
ARCHIVES OF ACOUSTICS
Vol. 44, No. 2, pp. 259–265 (2019)
DOI: 10.24425/aoa.2019.128489

An Improved MSA Model for Evaluating the Sound Transmission Loss
of a Rectangular Plate for Diffuse Field Incidence

Myong-Jin KIM∗, Kyong-Su WON, Chol-Su RI

Department of Physics
Kim Il Sung University

Pyongyang, Democratic People’s Republic of Korea
∗Corresponding Author e-mail: mj kim7093@163.com

(received September 30, 2018; accepted February 15, 2019 )

This paper presents an approximate analytical model for estimating the transmission loss (TL) of
a finite rectangular plate in the low frequency range, which is based on the modal summation approach
(MSA) taking into account the modal radiation impedance and fluid loading. The mode-dependent radi-
ation resistance is calculated using the Rayleigh integral. The fluid loading is taken into account through
the natural frequency modified by the added mass. The results are compared with the ones of Statistical
Energy Analysis (SEA) coupled with FEM and FEM coupled with BEM. In addition, the effects of the
various vibration modes and the fluid loading on TL, and a way for reducing the calculation time are
discussed.
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1. Introduction

A thin rectangular plate is an important compo-
nent of the buildings as well as the vehicles such as
a metro car. Therefore, it is the base for predicting
the total sound insulation of the structure to precisely
evaluate the transparency of the plate.

The various models and formulas for TL (Vigran,
2008; Fahy, 1995; Callister et al., 1999; Sharp,
1978) were mostly derived based on approximations
where the plate was infinite and neglected the effect
of the natural vibration modes of the plate. This often
leads to the unacceptable discrepancies (over 20 dB)
between theories and the practice (Bruneau, 2006). In
many cases, the plates can be compared to their flex-
ural wavelengths in the low frequency range, resulting
in the distinct effect of the natural vibration modes, so
the natural mode of the plate should be considered in
this range.

The modal summation approach (MSA) (Xie et al.,
2005; Fahy, Gardonio, 2006; Putra, Thompson,
2010) is a good approximation for the acoustic trans-
parency of finite walls, but it is only well suited in
the low frequency range due to the computing cost.
If the modal density is high in the range of interest,
Statistical Energy Analysis should be applied. On the

other hand, for low modal density the methods such as
FEM and BEM (Sgard et al., 2000) may be applied.

Kozien (2005, 2009) conducted a theoretical study
to evaluate the sound radiated by a deterministically
vibrating surface while reducing the computing con-
sumption by using a hybrid method that combines
FEM and the acoustic intensity vector method, and
then generalized the method for the randomly vibrat-
ing one with the amplitude described by a probability
density function.

The radiation impedance is one of the impor-
tant factors in the prediction of sound transmission.
Frequency- and area-independence of the radiation
impedance in an infinite panel- causes the inherent dis-
crepancy with experiment results.

Based on the Rayleigh integral, the sound pres-
sure was calculated as well as the intensity in the
far field from a simply supported plate with the ve-
locity uz(x, y) (Wallace, 1972). By integrating the
intensity over a hemisphere over the plate vibrating
in a given mode, the radiated power and thereby the
radiation factor by definition were derived (Vigran,
2008). In this paper, these results will be used for
our calculation of the radiation resistance and specific
acoustic impedance below. Besides, several methods
(Leppington et al., 1982; Andresen, 1999) for de-
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termining the radiation efficiency and various theories
(Sedov, 1964; 1990) for transmission of sound waves
through finite plates were developed.

Most of the classical theories have been developed
assuming light fluid loading, so that the plate response
is not affected by the surrounding environment, which
acts as an added mass and also provides the radiation
damping. Loading by fluid may significantly lower the
natural frequencies of flat plates, the effect of which is
decreased with increasing the modal order (Arenas,
2003). In the past, the effective surface mass density,
fluid loaded resonance frequency, and effective loss fac-
tor were suggested (Zhang et al., 2003).

In originally formulated MSA (Bruneau, 2006)
loading of the plate by the surrounding fluid is ig-
nored for air and it is assumed that the specific acoustic
impedance is independent of mode, resulting in consid-
erable errors.

