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The cuboidal room acoustics field is modelled with the Fourier method. A combination of uniform,
impedance boundary conditions imposed on walls is assumed, and they are expressed by absorption coef-
ficient values. The absorption coefficient, in the full range of its values in the discrete form, is considered.
With above assumptions, the formula for a rough estimation of the cuboidal room acoustics is derived.
This approximate formula expresses the mean sound pressure level as a function of the absorption coeffi-
cient, frequency, and volume of the room separately. It is derived based on the least-squares approximation
theory and it is a novelty in the cuboidal room acoustics.

Theoretical considerations are illustrated via numerical calculations performed for the 3D acoustic
problem. Quantitative results received with the help of the approximate formula may be a point of
reference to the numerical calculations.

Keywords: Fourier analysis; room acoustics; absorption coefficient; boundary-value problem; impedance
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1. Introduction

The influence of wall impedances on the acoustic
field, e.g., in the cinema, theatre room, is an important
and interesting problem from practical and theoretical
point of view (Kamisiński, 2012; Kamisiński et al.,
2016; Kulowski, 2011). This problem is not simple
and for solving it needs applying some special meth-
ods. For this purpose several exact and approximate
methods have been developed; most of these methods
are described in general forms in (Morse, Ingard,
1987; Brański, 2013).

Approximate methods, based on heuristic premises,
are used in many papers. They utilise statistical-
acoustic methods (Summers, 2012), the diffusion-
equation model (Luizard et al., 2014), geometric
acoustics methods (Luizard et al., 2014; Lehmann,
Johansson, 2008), the combination of radiosity
method, geometrical acoustic one (Korany et al.,
2001), and so on.

Wave-based approximate methods solve the wave
equation in an approximate manner. In the descrip-
tion of the sound field, the most useful methods are

finite element method (FEM) (Okuzono et al., 2014),
the singular boundary element method (BEM), (Lin
et al., 2014; Fu et al., 2014; Chen et al., 2014), the
nonsingular BEM (Brański et al., 2012; Brański,
Borkowska, 2015), and the finite difference method
(FDM) (Lopez et al., 2013). All above methods are
numerical ones.

An example of exact methods is the Fourier one
which may be used for solving boundary problems
of the room acoustics (Blackstock, 2000; Kut-
truff, 2000; Brański et al., 2017). It requires to
solve the modal equation and an evaluation of eigenval-
ues of the Helmholtz equation assuming some bound-
ary conditions imposed on the walls. Since the acous-
tic eigenvalue equation is complicated, the numerical
method should be applied to find eigenvalues (Naka
et al., 2005; Kuttruff, 2000; Bistafa, Morris-
sey, 2003), e.g., the Newton method or bisection one.
There is no exact general method for finding eigen-
values and consequently room modes for walls with
arbitrary impedances. Only for rooms with perfectly
flexible or rigid walls this problem is solved exactly
(Blackstock, 2000; Kuttruff, 2000), but for some
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impedance on each pair of parallel walls it is only es-
timated (Brański et al., 2017). To make a more gen-
eral analysis of the modal acoustic boundary problem,
it is appropriate to refer to the Sturm-Liouville (S-L)
eigenvalue problem (Johnson, 2006; Dautray, Li-
ons, 2000). The S-L problems arise throughout ap-
plied mathematics and in a standard form, they de-
scribe the vibrational modes of various systems, among
other the acoustic ones. Then, they arise directly as
eigenvalue problems in one-dimensional space (1D).
They also commonly arise from linear partial differ-
ential equations in multidimensional spaces when the
equations are separable in some coordinate system, ex-
actly as in three dimensional acoustic problem.

The benefit of the Fourier method is that it de-
scribes the wave nature of the sound field (Meissner,
2009a) and the modal localisation (Meissner, 2009b).
Other versions of this method may be found in (Xu,
Sommerfeldt, 2010). The Fourier method is difficult
to apply for rooms with complex shapes and complex
boundary conditions and in more practical cases, it is
unusable (Meissner, 2012; 2013a; 2013b).

