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This paper proposes an analytical model to describe the interaction of a bounded ultrasonic beam with
an immersed plate. This model, based on the Gaussian beams decomposition, takes into account multiple
reflections into the plate. It allows predicting three-dimensional spatial distributions of both transmitted
and reflected fields. Thereby, it makes it easy to calculate the average pressure over the receiver’s area
taking into account diffraction losses. So the acoustical parameters of the plate can be determined more
accurately. A Green’s function for the interaction of an ultrasonic beam with the plate is derived. The
obtained results are compared to those given by the angular spectrum approach. A good agreement is
seen showing the validity of the proposed model.
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1. Introduction

The Non-Destructive Testing (NDT) is a group of
techniques widely used in science and industry to eval-
uate the changes in the properties of a material, a com-
ponent or a system. The aim of all NDT methods
is monitoring the investigated object without causing
damage, change of properties or impairment of perfor-
mance in future use (Cartz, 1995; Van Hemelrijck,
Anastassopoulos, 1996). The Non-Destructive Ul-
trasonic Testing (NDUT) is one of the most commonly
used techniques and its application has been increas-
ing rapidly over the last few decades since the elec-
tronic equipment has become cheaper and more read-
ily available (Perdijon, 1993; Blitz, Simpson, 1996;
Schmerr, Lester, 2013; Langenberg et al., 2012).
This technique consists of propagating a low amplitude
waves through a material to measure the time of flight
and any change of intensity for a given distance. It
consequently allows determining the velocity and the
absorption coefficient leading to deduce material prop-
erties (Gunarathne, Christidis, 2002; Aouzale
et al., 2010; Hull et al., 1996; Shankar, 2001).

One of the situations encountered is ultrasonic in-
spection of a plate immersed in water (Deschamps,
Hosten, 1992; Lowe, 1995; Moilanen et al., 2006;
Glauser et al., 2001). Characterization of immersed
thick plate is easier than the case of thin plate, es-
pecially when an ultrasonic spectroscopy technique is
used (Kline, 1984). Kinra and Dayal (1988) devel-
oped a technique for inspection of a thin immersed
plate. They used ultrasonic transmission coefficient
to determinate the elastic constant of materials. This
technique is useful for thin as well as thick plate and
also for either dispersive or nondispersive media. In
other work, Kinra and Iyer (1995) calculate one of
the four properties of an immersed thin plate (longi-
tudinal wave velocity, attenuation, thickness or den-
sity) assuming that the three others are known. Un-
like Kinra and Iyer’s technique, El Mouhtadi et al.
(2012) propose a method for simultaneous determina-
tion of all of these properties by performing a least
squares fit between theoretical and experimental data
points.

The NDUT is also used for monitoring defect in
the plate by locating and sizing accurately even the
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smallest ones. It is based on the detection of anomalies,
such as discontinuities in materials by analyzing the
phenomena of reflection and transmission of ultrasonic
waves propagating through the immersed plate (Lee,
Staszewski, 2003a; 2003b; 2007a; 2007b; Leiderman
et al., 2005; Soucrati et al., 2013).

In the theoretical study of reflection phenomena,
the plane wave theory is often used (Carcione, 1996).
However, it is well known that this simple model does
not provide an accurate description of the situations
encountered experimentally especially when there are
standing waves resulting from the multiple reflections
inside the plate (Rose, 1999). Besides, diffraction af-
fects the accuracy of the measurement, in particular
when the plate is located beyond the near field zone
(Seki et al., 1956).

Conversely, to overcome these restraints, the Gaus-
sian beam decomposition method is investigated. It is
based on the modeling of the wave field by a set of
Gaussian beams. Each beam is propagated indepen-
dently. The total wave field at the receiver is consti-
tuted by a superposition of all Gaussian beams arriving
in the receiver vicinity. The advantage of the resulting
computational algorithm consists in its independence
of studied geometric structure and of observation point
position.

The Gaussian beam decomposition method is pro-
posed for the first time by Popov et al. (1980)
to describe the wave fields in two-dimensional point
source problem. Basing on the work of Babich and
Pankratova (1973), which is founded on a mathe-
matical investigation of the Green’s function, Popov
(1982a; 1982b) develops the Gaussian beam decom-
position method to compute the wave fields in three-
dimensions. The first attempts of numerical applica-
tions of this method to wave field modeling are pre-
sented by Kachalov and Popov (1981) and Cer-
veny et al. (1982). In literature, this method is ap-
plicable to acoustic, electromagnetic and elastic wave
fields modeling.

In this work, an analytical model to predict a three-
dimensional ultrasonic beam is derived. This model
gives both reflected and transmitted fields, as well as
the field inside the plate. The incident field generated
by a circular transducer is expressed using the decom-
position in a set of Gaussian beams. The reflected and
the transmitted pressure fields at each side of the plate
are expressed using the method given by Makin et al.
(2000). The main contribution of the proposed model
lies in taking into account multiple reflections of the
ultrasonic wave inside the plate as well as diffraction
effect. The model allows also choosing the position of
the plate without restraint.