In this paper, an approximate analytical model,
taking into account loading of the plate by the sur-
rounding medium, radiation losses is presented. The
results of computations for the diffuse field transmis-
sion loss through a finite thin rectangular plate at low
frequencies are compared with the results obtained
by using the originally formulated MSA (Bruneau,
2006), hybrid model (FEM coupled BEM) (Sgard
et al., 2000) and VA One (Engineering System Interna-
tional [ESI], 2012), and the effects of mode-dependent
radiation impedance and air loading are investigated
quantitatively.

2. Numerical model

For harmonic excitation, the vibration field of the
plate can be expanded on the basis of eigenfunctions
ψmn, which satisfy the following equation (Bruneau,
2006)

(
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− k2

mn)ψmn = 0, (1)

where k4
mn = ω2
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ρp h. B and Ms denote the bending stiffness and the
mass per unit area of the plate, respectively, and ρp, ν,
h, E are the density, the Poisson’s ratio, the thickness
and the Young’s modulus of the plate, respectively.
For the rectangular plate, simply supported, with the
length a and the width b, the displacement and bend-
ing moment are zero at the boundary. If the origin
of the coordinates is taken at the corner as shown in
Fig. 1, the eigenfunctions and natural angular frequen-
cies are
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Fig. 1. Incident plane wave on a finite plate.

In Fig. 1 pi, pr, and pt indicate the incident wave,
the reflected wave, and the transmitted wave, respec-
tively. φ1 and θ1 denote the polar angle and the azi-
muth angle, respectively.

The bending displacement of the plate w(=Weiωt)
can be expanded as

W = ∑
m,n

Wmnψmn. (4)

When the complex amplitude of the pressure p
loading the plate, the equation of propagation of the
bending displacement W is

[∆2
− ω2Ms

B
]W = p/B. (5)

First, the common relationship (∆2 ≡ k2
mn) ob-

tained from Eq. (1) and Eq. (4) is substituted into
Eq. (5). Then, by multiplying the two sides of the fol-
lowing equation by an eigenfunction ψqr and integrat-
ing two sides with considering the orthogonal relation
⎛
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, the expansion coefficient

and displacement of the plate are given
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2
B
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The complex amplitude of the acoustic pressure on
the incident side (z > 0) is given by

p0 = pi + p
′
r − pt, (8)

where pi and pt describe the acoustic pressure ampli-
tudes of the incident and transmitted waves, respec-
tively, and p′r denotes the instantaneous amplitude of
the reflected pressure estimated in the case when the
plate is perfectly rigid (motionless).
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Since the acoustic pressure is pt at z < 0 and pi ≈ p′r
at z = 0, the complex amplitude of the total pressure
loading the plate at z = 0 is

pz=0 = (pi + p
′
r − pt) − pt = 2(pi − pt). (9)

The substitution of Eq. (9) into Eq. (6) leads to the
expansion coefficients:
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. (10)

The leading effects of the inter-modal couplings
are the shift of resonance frequencies and the increase
in internal damping, while its influence on the vibra-
tional amplitude is not severe. This is consistent with
some previous researches (Takahashi, 1995; Davies,
1971), which also show that the effects of inter-modal
couplings are not significant. In the often-accepted
hypothesis that the transmitted pressure pt is small
compared to the incident pressure, the inter-modal
coupling can be ignored (Bruneau, 2006). Thus, the
transmitted pressure can be approximated as

pt(r0) ≈ i ω ∑
m,n

ZmnWmnψmn(r0), (11)

where Zmn is the modal specific acoustic impedance.
Substituting Eq. (11) into Eq. (10) and considering

the orthogonality of the eigenfunctions result in the
expansion coefficients become

Wmn ≈
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Likewise, the substitution of Eq. (11) and Eq. (12) into
the transmitted power, defined by
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where Rmn = Re(Zmn) is the real part of the radiation
impedance. Since the complex amplitude of the acous-
tic pressure for a harmonic incident plane wave can be

expressed as pi = ∣pi∣ e
i(kxx+kyy+kzz), the transmitted

power at z = 0 is
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2
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with

Fmn =∬
S

ei(kxx0+kyy0) ψmn (r0) dS. (16)

In steady-state, where a harmonic plane wave hav-
ing an angular frequency of ω is incident, the trans-
mission coefficient τ can then be written in as
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where ρ and c are the density of the surrounding fluid
and the sound speed in the fluid, respectively.