In this paper, the Fourier method is used for
a derivation of the formula which is the basis for rough
estimation of room acoustics inside a cuboid; it is the
aim of the paper. This formula describes the mean
sound pressure level as a function of the absorption
coefficient for separate frequencies and for separate vol-
umes of the room. Furthermore, based on this formula,
two groups of frequencies are defined. Next, for these
groups and separate volumes of the room, approximate
graphs of the mean sound pressure level are calculated.
These graphs ought to be useful for a rough estimation
of the cuboidal room acoustics at first sight. Part of
this problem is solved in (Kocan-Krawczyk, 2017).

2. Three dimensional acoustic problem

Let be given the 3D acoustic boundary problem in
the cuboid, physical domain Ω with the boundary Γ .
To all intents and purposes, the mathematical model
is described by the wave equation and Robin and Neu-
mann boundary conditions. In the steady state, it leads
to the following boundary problem (Meissner, 2012;
2013a; 2013b; Kocan-Krawczyk, 2017; Brański
et al., 2017):

D2U(x) + k2U(x) = F (x), x ∈ Ω, (1)

where U(x) is acoustic potential; x = (x, y, z) [m];
U(x) = X(x)Y (y)Z(z); k [rad/m] is the wave number:
k = ω/c, k2 = k2x + k2y + k2z ; ω [rad/s] is an angular
frequency; D2U(x) = ∂2U/∂x2 +∂2U/∂y2 +∂2U/∂z2.

The Robin (R) and Neumann (N) boundary con-
ditions, Fig. 1, are given respectively by

Dn

X(x)
Y (y)
Z(bz)

+ z0(x)

X(x)
Y (y)
Z(bz)

= 0, x ∈ Γ, (2)

DnZ(az) = 0, (3)

where n is a unit normal vector to the Γ pointing out-
ward Ω; DnU(x) = ∂U/∂n; x ∈ {ax, bx}, y ∈ {ay, by},
z ∈ {az, bz}; z0(x) = (ωρ)/z(x), z(x) [N · s/m3] is
the specific acoustic impedance: z(x) = p(x)/v(x),
where p(x) = iρω U(x) [Pa] is the acoustic pressure;
v(x) = −DnU(x) = −gradU(x) [m/s] is the particle
velocity; ρ [kg/m3] is the air density.

Fig. 1. Cross section geometry of the problem; x0 – source
point, xi – arbitrary domain point, ri – distance between
x0 and xi, R, N – Robin, Neumann boundary conditions.

In practice, the acoustic impedance z(x) is an
acoustic impedance of any material and it is wined
through the measure of the absorption coefficient α(x),
i.e. (Kuttruff, 2000),

z(x) = ρ c
1 + (1− α(x))1/2

1− (1− α(x))1/2
. (4)

The acoustic impedance z(x) has an influence on
eigenvalues and eigenfunctions, which translates into
Fourier solution of the boundary problem.

3. Eigenvalues and eigenfunctions

The eigenvalues and eigenfunctions in x- and
y-directions are pointed out in the case,when the
impedance at the left end z0(ax)/z0(ay) is the same
as the impedance at the right end z0(bx)/z0(by). Since
they are assumed the same in both directions, a solu-
tion is given in detail below for the x-direction, while
for the y-direction is written by analogy. So, the solu-
tion of the homegeneous Eq. (1), in the x-direction
is assumed in the form (Kocan-Krawczyk, 2017;
Brański et al., 2017):

X(x) = C1 cos(kµx) + C2 sin(kµx), (5)

hereunder kµ = kx.
Substituting Eq. (5) into Eq. (2) gives C1 =(C2kx)/

z0(ax), and after some calculations one obtains the
eigenvalues equation

tan(wx) =
wx · 2Zx
w2
x − Z2

x

, (6)
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where wx = kµ(bx − ax), Zx = {Zax, Zbx}, Zax =
z0(ax)(bx − ax), Zbx = z0(bx)(bx − ax); since z0(ax) =
z0(bx), so Zax = Zbx.