Comparison between the results obtained by the
derived model and those given by the Angular Spec-
trum Approach (ASA) method shows a good agree-
ment which proves the validity of the derived model.

In the rest of this paper, the theory background
is presented in the second section; explanation of the
problem configuration and a brief presentation of the
two theories, the ASA and the Green’s function. The
third section is dedicated to the derived model; ex-
pressions of the ultrasonic field in three-dimension are
given. The fourth section provides simulation results,
validation of the model and the plate characterization.
Conclusions are made in the last section.

2. Theory background

2.1. Studied configuration

We consider the geometric situation of Fig. 1.
A transmitting transducer in the form of a piezoelec-
tric disc of radius a, positioned at the plan z = 0, radi-
ates an ultrasonic beam at frequency f0 in water. The
plate to be analyzed is of a thickness d, positioned
at the focal point z = zf on the axis of propagation
(focal point = (transmitter radius)2/medium wave-
length). It is assumed that the beam falls on the plate
with a normal incidence. The interfaces of the plate are
in the planes z = z1 and z = z2. The signal transmitted
through the plate, is received by a second transducer of
radius b located at the z = 2zf position. However, the
reflected wave is received by the emitting transducer
itself.

Fig. 1. Geometrical configuration.

The fluid surrounding the plate is water which is
characterized by its acoustic parameters; the density
ρ0, the velocity c0, the acoustic impedance Z0, the
wave number k0 and the attenuation coefficient α0.

The plate is characterized by its acoustic parame-
ters; the density ρ1, the longitudinal sound speed c1,
the acoustic impedance Z1, the wave number k1 and
the attenuation coefficient α1.

2.2. Propagation equation

The ultrasound propagation in a homogeneous
medium is modeled by the wave equation which can
be written as (Westervelt, 1963):
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∂2p

∂z2
+∆�p −

1

c2
∂2p

∂t2
+

2α

cω2

∂3p

∂t3
= 0, (1)

where p is the acoustic pressure, ∆� = 1
r
∂
∂r

(r ∂
∂r

) +

1
r2

∂2

∂θ2
is the transverse Laplacian in polar coordinates

(r, θ), z is the coordinate on the propagation axis, ω is
the pulsation, c is the velocity and α is the coefficient
of absorption.

In the case of a harmonic excitation, the wave equa-
tion can be written as (Rossi, 1986):

∂2p

∂z2
+∆�p + k

2p = 0, (2)

where k = ω
c

√
1 + i2α c

ω
≈ k0+iα, i is the unit imaginary

number (i2 = −1) and k0 = ω/c is the wave number.
In the rest of the paper, the index s refers to the

angular spectrum approach (ASA), while the index g
is used for Gaussian beam decomposition (GBD).

2.3. Angular spectrum approach

The angular spectrum approach (ASA) is a math-
ematical tool that allows differential equations resolu-
tion. This approach permits the ultrasonic propaga-
tion simulation between two parallel planar surfaces.
Its goal is to calculate the resulting field in a plane
parallel to a known field (Williams, Maynard, 1982;
Orofino, Pedersen, 1993a; 1993b; Wu et al., 1996a;
1996b; 1997; Du et al., 2009; 2013). It is based on ap-
plying the two-dimensional spatial Fourier transform
to the wave equation (Goodman, 1968).

P (kr, z) =
1

2π

2π

∫
0

+∞

∫
0

p(r, z) e−ikrr cos θr dr dθ, (3)

thus

P (kr, z) =

+∞

∫
0

p(r, z)J0(kr r)r dr, (4)

where P is the two-dimensional spatial Fourier trans-
form of p, kr is the wave number along r direction and
J0(x) is the 0-th order Bessel function of the first kind,
p(r, z) is p(r, θ, z); θ is omitted since an axisymmetric
circular source is used, then p is independent of θ.

Applying the two-dimensional spatial Fourier
transform to Eq. (2) yields

∂2P

∂z2
+ (k2

− k2
r)P = 0. (5)

The solution of this differential equation can be put
in the form

P (kr, z) = P (kr,0) e−iz
√
k2−k2r . (6)

Since there is a uniform excitation of an axisym-
metric circular source of radius a, then

P (kr,0) = ap0
J1(akr)

kr
, (7)

where J1(x) is the first order Bessel function of the
first kind and p0 is the pressure level at the source
given in [Pa].