The structural damping of the plate corresponds to
an energy dissipation associated with various types of
frictions within the material. Energy dissipation due to
this type of damping can be introduced in the govern-
ing equations replacing the bending stiffness by a com-
plex one B → B (1 + iη).

The transmission coefficient is now

τ(ω, θ, φ) =
4ω2ρ c

ab cos θ
∑
mn

Rmn ∣Fmn∣
2

a∗
, (18)

where
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2)

2
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2
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+ 2ωZmn)
2
.

From the integral Eq. (16), the numerator in the
summation of Eq. (18) is

∣Fmn∣
2
=
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2
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n

cosβ] , (19)

where α = k a sin θ cosφ, β = k b sin θ sinφ.
Now, we obtain the radiated power by calculating

the sound intensity in the far field from the plate vi-
brating in a given mode using the Rayleigh integral
and integrating it over a hemisphere over the plate.
The radiation factor is therefore given as

σmn = 16k2π2m2n2ab

π/2

∫
0

π/2

∫
0

b∗ dθ dφ, (20)

and the real part of the specific acoustic impedance, in
the (m, n) mode becomes

Rmn = 16k2π2m2n2ρ0c0ab

π/2

∫
0

π/2

∫
0

b∗ dθ dφ, (21)
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where

b∗ =
[1 − (−1)m cosα] ⋅ [1 − (−1)n cosβ]

(α2 −m2π2)
2
⋅ (β2 − n2π2)

2
sin θ.

On the other hand, the imaginary part of the radia-
tion impedance represents a load on the source, which,
in many cases, may act as a contribution to the me-
chanical mass of the source. When the frequency range
is below the coincidence frequency, the effective sur-
face mass density can be employed instead of the sur-
face mass density in vacuum, which can be written as
(Zhang et al., 2003)

Meff =Ms
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√
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2

⎞
⎟
⎠
, (22)

where Ms denotes the surface mass density in vacuum
and kf is the flexural wavenumber of a plate in vac-
uum. k and ρ are the acoustic wave number in the
surrounding fluid and the density of the fluid, respec-
tively. According to the Eq. (22), the dependence of
the mass per area of the plate on the frequency results
in lowering the natural frequencies. Thus, we use the
modified version of the natural frequency in Eq. (3) by
including the effective surface mass density

ωmn,eff =

√
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On real structural partitions we normally have
sound incidence from many angles at the same time.
We could in principle use Eq. (18), make a weighting
according to the given distribution of incident angles
and sum up the contributions to calculate the sound
insulation. In practice, however, the actual distribution
is seldom known.

When assuming an ideal diffuse incident sound
field, i.e. assuming sound incidence evenly distributed
over all angles and with random phase, a diffuse field
transmission factor τd and transmission loss (TL) are
calculated from the preceding expressions as bellows
(Vigran, 2008):
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dφ, (24)

TL(ω) = 10 ⋅ log(1/τd(ω)). (25)

3. Numerical simulation and discussion

A simply supported aluminum plate of 350× 220×
1 mm, which is surrounded by air, is taken as an exam-
ple to generate a numerical simulation. The loss fac-
tor, the density, the Young’s modulus and the Pois-
son ratio of the plate are η = 0.1%, ρ = 2700 kg/m3,

E = 7.1 ⋅1010 Pa and ν = 0.33, respectively (ESI, 2012).
Frequency domain for the simulation is from 10 to
500 Hz and its interval is 2 Hz.

The simulation result is compared with the ones
from VA One 2012, which is an interactive software
program for the analysis and design of vibro-acoustic
systems, and the previous works (Bruneau, 2006;
Sgard et al., 2000). VA One used Statistical Energy
Analysis (SEA) coupled FEM to simulate the trans-
mission loss. Figure 2 compares the two results from
VA One and Finite Element Model coupled to BEM
(Sgard et al., 2000).