The above equation has been solved in (Brański
et al., 2017; Kocan-Krawczyk, 2017); selected values
of the wave numbers are presented in Table 1.

Table 1. The sets of kµ, kι, kν for f = 2000 Hz and α = 0.5.

kµ/kι 0.5908 1.1821 1.7747 2.3690 2.9650 3.5635 4.1637

kν 0.5865 1.7734 2.9647 4.1630 5.3708 6.5870 7.8102

Substituting results, obtained above, into Eq. (5)
the general solution and the set of eigenfunctions
{Xµ(x)} in x-direction are obtained,

X(x) =
∑
µ

C2µXµ(x)

=
∑
µ

C2µ [(kµ/z0(ax)) cos(kµx)+sin(kµx)], (7)

where Xµ(x) = [...].
By analogy, the set eigenfunctions {Yι(y)} in y-di-

rection takes the form

Y (y) =
∑
ι

C2ιYι(y)

=
∑
ι

C2ι [(kι/z0(ay)) cos(kιy)+sin(kιy)], (8)

where kι = ky and Yι(y) = [...].
Quite the same, one solves the homogeneous Eq. (1)

in the z-direction, with boundary conditions defined by
Eqs. (2) and (3). The general solution takes the form,
cf. Eq. (5),

Z(z) = D1 cos(kνz) +D2 sin(kνz), (9)

where hereunder kν = kz.
Substituting Eq. (10) into Eqs. (2) and (3) gives

D2 = 0, and instead of Eq. (6) it is

tan(wz) = Zbz/wz, (10)

where wz = kν(bz − az) and Zbz = z0(bz)(bz − az);
selected values of {kν} are also presented in Table 1.

Substituting results obtained above into Eq. (10)
leads to the set of eigenfunctions {Zν(z)},

Z(z) =
∑
ν

D1νZν(z) =
∑
ν

D1ν cos(kνz), (11)

where Zν(z) = cos(kνz).
In the end, the solution of the boundary problem is

U(x) =
∑
µιν

aµινUµιν(x)

=
∑
µιν

aµιν Xµ(x) Yι(y) Zν(z), (12)

where Uµιν(x) are µ ι ν-eigenfunctions (µ ι ν-modes).
This way the solution of the inhomogeneous acous-

tic problem may be achieved. Coefficients {aµ ι ν} re-
main to be determined.

4. Forced acoustic vibrations

In the steady state, this kind of vibrations is de-
scribed by inhomogeneous Helmholtz, Eq. (1), where
k = kf and kf = ωf/c. For the above problem, the so-
lution is given by the equation U(x) = U1(x) +U2(x),
where U1(x) are free vibrations given by Eq. (12),
U2(x) are forced vibrations. In the following, just
forced vibrations ought to be found; for simplicity of
their notation U2(x) = U(x).

An acoustic source is represented by the function
F (x) in Eq. (1). The F (x) constitutes the solution of
the radial part of the Bessel’s differential equation
in spherical coordinates (McLachlan, 1964; Evans,
2002). Here, the 0-order, spherical Hankel function of
the second kind h

(2)
0 (kfr) plays the major part; it de-

scribes an outward propagating spherical wave.
The solution of Eq. (1) is now formulated as some

sum of eigenfunctions, Eq. (12). In a similar manner,
the source function F (x) is represented, then

F (x) =
∑
µιν

bµινUµιν(x), (13)

where {bµ ι ν} is a set of some coefficients.
Since the function of F (x) is known in advance,

then coefficients {bµ ι ν} are first calculated, and they
are given by the formula

bµιν =(1/βµιν)

bx∫
ax

by∫
ay

bz∫
az

F (x)Xµ(x)Yι(y)Zν(y) dxdy dz,

(14)
where

βµιν =βµ βι βν =

bx∫
ax

X2
µ(x) dx

by∫
ay

Y 2
ι (y) dy

bz∫
az

Z2
ν (z) dz.

