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Nonnegative matrix factorization (NMF) is one of the most popular machine learning tools for speech
enhancement (SE). However, there are two problems reducing the performance of the traditional NMF-
based SE algorithms. One is related to the overlap-and-add operation used in the short time Fourier
transform (STFT) based signal reconstruction, and the other is the Euclidean distance used commonly
as an objective function; these methods can cause distortion in the SE process. In order to get over
these shortcomings, we propose a novel SE joint framework which combines the discrete wavelet packet
transform (DWPT) and the Itakura-Saito nonnegative matrix factorisation (ISNMF). In this approach,
the speech signal was first split into a series of subband signals using the DWPT. Then, the ISNMF was
used to enhance the speech for each subband signal. Finally, the inverse DWPT (IDWT) was utilised
to reconstruct these enhanced speech subband signals. The experimental results show that the proposed
joint framework effectively enhances the performance of speech enhancement and performs better in the
unseen noise case compared to the traditional NMF methods.

Keywords: speech enhancement; discrete wavelet packet transform; nonnegative matrix factorisation;
Itakura-Saito divergence.

1. Introduction

Speech quality and intelligibility are degraded due
to the presence of the environmental and background
noises. Therefore, speech enhancement (SE) is a neces-
sary for obtaining the original speech signal from con-
taminated one, in order to improve the speech quality
and intelligibility. It is a key component in many speech
applications including hearing aids, mobile communi-
cations, and speech recognition (Lai et al., 2016; Li
et al., 2011; Wang, Chen, 2018; Wang, Hansen,
2018).

Major challenges for the SE stem from the un-
derdetermined mixing systems, reverberant environ-
ments, and the presence of noise and non-stationarity
of speech. Monaural speech separation is more chal-
lenging than the SE using multiple microphones, and it
can hardly improve speech intelligibility (Krawczyk-
Becker, Gerkmann, 2016; Luts et al., 2010). In
order to solve these problems, SE has been imple-

mented using many methods, which can be divided
into unsupervised and supervised ones. The researchers
working on the unsupervised methods have proposed
several different algorithms, such as Wiener filtering
algorithms (Scalart, Filho, 1996), principal com-
ponent analysis (Bavkar, Sahare, 2013; Saleem
et al., 2018), spectral subtraction (Boll, 1979), and
Kalman filtering (Grancharov et al., 2006). The su-
pervised methods have developed rapidly in last sev-
eral years. They involve nonnegative matrix factori-
sation (NMF) (Lee et al., 2017; Varshney et al.,
2017; Wang et al., 2018a; 2018b), Hidden Markov
Model (Veisi et al., 2015), deep neural networks (Nie
et al., 2018; Saleem et al., 2019), and deep denois-
ing auto-encoder (Wang et al., 2015). Since the unsu-
pervised methods assumed that the noise is stationary
or slowly changing, it is difficult to apply to the real
environment. But for the supervised methods, it con-
tains training and enhancement phases for SE. In the
training phase, an enhanced model which characterises
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the speech and noise correlation is trained. Then, this
trained-enhanced model is used for SE during the en-
hancement phase. These supervised methods do not
make any assumptions like unsupervised methods, so
they achieve better results in SE.

As a supervised method, NMF has been success-
fully realised into SE. In the past two decades, a lot of
work has been reported on NMF in the field of SE. Lee
and Seung (1999) discovered that this method can
learn the holistic features of the signal, which performs
well over principal components analysis and vector
quantisation. Mohammadiha et al. (2013) proposed
an online Bayesian formulation of NMF to enhance
the noisy signal. Their results showed that the sys-
tem outperforms the competing algorithms substan-
tially. Févotte et al. (2013) used the NMF to train
sparse nonnegative dynamical model on speech data
and the results showed that the model can capture
the dynamics of speech in a useful way. Chien and
Yang (2015) proposed a variational Bayesian NMF
that learns the variational parameters and model pa-
rameters; the proposed method outperforms the con-
ventional NMF.

Although the above NMF methods have been
confirmed as being effective for SE, there are still
some problems reducing its performance. Firstly, NMF
methods are mostly estimated by using the short time
Fourier transform (STFT) to analyse the spectrogram.
However, there may be some distortion in the STFT
process because of the segmentation, the windowing
processes, and the noisy phase (Islam et al., 2019;
Mowlaee, Saeidi, 2014). Secondly, the NMF meth-
ods commonly optimise their cost function defined
by Euclidean distance (Li et al., 2017). But the Eu-
clidean distance can cause relatively large reconstruc-
tion errors since it tends to overemphasise the recon-
struction accuracy of large values; therefore the Eu-
clidean distance is not suitable for processing speech
signals.