Finally, the pressure field p(r, z) is the spatial in-
verse Fourier transform (Hankel transform) of Eq. (6)

p(r, z) =

+∞

∫
0

P (kr,0)J0(rkr) e−iz
√
k2−k2rkr dkr. (8)

By developing Eq. (8), the pressure field can be
expressed in the following manner

p(r, z) = ap0

+∞

∫
0

J0(rkr)J1(akr) e−iz
√
k2−k2r dkr. (9)

The incident field in water is then written as

pis(r, z) = ap0

+∞

∫
0

J0(rkr)J1(akr) e−iz
√
k20−k

2
r dkr. (10)

The reflection coefficient of the plate in the same
configuration as in Fig. 1 is (Rossi, 1986)

Rp(kr) = r1 + t1t2r2
e−i2d

√
k21−k

2
r

1 − r2
2e−2id

√
k21−k

2
r

, (11)

where r1 =
Z1−Z0

Z0+Z1
and r2 =

Z0−Z1

Z0+Z1
are the reflection co-

efficients of the interface water-plate-water in the case
of normal incidence. And, t1 = 2Z1

Z0+Z1
and t2 = 2Z0

Z0+Z1

are the transmission coefficients.
In the same manner as in (Rossi, 1986), the trans-

mission coefficient of the plate is

Tp(kr) = t1t2
e−id

√
k21−k

2
r

1 − r2
2e−2id

√
k21−k

2
r

. (12)

Then, using Eq. (11), the reflected field is

prs(r, z) = ap0

+∞

∫
0

Rp(kr)J0(rkr)

⋅J1(akr) e−i(2z1−z)
√
k20−k

2
r dkr. (13)

Similarly, using Eq. (12), the transmitted field is

pts(r, z) = ap0

+∞

∫
0

Tp(kr)J0(rkr)

⋅J1(akr) e−i(z−d)
√
k20−k

2
r dkr. (14)

Inside the plate, the field is expressed as

pps(r, z) = ap0

+∞

∫
0

Pl(kr, z)J0(rkr)J1(akr)dkr (15)
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with

Pl(kr, z) = t1
e−i(z−z1)a

∗
−iz1b

∗
+ r2 e−i(2d−z+z1)a

∗
−iz1b

∗

1 − r2
2e−2ida∗ ,

(16)
where

a∗ =
√

k2
1 − k

2
r , b∗ =

√

k2
0 − k

2
r .

2.4. Green’s function method

Using Green’s functions (Green, 1852), the solu-
tion of wave Eq. (2) can be written in the following
form

p(r, z) =∬ p(r′,0)G(r, z∣ r′,0)ds, (17)

where p(r′,0) is a source element at r = r′ and z =

z′ = 0.
The Green’s function G(r, z∣r′, z′) is defined by

(Ingard, Morse, 1968)

G(r, z∣ r′, z′) =
ik

4πD
e−ikD. (18)

In the case of the axisymmetric source, D, the dis-
tance between the source point (r′, z′) and the mea-
surement point (r, z), is expressed as

D =
√
r2 + r′2 − 2rr′ cos(θ′) + (z − z′)2, (19)

where θ′ is the angel between the radius vector r′ to
the source point and the radius vector r to the mea-
surement point.

By introducing the binomial expansion of the
square root, the distance D can be developed as

D = (z − z′) +
r2 + r′2 − 2rr′ cos(θ′)

2(z − z′)

+
[r2 + r′2 − 2rr′ cos(θ′)]

2

8(z − z′)3
+ ... (20)

Applying the Fresnel approximation (Goodman,
1968)

D ≈
r2 + r′2

2(z − z′)
−
rr′ cos(θ′)

z − z′
+ (z − z′). (21)

In general, for the D appearing at the denominator
of Eq. (18), the error introduced by eliminating all the
terms except (z − z′) is small enough. So, D ≈ z − z′.

However, the error is greatly more significant for
the D appearing in the exponential. This is due to the
fact that the distance D is multiplied by a very large
number k. In addition, a small change in the phase can
change the exponential value significantly. That is why
first and second terms of the binomial approximation
of Eq. (20) are retained in the exponent. So Eq. (18)
becomes

G(r, z∣ r′, z′) =
ik

4π(z − z′)

⋅ e−ik
r2+r′2
2(z−z′) eik

rr′
z−z′ cos(θ′) e−ik(z−z

′
). (22)

Integrating over θ′, the pressure field is expressed as

p(r, z) =
ik

2

+∞

∫
0

p(r′,0)J0 (k
rr′

z
)

⋅
e−ikz

z
e−ik

r2+r′2
2z r′ dr′. (23)

Putting

g(r, z∣ r′, z′)=
ik

2

e−ik(z−z
′
)

(z−z′)
J0 (k

rr′

z−z′
) e−ik

r2+r′2
2(z−z′) . (24)

Therefore, the field can be written as (Hamilton,
Blackstock, 1998)

p(r, z) =

+∞

∫
0

p(r′,0)g(r, z∣ r′,0) r′ dr′. (25)

We choose to note g0 for water and gp for the plate.

3. Derived model

3.1. Incident field

By developing the source term p(r′,0) in Gaussian
Beams Decomposition (Wen, Breazeale, 1988), one
can obtain

p(r′,0) = p0

N

∑
n=1

An e−Bn( r′
a )

2

, (26)

where An andBn are Gaussian coefficients that depend
on the source shape (Jakjoud et al., 2014).