VA One accounts for both the reactive and resistive
impedance of an SEA fluid through the hybrid area
junction. Two VA One models were created: in the
first model both SIFs were active, in the second model
one SIF was disabled. SIF is the abbreviation of Semi-
Infinite Fluid, modeling the fluid in VA One. As you
can see in Fig. 2, the dip position of the hybrid model
(FEM-coupled BEM) and VA One is slightly different
by a few hertz (somewhere around 10 Hz) and there
is a noticeable difference in dip depth. This is due to
the fact that the hybrid model (Sgard et al., 2000)
was obtained under the neglecting of the fluid loading,
naturally not lowering the natural frequencies.

Fig. 2. TL curves from VA One and Hybrid model (FEM
coupled BEM) (Sgard et al., 2000).

Figure 3 shows the result from the proposed MSA
model, which uses the natural frequency Eq. (3), with
the ones from VA One and general MSA (Bruneau,
2006). In Fig. 3 the dips from the improved MSA model
and VA One model (one SIF) match well with an ave-
rage 3 dB position difference and a 3 dB depth differ-
ence. In the previous MSA model (Bruneau, 2006)
the approximation pt(r0) ≈ i ωZW (r0) has been used
and the specific acoustic impedance Z has been consid-
ered equal regardless of modal number, namely Z = ρ c.
Fluid loading has also been ignored. As a result, TL is
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Fig. 3. TL curves from the improved MSA model, VA One,
and the previous MSA model.

underestimated by more than 10 dB over the frequency
range of interest. Also, in that curve, the deep dips cor-
responding to the natural frequency of the plate dis-
appear.

As seen from Figs 2 and 3, the proposed MSA
model, which introduces the mode-dependent specific
acoustic impedance, has the unacceptable discrepancy
from the VA One model with two SIFs. Figure 4 shows
TL curves from the improved MSA model for two nat-
ural frequencies Eq. (23) and Eq. (3). It can be found
from the figure that taking into account the influence
of the fluid loading on the natural frequency, the dip in
the TL curve shifts. In this case, it is 2 Hz downward.
A significant change in the depth of the dips can also
be observed.

Table 1 shows the positions and depths of the dips
in the TL curve as well as the natural frequencies of
the plate in the frequency range below 500 Hz. From
the table, it is obvious that for the natural frequency
modified by the added mass our MSA model becomes

Table 1. Natural frequency of the plate and the position and depth of dips in TL curves.

No 1 2 3 4 5 6 7 8

Modal number (1, 1) (2, 1) (1, 2) (3, 1) (2, 2) (4, 1) (3, 2) (1, 3)

Natural Frequency [Hz] 71.0 131.3 223.7 231.9 284.0 372.6 384.6 478.2

VA One (one SIF)
Position of dip [Hz] 68.0 128.0 220.0 228.0 278.0 366.0 374.0 474.0

Depth of dip [dB] −9.9 11.8 2.4 −3.1 19.5 7.7 12.8 −2.1

VA One (two SIFs)
Position of dip [Hz] 68.0 128.0 222.0 228.0 – 364.0 372.0 472.0

Depth of dip [dB] −19.0 7.0 – −3.0 – 3.5 – −1.0

MSA (Eq. (3))
Position of dip [Hz] 72.0 132.0 224.0 232.0 284.0 372.0 384.0 478.0

Depth of dip [dB] −8.6 16.7 8.2 −6.1 19.7 7.5 18.3 −1.2

MSA (Eq. (23))
Position of dip [Hz] 70.0 130.0 222.0 230.0 282.0 370.0 382.0 476.0

Depth of dip [dB] −18.8 2.2 3.2 −6.5 19.8 3.7 13.8 −0.7

Fig. 4. The effect of the fluid loading on TL in the improved
MSA model.

closer to the result from VA One with two SIFs. In this
case, the average deviation between two results is 4 Hz
for the dip position and 2 dB for the dip depth. As
known in the past, on the other hand, the fluid load-
ing makes the dips shifted downward from the natural
frequency of the plate. And TLs at these frequencies
are very small, even less than 0. The influence of odd-
order mode on TL is larger than that of even-order
one, especially much larger in case where the modal
numbers in x- and y-direction are all odd.