Accordingly, in this paper, we propose a novel SE
method which combines the discrete wavelet packet
transform (DWPT) and the Itakura-Saito nonnegative
matrix factorisation (ISNMF) to enhance the speech
enhancement performance in different noise environ-
ments.

2. The proposed algorithm

2.1. Nonnegative matrix factorisation

As mentioned before, NMF as a sound source sep-
aration technology has been widely used in monaural
speech mixtures. It is a technique for projecting any
nonnegative matrices into space, including a nonnega-
tive basis matrix and a nonnegative weight matrix. For
example, given a data set V ∈ RM×N , NMF is used to
calculate a nonnegative basis matrix W ∈ RM×r and

a weight matrix H ∈ Rr×N , the size of r should be less
or equal to min (M, N), such that:

V ≈ WH, (1)

where V usually represents the magnitude or power
spectrogram of speech, and W is called a dictionary of
spectral templates, H is a matrix of temporal activa-
tions in the process of speech signal processing.

In order to approximate the nonnegative matrices
W and H, a cost function is used to penalise the error
between V and WH, such that:

min
W,H≥0

C(V∣WH), (2)

where C(V∣WH) represents the cost function defi-
ned by

C(V∣WH) =
M

∑
m=1

N

∑
n=1

d ([V]mn∣ [WH]mn) , (3)

where d(x∣y) is a scalar cost function. There are many
cost functions such as Euclidean distance or Kullback-
Leibler (KL) and Itakura-Saito (IS) divergences. In
this paper, we choose the IS divergence because it has
been shown relevant for audio applications that we here
define as

dIS(x, y) =
x

y
− log

x

y
− 1. (4)

The matrices, W and H, are expressed by applying
multiplicative iterative updating rules as described in
Lee and Seung (1999) and the update rules are given
as (Magron, Virtanen, 2018; Nakano et al., 2010):

W←W ⊗
⎛
⎜
⎝

([WH]
−2
⊗V)HT

[WH]
−1 HT

⎞
⎟
⎠

0.5

, (5)

H←H ⊗
⎛
⎜
⎝

WT
([WH]

−2
⊗V)

WT
[WH]

−1

⎞
⎟
⎠

0.5

, (6)

where A⊗B and A
B

represent respectively the element-
wise multiplication and division of matrices A and B.
The [A]

β represents the element-wise exponentiation
of matrices A. The superscript T is the matrix trans-
pose, and for the initialisations of W and H, positive
random numbers are often used.

2.2. Discrete wavelet packet transform

The discrete wavelet packet transform method
is a generalisation of wavelet decomposition which
was first proposed by Coifman and Wickerhauser
(1992). Compared to wavelet analysis with a fixed de-
composition structure, DWPT decomposes the signal
into different subband signals. It decomposes not only
the low frequency subband, but also the high frequency
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one. Therefore, the transformation can make the low-
frequency components of the signal easy to be distin-
guished. Moreover, it provides more details for the sig-
nal at high frequencies. In addition, because the ex-
perimental observation found that the human ear is
like a filter bank, the decomposition scheme for obtain-
ing DWPT coefficients is very similar to the frequency
analysis characteristics of the human ear and audi-
tory perception (Bouzid, Ellouze, 2016; Gokhale,
Khanduja, 2010; Mavaddaty et al., 2017; Sun, Qin,
2016).

The tree structure of the three-level wavelet packet
transform is shown in Fig. 1. In wavelet analysis, the
signal is decomposed into approximate and detailed co-
efficients by a recursion of filter-decimation operations.
The approximate and detailed coefficients will con-
tinue to be decomposed by the filter-decimation opera-
tions, and this process is repeated until the three-level
wavelet packet transform is decomposed. As shown
in Fig. 1, each node is represented by (E,n), where
E indicates the level of decomposition and n is the
subband index. The root of the tree (E,n) = (0,0)
is the time representation of the signal. The left and
right branches represent the low pass and high pass
filters, respectively. The bottom level of the tree is the
frequency representation of the signal, and the corre-
sponding node is (3, 0), (3, 1), ..., (3, 7). The detailed
information of the DWPT (IDWPT) used for speech
was provided in the following sections.