The incident field can be written as

pig(r, z) =

+∞

∫
0

p(r′,0)g0(r, z∣ r
′,0) r′ dr′. (27)

Replacing the source term in Eq. (27), and using
the first exponential Weber integral (Korenev, 2002),
the incident field in water is

pig(r, z) = p0 e−ikp0 z
N

∑
n=1

An
fin(z)

e
−Bn

fin(z) (
r
a
)
2

(28)

with
fin(z) = 1 − i

z

zn
(29)

and

zn =
k0a

2

2Bn
; kp0 = k0 − iα0. (30)
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3.2. Reflected field

The idea is to decompose the total reflected field
into a series of reflections

prg(r, z) = p
(0)
r + p(1)r + p(2)r + ... (31)

The reflected field at the interface water-plate can
be expressed as (Makin et al., 2000)

p(0)r (r, z) =

+∞

∫
0

r1pig(r
′, z1)g0(r, z∣ r

′, z1)r
′ dr′. (32)

Replacing the expression of pig(r′, z1) from Eq. (28)
in Eq. (32) yields

p(0)r (r, z)=p0r1 e−ikp0(2z1−z)
N

∑
n=1

An

f
(0)
rn (z)

e
−Bn

f
(0)
rn (z)

( r
a
)
2

(33)

with
f (0)
rn (z) = 1 − i

2z1 − z

zn
. (34)

The transmitted field p
(I0)
p at z = z1 is

p(I0)p (r, z) =

+∞

∫
0

t1pig(r
′, z1)gp(r, z∣ r

′, z1)r
′ dr′, (35)

then

p(I0)p (r, z) = p0t1 e−ikp0z1e−ikp1(z−z1)

⋅
N

∑
n=1

An

f
(I0)
pn (z)

e
−Bn

f
(I0)
pn (z)

( r
a
)
2

(36)

with
f (I0)
pn (z) = 1 − i

z1

zn
− iη

z − z1

zn
(37)

and

η =
k0

k1
. (38)

The reflected field p
(II0)
p at z = z2 is

p(II0)p (r, z)=

+∞

∫
0

r2p
(I0)
p (r′, z2)gp(r, z∣ r

′, z2) r
′ dr′, (39)

then

p(II0)p (r, z) = p0 t1 r2e−ikp0 z1e−ikp1(z2−z+d)

⋅
N

∑
n=1

An

f
(II0)
pn (z)

e
−Bn

f
(II0)
pn (z)

( r
a )

2

(40)

with

f (II0)
pn (z) = 1 − i

z1

zn
− iη

z2 − z + d

zn
. (41)

The field p
(1)
r is

p(1)r (r, z) =

+∞

∫
0

t2p
(II0)
p (r′, z1)g0(r, z∣ r

′, z1) r
′ dr′, (42)

then

p(1)r (r, z) = p0 t1 t2 r2 e−ikp0(2z1−z)e−ikp12d

⋅
N

∑
n=1

An

f
(1)
rn (z)

e
−Bn

f
(1)
rn (z)

( r
a )

2

(43)

with

f (1)
rn (z) = 1 − i

2z1 − z

zn
− iη

2d

zn
. (44)

The reflected field p
(I1)
p at the interface z = z1 is

p(I1)p (r, z) =

+∞

∫
0

r2p
(II0)
p (r′, z1)gp(r, z∣ r

′, z1) r
′ dr′, (45)

p(I1)p (r, z) = p0 t1 r
2
2e−ikp0z1e−ikp1(z−z1+2d)

⋅
N

∑
n=1

An

f
(I1)
pn (z)

e
−Bn

f
(I1)
pn (z)

( r
a )

2

(46)

with

f (I1)
pn (z) = 1 − i

z1

zn
− iη

z − z1 + 2d

zn
. (47)

The reflected field p
(II1)
p at z = z2 is

p(II1)p (r, z) =

+∞

∫
0

r2p
(I1)
p (r′, z2)gp(r, z∣ r

′, z2) r
′ dr′, (48)

p(II1)p (r, z) = p0 t1r
3
2e−ikp0 z1e−ikp1(z2−z+3d)

⋅
N

∑
n=1

An

f
(II1)
pn (z)

e
−Bn

f
(II1)
pn (z)

( r
a )

2

(49)

with

f (II1)
pn (z) = 1 − i

z1

zn
− iη

z2 − z + 3d

zn
. (50)

Finally, the field p
(2)
r is

p(2)r (r, z) =

+∞

∫
0

t2p
(II1)
p (r′, z1)g0(r, z∣ r

′, z1) r
′ dr′, (51)

then

p(2)r (r, z) = p0 t1 t2 r
3
2e−ikp0(2z1−z)e−ikp14d

⋅
N

∑
n=1

An

f
(2)
rn (z)

e
−Bn

f
(2)
rn (z)