The transmission losses are evaluated as a func-
tion of the loss factor for η of 0, 0.1, and 0.2%. The
variation of TL with η is large around the natural fre-
quencies, but small enough to be ignored in the rest
of the ranges. Table 2 shows TL with the natural fre-
quency and loss factor of the plate. TLs in the natural
frequencies increase with increasing the loss factor, re-
sulting in reducing the depths of dips and smoothening
the curve. It can also be seen that the effect of η for
the even modes is larger than that for the odd ones.



264 Archives of Acoustics – Volume 44, Number 2, 2019

Table 2. Transmission losses as a function of the modal number and loss factor of the plate.

Natural frequency [Hz] 71.0 131.3 223.7 231.9 284.0 372.6 384.6 478.2

Mode (1, 1) (2, 1) (1, 2) (3, 1) (2, 2) (4, 1) (3, 2) (1, 3)

TL [dB]
η = 0 −19.88 −5.22 −1.14 −9.45 2.05 1.20 10.46 −2.25

η = 0.001 −18.85 2.23 3.17 −6.53 19.74 3.73 13.77 −0.68

η = 0.002 −17.92 6.87 6.72 −4.35 21.19 6.18 16.81 0.68

In addition to the fundamental modes, there are
a number of coupled modes from Eq. (3) and Eq. (23).
Due to the computational cost, it is difficult to con-
sider the effect of all modes when calculating the TL
in a given frequency or frequency range.

Figure 5 shows the modal radiation factor at fre-
quency of 500 Hz according to Eq. (20). As shown
in Fig. 5, the radiation factor has a peak for the
(1,1) mode, drops into about 1/10 of the peak for
some nearby modes and becomes negligible. Therefore,
the modes higher than a certain threshold seldom af-
fect TL.

Fig. 5. Change of the radiation factor as a function of the
modal number.

Figure 6 shows TLs for some frequencies as a func-
tion of upper threshold for calculation. The abscissa

Fig. 6. Asymptotic behavior of the transmission loss with
increasing the upper frequency limit.

is the ratio of the upper threshold to the frequency
of interest fc/f and the ordinate the transmission loss
normalized by its convergence. Most of curves in Fig. 6
have the horizontal regions because the natural fre-
quencies are discrete so that the number of the vi-
bration mode doesn’t vary continuously with the fre-
quency.

The relative change of natural modes with fre-
quency is much larger in the low frequency range than
in the higher one. All curves in the figure approach the
value of 1 at fc/f higher than 1.1, which means that it
is unnecessary to account for the contributions of the
modes 1.1 times higher than the frequency of interest.

4. Conclusions

In this paper we presented an improved MSA model
for estimating the transmission loss of a finite rectan-
gular plate for diffuse field incidence in the low fre-
quency range, in which the mode-dependent specific
acoustic impedance has been introduced and the fluid
loading on the plate has been taken into account as
added mass.

By introducing the mode-dependent specific acous-
tic impedance, the accuracy of the MSA for the trans-
mission loss prediction of the plate was improved, and
the dip of the TL curve corresponding to the even mode
was clearly shown.

From the simulation and comparison, it is obvious
that consideration of the fluid loading in MSA leads to
the more precise prediction of TL. In particular, even if
it is a lighter fluid, the influence of the fluid loading in
the low frequency region (below 150 Hz in this work)
should be considered.

The asymptotic behaviour of TL curves was ob-
served with the upper frequency limit to ensure both
the high accuracy and low computational cost. It is
found that the vibration modes ranging below 1.1
times the frequency of interest give the precise results
to be acceptable.

The depth of the dips in TL curves as a function
of the loss factor of the plate was discussed, which
showed that even modes are affected by the loss factor
more than the odd ones. In addition, the influence of
odd-order modes on TL of the plate is larger than that
of even-order modes and the effect gets much larger in
case where the modal numbers in x- and y-direction
are all odd.
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