2.3. DWPT-ISNMF based speech enhancement system

This paper proposes a novel SE system that com-
bines the discrete wavelet packet transform (DWPT)
and the Itakura-Saito nonnegative matrix factorisa-
tion (ISNMF) to improve the speech enhancement per-
formance. The overall methodology of the presented
SE framework is shown in Fig. 2. The noise speech

Fig. 2. Overall methodology of the presented SE framework.

a) b) c)

Fig. 3. (a) Flowchart of the two-level decomposition DWPT and IDWT. Here h and g denote the frequency responses
of the low and high pass decomposition filters, respectively. (b) The operation of downsampling. (c) The operation of

upsampling. The down arrows represent decimation by 2.

Fig. 1. Tree structure of the three-level discrete wavelet
packet transform.

passes through the DWPT to produce a set of subband
signals {sJb }, each of the subband signal is individu-
ally enhanced by ISNMF. Then, the inverse DWPT
(IDWPT) is used to reconstruct these enhanced speech
subband signals. Finally, the enhanced speech is ob-
tained.

The DWPT can be implemented by two-channel
filter banks which are filtering signals with a low-
pass h(k) and a high-pass g(k) filters. The analysis of
a signal is carried out first by decomposing the signal
into two subband signals, carrying information of low-
and high-frequency components. At the next level j,
the scheme is iterated successively on both the sub-
bands. The decomposition of the signal into different
frequency bands with different resolutions is therefore
obtained by successive high and low pass filtering of
the signal.

The decomposition of DWPT and reconstruction
of DWPT (IDWPT) can be considered as a tree-struc-
tured filter bank, as shown in Fig. 3a, the symbols
↓2 and ↑2 in the rectangles indicate the operation of
down- and upsampling by 2, respectively. Downsam-
pling by 2 means discarding all the odd or even samples
of wavelet coefficients, whereas upsampling by 2 means
adding zeros between the samples of wavelet coeffi-
cients. Figures 3b and 3c illustrate this operational
process. For the left side of Fig. 3a, the time sig-
nal f is first decomposed into two subband signals
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Fig. 4. Block diagram of the proposed speech enhancement system.

and then decomposes recursively on both to produce
a set of subband signals sJb , where b = 0,1,2, ...,2J − 1,
b indicates the subband index, and J denotes the level
of DWPT. The IDWPT is to reconstruct the decom-
posed results to form the time signal f. The recon-
structed signal is the sum of the set of subband sig-
nals sJb .

The detailed SE framework is shown in Fig. 4, and
it consists of two phases: the training and enhancement
ones. In both of them, the matrix of subband b from
the DWPT is further squared to obtain a nonnegative
matrix SJb .

In the training stage, the nonnegative matrix SJb
from the noise-free speech is used to create a speech ba-
sis matrix Wb

S by NMF. Likewise, a speech-free noise
is used to create a noise basis matrix Wb

N by NMF.
Finally, we get a double-wide matrix which is horizon-
tally concatenated through these two basis matrices,
Wb

V = [Wb
S Wb

N ]. For the enhancement stage, the
SNJ

b of the subband signal snJb for the input noise-
corrupted speech is analysed via NMF, by keeping the
basis matrix Wb

V . So only the weight matrix needs to
be iteratively updated during the analysis. Finally we
have

SNJ
b = Xs

b +Xn
b ≈ [WS

b WN
b ]

⎡
⎢
⎢
⎢
⎢
⎣

HS
b

HN
b

⎤
⎥
⎥
⎥
⎥
⎦

, (7)

where HS
b , HN

b denote the components in the weight
matrix SNJ

b for the speech and noise, respectively.
The gain estimation of the subband signal snJb for

the noise-corrupted speech is calculated, and the en-
hanced subband signal is expressed as (Wang et al.,
2016):

gJb = .
√

(Wb
SH

b
S ./(W

b
SH

b
S +Wb

NHb
N), (8)

ŝnJb = snJb . × gJb , (9)

where the symbols “ .√”, “./” and “.×” denote the
element-wise square root, division, and multiplication

operations, respectively. The gJb is gain estimation for
subband snJb , the ŝnJb is the enhanced subband signal.

In order to compensate the noise effect and obtain
the power normalised subband signal, a power norma-
lisation scheme is applied to the estimated subband
signal as:

s̃nJb =
σb,c

σb
ŝnJb , (10)

where σb,c represents the clean speech root mean
square value which is calculated at the training phase,
and σb denotes the root mean square value of the en-
hanced subband signal. Finally, we can obtain the en-
hanced speech signal by using the IDWPT on the s̃nJb .