( r
a )

2

(52)

with

f (2)
rn (z) = 1 − i

2z1 − z

zn
− iη

4d

zn
. (53)

The field p
(m)
r , for m > 0, can be written in the

general form as

p(m)
r (r, z) = p0 t1 t2 r

2m−1
2 e−ikp0(2z1−z)e−ikp12md

⋅
N

∑
n=1

An

f
(m)
rn (z)

e
−Bn

f
(m)
rn (z)

( r
a
)
2

(54)



674 Archives of Acoustics – Volume 43, Number 4, 2018

with

f (m)
rn (z) = 1 − i

2z1 − z

zn
− iη

2md

zn
. (55)

The total reflected field is the sum of all reflected
components

prg(r, z) =
∞

∑
m=0

p(m)
r (r, z)

= p0 e−ikp0(2z1−z)
⎛

⎝
r1

N

∑
n=1

An

f
(0)
rn (z)

e
−Bn

f
(0)
rn (z)

( r
a
)
2

+ t1t2
∞

∑
m=1

r2m−1
2 e−ikp12md

⋅
N

∑
n=1

An

f
(m)
rn (z)

e
−Bn

f
(m)
rn (z)

( r
a
)
2
⎞

⎠
. (56)

Putting
Um = r2m−1

2 e−ikp12md, (57)

then

prg(r, z) = p0 e−ikp0(2z1−z)
⎛

⎝
r1

N

∑
n=1

An

f
(0)
rn (z)

e
−Bn

f
(0)
rn (z)

( r
a
)
2

+ t1t2
∞

∑
m=1

Um
N

∑
n=1

An

f
(m)
rn (z)

e
−Bn

f
(m)
rn (z)

( r
a
)
2
⎞

⎠
. (58)

3.3. Transmitted field

The transmitted field p
(0)
t at z = z2 is

p
(0)
t (r, z) =

+∞

∫
0

t2p
(I0)
p (r′, z2)g0(r, z∣ r

′, z2)r
′ dr′, (59)

which gives

p
(0)
t (r, z) = p0 t1 t2e−ikp0(z−d)e−ikp1d

⋅
N

∑
n=1

An

f
(0)
tn (z)

e
−Bn

f
(0)
tn

(z)
( r
a
)
2

(60)

with

f
(0)
tn (z) = 1 − i

z − d

zn
− iη

d

zn
, (61)

and the transmitted field p
(1)
t at z = z2 is

p
(1)
t (r, z) =

+∞

∫
0

t2p
(I1)
p (r′, z2)g0(r, z∣ r

′, z2)r
′ dr′, (62)

then

p
(1)
t (r, z) = p0 t1 t2r

2
2e−ikp0(z−d)e−ikp13d

⋅
N

∑
n=1

An

f
(1)
tn (z)

e
−Bn

f
(1)
tn

(z)
( r
a
)
2

(63)

with

f
(1)
tn (z) = 1 − i

z − d

zn
− iη

3d

zn
. (64)

In the same manner

p
(m)

t (r, z) = p0 t1 t2r
2m
2 e−ikp0(z−d)e−ikp1(2m+1)d

⋅
N

∑
n=1

An

f
(m)

tn (z)
e

−Bn

f
(m)
tn

(z)
( r
a
)
2

(65)

with

f
(m)

tn (z) = 1 − i
z − d

zn
− iη

(2m + 1)d

zn
. (66)

Putting
Vm = r2m

2 e−ikp1(2m−1)d, (67)

the total transmitted field is

ptg(r, z) =
∞

∑
m=0

p
(m)

t (r, z) = p0 t1 t2 e−ikp0(z−d)

⋅
∞

∑
m=0

Vm
N

∑
n=1

An

f
(m)

tn (z)
e

−Bn

f
(m)
tn

(z)
( r
a )

2

. (68)

3.4. Field inside the plate

According to Fig. 1, the field inside the plate is

ppg(r, z) = p(I0)p + p(II0)p + p(I1)p + p(II1)p

+p(I2)p + p(II2)p + ... (69)

The field p
(Im)
p can be generalized as follows

p(Im)
p (r, z) = p0 t1 r

2m
2 e−ikp0z1e−ikp1(z−z1+2md)

⋅
N

∑
n=1

An

f
(Im)
pn (z)

e
−Bn

f
(Im)
pn (z)

( r
a
)
2

(70)

with

f (Im)
pn (z) = 1 − i

z1

zn
− iη

z − z1 + 2md

zn
. (71)

Putting
Wm = r2m

2 e−ikp12md, (72)

then

p(Im)
p (r, z) = p0 t1e−ikp0 z1e−ikp1(z−z1)Wm

⋅
N

∑
n=1

An

f
(Im)
pn (z)

e
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f
(Im)
pn (z)

( r
a
)
2

. (73)

The field p
(IIm)
p can be generalized as follows

p(IIm)
p (r, z) = p0 t1 r

2m+1
2 e−ikp0 z1

⋅ e−ikp1(z2−z+(2m+1)d)