(15)
Now, coefficients {aµ ι ν} should be computed. To

achieve this, Eqs. (12) and (13) are substituted into
Eq. (1), hence

aµιν =
bµιν(

k2f − k2µιν
) . (16)

Finally, forced acoustical vibrations are described
by Eq. (12) with above coefficients {aµ ι ν}.

In practice, instead of the acoustic potential, the
acoustic pressure and secondary acoustic quantities are
used. First of all, the acoustic pressure p(x) [Pa] is
given by

p(x) = j ρ0 ω U(x). (17)

Next, to notice quantitative change in the sound
pressure level L(x) [dB] in a whole acoustic room,
the mean value of it ought to be calculated based on the
equation,

Lm = 10 log
(
p2m/p

2
0

)
, (18)
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where pm=1/ni
∑
i

p(xi), p0 =2 ·10−5 Pa, i=1, 2, ..., ni

the number of calculated points inside the acoustic
room is uniform, ni = 124× 124× 124.

5. A formula to a rough estimation
of the cuboidal room acoustics

with impedance walls

Based on numerical calculations and the least-
squares approximation theory, a simple formula is de-
rived to the rough estimation of the cuboidal room
acoustics. This formula expresses the mean sound pres-
sure level Lm as a function of the absorption coeffi-
cient, the frequency, and the volume of the room. Be-
low, all numerical calculations are performed assum-
ing the following values: absorption coefficients {α} =
{0.1, step 0.1, 0.9}, frequencies: {f} = {250, 500,
1000, 2000, 4000, 8000, 16000}, Hz, and two volumes of
the room V1 and V2.

The following global values and symbols are as-
sumed: ρ = 1.205 kg/m3, c = 344 m/s, ax = ay = az =
0 m, bx = by = 5 m, bz = 2.5 m, or bz = 5 m. The first
geometry data define the volume V1, but the second
one – the volume V2 of the acoustic room. The point
force source is placed at the point x0 = {x0, y0, z0} =
{2.5, 2.5, 1.25}, m, and x0 = {2.5, 2.5, 2.5}, m, in the
V1 and V2, respectively. Furthermore, it is assumed
that z0(ax) = z0(bx) = z0(ay) = z0(by) = z0(bz), since
it is the most frequent assumption made in acoustics,
where e.g. z0(ax) is z0(x) on the edge ax, and so on,
but, z0(az) = 0 as a result of the Neumann boundary
condition. Next, F (x) = Ah

(2)
0 (kf r) and, to make the

final results real, an intensity of the source A is deter-
mined in two ways (they point out to two groups of
the numerical calculations):

1) the value of Lm ≈ 75 dB for α = 0.1, volumes V1
and V2, and frequencies {f} given above; in this
case the intensity A is changed,

2) the intensity A is constant, i.e. A = 5.51 ·10−3 in-
dependently of the absorption coefficient, the vol-

Fig. 2. Level Lm versus α and f for volume V1.

ume of the room, and the frequency; this value of
A is fixed for Lm ≈ 75 dB for α = 0.1, volume V1
and f = 250 Hz.

To omit the singularity of h(2)0 (kf r) at r = 0, the
cube space with dimensions 0.2 × 0.2 × 0.2 m around
the source is omitted (Brański et al., 2017).

The discrete exact values of Lm, are marked by
dot values in all figures below, and they are calculated
based on formula derived above; part of them may be
found in (Brański et al., 2017; Kocan-Krawczyk,
2017).

The first group of calculations concerns the approx-
imate Lm as a function of α for separate frequencies
and separate volumes of the room. An analytical for-
mula describing Lm can be expressed by

Lm(α) = a1 + a2α
n, (19)

where a1, a2 are any constants and they are calculated
using the least-squares approximation.