3. Experimental results

In this section, we first introduced the design of the
dataset and experimental parameters. Next, introduc-
ing the utilised evaluation criteria, i.e.: Short Time Ob-
jective Intelligibility, Perceptual Evaluation of Speech
Quality and Segmental SNR. Then, the overall per-
formance of the proposed method was compared with
conventional methods using the above evaluation cri-
teria. Finally, we analysed the overall performance of
these methods in the seen noise and unseen noise cases.

3.1. Dataset

For the experiment, the UW/NU corpus was
utilised to train and test the proposed SE system
(Panfili et al., 2017). The corpus contains 72 lists,
each consisting of ten phonetically balanced sentences.
The corpus audio files are in WAV format, sampled at
44.1 kHz with 16-bit quantisation, high-pass filtered
from 60 to 22,000 Hz, and smoothed at 100 Hz, the
100 Hz is a parameter setting of the high-pass filtered,
the length of these utterances is around 2 to 3 s. We
used 50 randomly chosen utterances from this database
as our training utterances. And the test sets consisted
of other 30 utterances, every utterance is downsam-
pled at 8 kHz. Five representative noises were selected
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from the NOISEX dataset for training and testing pur-
poses, including factory, babble, white, pink, HF chan-
nel (Varga, Steeneken, 1993). Furthermore, three
noises, “factory,” “babble,” “white,” were used to create
the noise basis matrix of NMF at the training phase.
Since the noises are around four minutes long, we ran-
domly cut the first two minutes of each noise when
constructing the training sets. Then we added those
random cuts to the training utterances at −5, 0, 5,
10 dB. The next two minutes of noise were randomly
cut for the test set, and the test sets were obtained by
mixing test utterances with those random cuts at −5,
0, 5, 10 dB. Eventually, we got a set of training sets and
a set of test sets (30 utterances× 5 noises× 4 SNR).

The number of frames of speech basis matrix was
set to 40, and because there are three kinds of noise, the
parameter values of noise basis matrix was set to 120.
The db10 wavelet, which has a good regularity and
whose fitted signal is relatively smooth, was selected,
and the level of the wavelet was set to 3, which will
be analysed in the following sections. The STFT-NMF
were computed using the frame size and shift size with
the value of 256 and 80 samples, respectively.

3.2. Evaluation criteria

The performance of our proposed SE method
was evaluated by Short Time Objective Intelligibility
(STOI) (Taal et al., 2011), Perceptual Evaluation of
Speech Quality (PESQ) (Rix et al., 2001), and Seg-
mental SNR (segSNR) (Hansen, Pellom, 1998), re-
spectively. These evaluation criteria are widely used to
assess the enhancement speech signals since STOI is
highly correlated with the intelligibility score of human
speech, PESQ is closely related to voice quality, and
segSNR can show the quantity of noise reduction in
the enhanced speech. STOI returns score in the range
of 0 to 1, and the value of PESQ is between 0 and 4.5,
where higher STOI and PESQ values imply better in-
telligibility and quality of the speech. The segSNR is
limited within the [−10, 35] dB, higher values imply
less noise in the speech.

3.3. Results

The level of DWPTmay have an effect on SE. In or-
der to determine how the level of DWPT affects the re-
sult, we used different resolution levels p (p = 2, 3, 4, 5)
to enhance speech. The results are shown in Fig. 5, we
found that when the p is greater than 4 the enhance-
ment effect decreases significantly. This may happen
because with the further decomposition of DWPT, the
frequency band of the filter will become more and more
narrow, thereby reducing the speech information con-
tained in the frequency band. Therefore, the NMF can-
not enhance the speech of each band any better, and
this reduces the overall enhancement effect. And if the

a)

b)

Fig. 5. Comparative performance evaluation
of the level of the wavelet.

p is smaller 3, the DWPT will not be able to provide
more details for the signal, this will also reduce the en-
hancement effect, especially in the case of a low SNR.
Compared with p equal to 3, when p equal to 4, al-
though the quality of speech is improved, the noise in
the speech is not reduced and the amount of calcula-
tion is doubled. Therefore, we finally chose p = 3 to
enhance speech.

The experiments showed that the generalised KL
cost function defined as

dKL(x, y) = x log
x

y
− x + y (11)

works best in speech separation tasks (Li et al., 2017;
Sun, Fevotte, 2014).