⋅
N

∑
n=1

An

f
(IIm)
pn (z)

e
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f
(IIm)
pn (z)
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a
)
2

, (74)
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then

p(IIm)
p (r, z) = p0 t1 r2e−ikp0 z1e−ikp1(z2−z+d)Wm

⋅
N
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n=1

An

f
(IIm)
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e
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f
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( r
a
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2

(75)

with

f (IIm)
pn (z) = 1 − i

z1

zn
− iη

z2 − z + (2m + 1)d

zn
. (76)

The total fields are expressed

pIp(r, z) = ∑
j
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p (r, z)
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, (77)

pIIp (r, z) = ∑
j

p(IIm)
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= p0 t1 r2e−ikp0 z1e−ikp1(z2−z+d)
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2

. (78)

The field inside the plate is then

ppg(r, z) = p
I
p(r, z) + p

II
p (r, z). (79)

3.5. Green’s function for an immersed plate

From Eq. (68) the transmitted field is expressed as

ptg(r, z) = t1 t2

+∞

∫
0

pig(r
′, z1)g(r, z∣ r

′, z2)r
′ dr′ (80)

a) b) c)

Fig. 2. Axial distributions of pressure (a), inside the plate (b), and reflected (c) (solid curve: GBD, dashed curve: ASA)
for plexiglas plate.

with

g(r, z∣ r′, z2) =
∞

∑
m=0

Hmgm(r, z∣ r′, z2), (81)

gm(r, z∣ r′, z2) =
ik

2(z−zm)
J0(

kp0rr
′

z−zm
) e−ikp1

r2+r′2
2(z−zm) , (82)

zm = z2 + η(2m + 1)d, (83)

Hm = Vme−ikp0[z1−(2m+1)d]. (84)

4. Results and discussions

The parameters used in simulation are a = 5 mm,
f0 = 2 MHz and p0 = 1.72 Pa.

Two types of plates are studied, the first is made
of plexiglas, the second is made of steel.

The acoustical parameters of the materials used in
this study are listed in Table 1 (Kinsler et al., 1999).

Table 1. Acoustical parameters of used material at 2 MHz.

Medium Water Plexiglas Steel

Density ρ [kg/m3] 998 1200 7700

Longitudinal velocity cl [m/s] 1481 2650 6100

Attenuation coefficient α [Np∗/m] 0 46 10

Wavelength λ [10−3 m] 0.741 1.325 3.05

Wave number k [rad/m] 8485 4742 2060

*Np: Neper (1 Np = 20
ln(10)

dB ≈ 8.69 dB).

4.1. Validation of the model

The results obtained based on the Gaussian beams
decomposition were compared to those provided by the
angular spectrum method.

Figure 2 shows the axial distributions of pressure
in the case of a plexiglas plate 3 mm thick.

Noting that: z1 = 32.26 mm, z2 = 35.26 mm, zf =

33.76 mm and 2zf = 67.52 mm.
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a) b)

c) d)

Fig. 3. Radial distributions of pressure. Incident field at z1 (a), internal field at zf (b), and transmitted field at z2 (c)
and at 2zf (d) (solid curve: GBD, dashed curve: ASA) for plexiglas plate.

Figure 2b gives a zoom of the pressure distribution
inside the plate. There is a periodicity of l = 670 µm
which corresponds to the half wavelength in the plex-
iglas. These oscillations are due to resonance of the
acoustic field inside the plate. The reflected field is
presented in Fig. 2c. The two techniques show a good
agreement, unless in the region of the very near field
(Fig. 2a). The discrepancy is due to the fact that GBD
doesn’t take into account the vanishing mode. It can
also be explained by the limited number of An and Bn
coefficients (Eq. (26)).

Figure 3 shows the radial distributions of pressure,
of the incident field at z = z1 (Fig. 3a), of the internal
field at z = zf (Fig. 3b), and of the transmitted field
at z = z2 (Fig. 3c) and at z = 2zf (Fig. 3d) in the case
of a plexiglas plate 3 mm thick.

Examining curves, good similarity between results
provided by the two models is observed. Consequently,
the GBD technique offers a very simple modeling
method comparing to the ASA technique.

