RMSE values are significantly improved, which fur-
ther validates superiority of the proposed method in
this study.
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a)

b)

c)

Fig. 12. The comparison of the time course between the
original signal and the enhanced signal: a) full view, b) lo-
cally enlarged view of the first increase in amplitude,
c) locally enlarged view of the second increase in ampli-

tude.
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Fig. 13. The Short-Time Fourier Transform of the enhanced
signal.

a)

b)

Fig. 14. The performance comparison of the denoising
methods: a) SNR, b) RMSE.

5. Conclusion

In this paper, a rattle signal denoising and en-
hancing method was developed. The proposed method
includes the signal denoising process based on the
wavelet packet decomposition and the rattle com-
ponent enhancing process based on the mathemati-
cal morphology filter. In the threshold denoising pro-
cess, a wavelet packet decomposition structure that
simulates the characteristics of auditory perception
is proposed based on the critical frequency band.
The information entropy is introduced to improve the
wavelet packet threshold and the threshold function.
The improved threshold and the threshold function can
achieve adaptive thresholding, which can not only re-
tain high-frequency rattle signals, but also effectively
smooth out the noise signals. In the signal enhancing
process, an enhancement algorithm based on a multi-
scale compound morphological filter is proposed. Based
on the kurtosis criterion, the scale of the filter and the
length of the structural elements are optimized in two
dimensions to obtain the best parameters of the filter.
In order to verify the noise reduction and enhance-
ment algorithm proposed in this paper, experiments
were carried out including the in-vehicle background
noise collection and in-lab brake caliper rattle signal
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recording test. The background noise is superimposed
on the rattle signal according to certain SNR ratios.
Experimental results show that the proposed method
demonstrates significant noise reduction and rattle sig-
nal enhancement effect. In the experiment, the sam-
pling frequency is limited to 48 kHz, and a comparison
of the signal spectra at different sampling frequencies
will be made in the future research.
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