So, we combined a KL divergence and DWPT de-
noted by “DWPT-KLNMF” as a method to compare
with the proposed one. We denoted the traditional
NMF method uses STFT as “STFT-NMF”. Therefore,
there were 5 methods to be compared: “STFT-NMF”,
“STFT-ISNMF”, “DWPT-NMF”, “DWPT-KLNMF”,
and our proposed method.

The overall performance of these methods under
various signal-to-noise ratio (SNR) conditions are rep-
resented by the histograms shown in Figs 6–8. They
show that the proposed method outperforms the other
four methods. For the speech quality, 4.2% and 2.9%
average improvement is found compared to “STFT-
NMF” and “DWPT-NMF”, respectively. For the speech
intelligibility, the proposed method improves on aver-
age by 10.6% and 2.8% compared to “STFT-NMF” and
“DWPT-NMF”. And for segSNR, the improvements on
average is by 1.46 dB and 0.25 dB compared to “STFT-
NMF” and “DWPT-NMF”.
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Fig. 6. Comparative performance evaluation of the different
speech enhancement methods using perceptual evaluation
of speech quality (PESQ) under various SNR conditions.

Fig. 7. Comparative performance evaluation of the different
speech enhancement methods using short time objective

intelligibility (STOI) under various SNR conditions.

Fig. 8. Comparative performance evaluation of the differ-
ent speech enhancement methods using segmental SNR

(segSNR) under various SNR conditions.

By comparing Figs 6, 7, and 8, we found that the
proposed method improves all evaluation criteria un-
der various SNR, particularly the speech intelligibil-
ity and segSNR. However, for the speech quality, the
proposed method is not particularly good, especially
in a high SNR condition. The main reason for this
result is that the PESQ rather concerns non-speech
segments, which weakens the effect of IS divergences
and DWPT on speech signal. But STOI pays atten-
tion to the speech segments and less to the non-speech
segments, and the segSNR is focused on all frames of
speech. Therefore, these two evaluation indicators are
better than PESQ.

We can also observe that the effects of noise un-
der different SNRs on SE are different. Compared

with the evaluation criteria in high SNR conditions,
the proposed method is better than “STFT-NMF”
in the case of a low SNR. This could be because
as the SNR increases, the distortion of STFT be-
comes smaller, making DWPT no longer advantageous.
The opposite performance trend can be observed from
the “DWPT-NMF”, the proposed method is better
than “DWPT-NMF” in the case of a high SNR. This
is because the noisy speech spectrogram under the se-
vere noise condition has a larger dynamic range than
the spectrogram with little noise, and the IS cost func-
tion is less sensitive to large dynamic ranges than the
other distance. In other words, a low SNR will weaken
the effect of the IS cost function.

At the same time, we analysed the overall perfor-
mance of these methods in the seen noise case and
in the unseen noise case. The seen noise case refers to
the noise used in the training phase, the seen noise in-
cludes factory noise, babble noise, and white noise. The
unseen noise case refers to the noise not used during
the training phase, the unseen noise includes pink noise
and HF channel noise. Although our proposed method
improves most of evaluation criteria, studying the im-
pact of unseen noise on SE will help us enhance the
performance of SE methods.

As shown in Fig. 9, for the speech intelligibility
and the segSNR, the proposed method outperforms the
other three methods in the seen noise and unseen noise
cases. Compared to traditional methods, the proposed
method performs better in the unseen noise case. It
is proved that the proposed method can improve the
speech quality and intelligibility in complex noise en-
vironments and outperforms the traditional methods.

a) b) c)

Fig. 9. Comparative performance evaluation of the different
speech enhancement methods using (a) PESQ, (b) STOI,

(c) segSNR, under seen and unseen noise conditions.

4. Conclusion

In this paper, we propose a novel SE method which
combines the DWPT and the ISNMF. First, the noise
speech was split into a series of subband signals us-
ing the DWPT. Then the ISNMF was applied to en-
hance the contaminated speech. The performance of



H. Liu et al. – Speech Enhancement Based on DWPT and ISNMF 571

the proposed method was compared with four tradi-
tional methods. The results show that the proposed
method outperformed the conventional methods in
speech quality and intelligibility. Besides, it is also
demonstrated that the proposed method performs well
not only in the seen noise condition, but also in the case
of unseen noise. In the future, we intend to study the
phase of the speech, which also plays an important role
in SE, as the NMF does not consider it.
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