4.2. Characterization of the plate

We define the reflection and transmission coeffi-
cients as

R =
1

p0

a

∫
0

2π pr(r, 0)r dr, (85)

T =
1

p0

a

∫
0

2π pt(r,2zf)r dr. (86)

Using Eq. (58), the reflection coefficient in the case
of using the GBD technique is

Rg =
1
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a

∫
0

2π prg(r,0)r dr, (87)

Rg =

a

∫
0

2π e−ikp0(2z1)
⎛

⎝
r1

N

∑
n=1

An

f
(0)
rn (0)

e
−Bn

f
(0)
rn (0)

( r
a
)
2

+ t1t2
∞

∑
m=1

Um
N

∑
n=1

An

f
(m)
rn (0)

e
−Bn

f
(m)
rn (0)

( r
a
)
2
⎞

⎠
r dr, (88)

then

Rg = π a2 e−ikp0(2z1) [r1

N

∑
n=1
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(1 − e
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f
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∞

∑
m=1

Um
N

∑
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(1 − e
−Bn

f
(m)
rn (0) )]. (89)

Using Eq. (68), the transmission coefficient in the
case of using the GBD technique is
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a) b)

Fig. 4. Variations of the transmission coefficient T (dashed curve) and reflection coefficient R (solid curve) versus d,
for plexiglas plate (a) and steel plate (b).

a) b)

Fig. 5. Variations of the transmission coefficient T (dashed curve) and reflection coefficient R (solid curve)
versus frequency f , for plexiglas plate (a) and steel plate (b).

Tg =
1

p0

a

∫
0

2π ptg(r,2zf)r dr, (90)
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then

Tg = π a2 t1 t2 e−ikp0(2zf−d)
∞

∑
m=0
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⋅
N

∑
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Bn

(1 − e
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f
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(2zf ) ). (92)

Figure 4 shows changes of the reflection and the
transmission coefficients calculated using the GBD
technique versus the thickness d in the both cases of
plexiglas and steel plate made.

We notice as expected that the resonance ap-
pears every λ

2
. So ∆dp = λ

2
=

cp
2f0

. ∆dPlx = 0.67 mm
then cPlx ≈ 2680 m/s. ∆dSt = 1.525 mm then cSt ≈
6100 m/s.

Figure 5 provides variations of the reflection and
the transmission coefficients calculated with the GBD
technique as a function of the frequency f . We observe
that the difference in frequency between two succes-
sive resonances ∆f corresponds to ∆f =

cp
2d

. Know-
ing one of the two parameters cp or d, we can deduce
the other. ∆fPlx = 0.44 MHz then dPlx ≈ 3.01 mm.
∆fSt = 1.01 MHz then dSt ≈ 3.02 mm.

As a conclusion, the derived technique helps char-
acterizing materials of studied plates.

5. Conclusion

In this paper, a new analytical method for calculat-
ing the transmitted and the reflected fields by an im-
mersed plate is presented. This method takes into ac-
count absorption and diffraction phenomena as well as
the multiple reflections inside the plate. It is based on
Gaussian beam decomposition of the generated pres-
sure field. Besides, a Green’s function is also proposed
to make it easy to model the propagated field.

The proposed model permits simulating the differ-
ent fields (incident, transmitted and reflected fields)
upstream, inside and downstream the plate. We use it
as well to analyze variations of transmission and re-
flection coefficients of the plate as a function of the
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thickness of the plate and the frequency. This analysis
allows physical characterization of the plate.

The validity of this model is proven by comparing
the results obtained by the proposed model to those
given by the Angular Spectrum Approach (ASA).
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d’Acoustique, Nantes, France, 2611–2616.

11. Glauser A.R., Robertson P.A., Lowe C.R. (2001),
An electrokinetic sensor for studying immersed sur-
faces, using focused ultrasound, Sensors and Actua-
tors B: Chemical, 80, 1, 68–82.

12. Goodman J.W. (1968), Introduction to fourier optics,
McGraw-Hill, New York, USA.

13. Green G. (1852), An essay on the application of math-
ematical analysis to the theories of electricity and mag-
netism, Journal für die reine und angewandte Mathe-
matik, 44, 356–374.

14. Gunarathne G.P.P., Christidis K. (2002), Ma-
terial characterization in situ using ultrasound mea-
surements, IEEE Transactions on Instrumentation and
Measurement, 51, 2, 368–373.

15. Hamilton M.F., Blackstock D.T. (1998), Nonlin-
ear acoustics, San Diego, Academic Press.

16. Hull J.B., Langton C.M., Barker S., Jones A.R.
(1996), Identification and characterization of materials
by broadband ultrasonic attenuation analysis, Journal
of Materials Processing Technology, 56, 148–157.

17. Ingard K.U., Morse P.M. (1968), Theoretical acous-
tics, Princeton University Press, Princeton, New Jer-
sey.

18. Jakjoud H., Chitnalah A., Aouzale N. (2014),
Transducer profile effect on the second harmonic level,
Acoustical Physics, 60, 3, 261–268.

19. Kachalov A.P., Popov M.M. (1981), Application of
the method of summation of Gaussian beams for cal-
culation of high-frequency wave fields, Soviet Physics –
Doklady, 26, 604–606.

20. Kinra V.K., Dayal V. (1988), A new technique for
ultrasonic-nondestructive evaluation of thin specimens,
Experimental Mechanics, 33, 2, 288–297.

21. Kinra V.K., Iyer V.R. (1995), Ultrasonic measure-
ment of the thickness, phase velocity, density or atten-
uation of a thin-viscoelastic plate. Part I. The forward
problem, Ultrasonics, 33, 2, 95–109.

22. Kinsler L.E., Frey A.R., Coppens A.B., San-
ders J.V. (1999), Fundamentals of acoustics, 4th Edi-
tion, Wiley-VCH.

23. Kline R.A. (1984), Measurement of attenuation and
dispersion using an ultrasonic spectroscopy technique,
The Journal of the Acoustical Society of America, 76,
2, 498–504.

24. Korenev B.G. (2002), Bessel functions and their ap-
plications, Taylor & Francis, CRC Press.

25. Langenberg K.J., Marklein R., Mayer K. (2012),
Ultrasonic nondestructive testing of materials: theoret-
ical foundations, Taylor & Francis, CRC Press.

26. Lee B.C., Staszewski W.J. (2003a), Modelling of
Lamb waves for damage detection in metallic struc-
tures. Part I. Wave propagation, Smart Materials and
Structures, 12, 5, 804–814.

27. Lee B.C., Staszewski W.J. (2003b), Modelling of
Lamb waves for damage detection in metallic struc-
tures: Part II. Wave interactions with damage, Smart
Materials and Structures, 12, 5, 815–824.

28. Lee B.C., Staszewski W.J. (2007a), Lamb wave
propagation modelling for damage detection. I. Two-
dimensional analysis, Smart Materials and Structures,
16, 2, 249–259.

29. Lee B.C., Staszewski W.J. (2007b), Lamb wave
propagation modelling for damage detection. II. Dam-
age monitoring strategy, Smart materials and struc-
tures, 16, 2, 260–274.

30. Leiderman R., Braga A.M.B., Barbone P.E.
(2005), Scattering of ultrasonic waves by defective ad-
hesion interfaces in submerged laminated plates, The
Journal of the Acoustical Society of America, 118, 4,
2154–2166.



H. Soucrati et al. – Analytical Model of Three-Dimensional Ultrasonic Beam Interaction. . . 679

31. Lowe M.J.S. (1995), Matrix techniques for modeling
ultrasonic waves in multilayered media, IEEE Trans-
actions on Ultrasonics, Ferroelectrics, and Frequency
Control, 42, 4, 525–542.

32. Makin I.R.S., Averkiou M.A., Hamilton M.F.
(2000), Second-harmonic generation in a sound beam
reflected and transmitted at a curved interface, The
Journal of the Acoustical Society of America, 108, 4,
1505–1513.

33. Moilanen P., Nicholson P.H.F., Kilappa V.,
Cheng S., Timonen J. (2006), Measuring guided
waves in long bones: Modeling and experiments in free
and immersed plates, Ultrasound in Medicine & Biol-
ogy, 32, 5, 709–719.

34. Orofino D.P., Pedersen P.C. (1993a), Efficient
angular spectrum decomposition of acoustic sources.
Part I. Theory, IEEE Transactions on Ultrasonics, Fer-
roelectrics, and Frequency Control, 40, 3, 238–249.

35. Orofino D.P., Pedersen P.C. (1993b), Efficient
angular spectrum decomposition of acoustic sources.
Part II. Results, IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control, 40, 3, 250–257.

36. Perdijon J. (1993), Ultrasonic non-destructive testing
[in French: Le contrôle non destructif par ultrasons],
Hermès.

37. Popov M.M. (1982a), A new method of computation
of wave fields using Gaussian beams, Wave Motion, 4,
85–97.

38. Popov M.M. (1982b), A new method of computing
wave fields in the high-frequency approximation, Jour-
nal of Mathematical Sciences, 20, 1869–1882.

39. Popov M.M., Psencik I., Cerveny V. (1980), Uni-
form ray asymptotics for seismic wave fields in later-
ally inhomogeneous media, Prog. Abstr. XVII General
Assembly of the European Seismological Commission,
Hungarian Geophysical Society, Budapest, 143.

40. Rose J.L. (1999), Ultrasonic waves in solid media,
Cambridge University Press, Cambridge.

41. Rossi M. (1986), Electro-acoustique, Edit. Dunod.

42. Schmerr L.W., Jr. (2013), Fundamentals of ultra-
sonic nondestructive evaluation: a modeling approach,
Springer Science & Business Media.

43. Seki H., Granato A., Truell R. (1956), Diffrac-
tion effects in the ultrasonic field of a piston source

and their importance in the accurate measurement of
attenuation, The Journal of the Acoustical Society of
America, 28, 2, 230–238.

44. Shankar P.M. (2001), Ultrasonic tissue characteriza-
tion using a generalized Nakagami model, IEEE Trans-
actions on Ultrasonics, Ferroelectrics, and Frequency
Control, 48, 6, 1716–1720.

45. Soucrati H., Chitnalah A., Jakjoud H., El Id-
rissi A. (2013), Application of the wavelets transform
to the determination of the geometrical characteristics
of a plate by analysis of the diffused acoustic field, Re-
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