The value n is chosen a priori basing on the dis-
tribution of discrete values of the Lm for particular
frequencies. Figures 2 and 3 present discrete values
of the Lm (dot values) and lines of the Lm, which
are approximated based on Eq. (19) for bz = 2.5 m
(volume V1) and bz = 5 m (volume V2) respectively.
As it can be seen, two ranges of frequencies are dis-
tinguished. Namely, for f = fsl = 2000 Hz it is
a straight line (Lsl), however, for frequencies higher
than f = 2000 Hz (fh > f), the value n is negative
and for frequencies lower than f = 2000 Hz (fl < f)
the value n is positive. For the frequencies pointed out
above, the set {n} = {8, 3, 2, 1, −0.1, −0.2, −0.4}.

Next, the calculations concern an approximation of
the Lm in two ranges of frequencies, i.e. for fh > f and
for fl < f . As a result, two lines are obtained, namely
Lm;h and Lm;l, respectively, see Fig. 4, where the Lsl
is added. These lines may be used for a rough estima-
tion of the acoustic room and depend on coefficients
absorption of walls {α} (impedance walls), frequencies
{f}, and volumes of the room {V1, V2}.
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Fig. 3. Level Lm versus α and f for volume V2.

Fig. 4. Levels Lm;l (red line) and Lm;h (grey line) versus {α}, frequencies groups {fl, fh}
and volumes of the room {V1, V2} (solid, dashed lines).

The second group of calculations concerns the ap-
proximate Lm as a function of α for separate fre-
quencies and only the volume V2 of the room, i.e.,
quite the same assumptions as above, but the inten-
sity of the source A is fixed a priori and its value is

Fig. 5. Level Lm versus α, f , for volume V2 and A (fixed a priori).

A = 5.51 · 10−3. The results are depicted in Fig. 5 and
they are to be compared with the results in Fig. 3.

As it can be noted, for separate frequencies, the
Lm graphs in both figures are nearly the same. Fur-
thermore, in both figures the same two groups of fre-
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quencies are distinguished. As could be expected, the
graphs for the fixed A are shifted down parallel to
the vertical axis; the details are in the additional Fig. 5
where all Lm graphs begin with lower values than in
Fig. 3.

6. Conclusions

The formula to the rough evaluation of the
cuboidal room acoustics only with impedance walls
was achieved. For this purpose, a 3D acoustic prob-
lem in the room with rigid floor and impedance walls
and celling was considered. In other words, the above
solution was aimed at examining the qualitative (not
quantitative) response of the acoustic field to the ab-
sorption coefficient in a cuboidal room. Calculations
were performed for discrete values of the absorption
coefficient {α} in its full range and for discrete values
of frequencies {f} of the audible sound.

The main derived formula presents a mean acous-
tic pressure level Lm as a function of the absorption
coefficient α for separate frequencies {f} and separate
volumes of the room {V1, V2}. The new formula of Lm
is assumed in the form of power function where the
number exponent is fixed a priori for separate frequen-
cies.

Based on the new formula, two groups of frequen-
cies are recognised. It ought to be useful for evaluation
of the cuboidal room acoustics at first sight. The the-
oretical considerations were verified by numerical sim-
ulations and basing on them some conclusions can be
drawn.

1) It is possible to obtain an approximate formula
on the Lm for a rough evaluation of the cuboidal
room acoustics as a function of the coefficient ab-
sorption of walls for separate frequencies and sep-
arate volumes of the room.

2) For f = fsl = 2000 Hz the Lm makes up a straight
line Lsl.

3) Two groups of frequencies are distinguished: f ≡
fh > fsl and f ≡ fl < fsl.

4) For frequencies fh, the Lm takes the form polyno-
mials with negative exponents, and for frequencies
fl, the Lm takes the form of polynomials with pos-
itive exponents.

5) One can determine the substitute Lm for two
groups of frequencies, which can be used for super-
ficial estimation of the cuboidal room acoustics.

6) The change in a room volume slightly affects the
obtained Lm values.

7) Quantitative results of the Fourier method can be
a point of reference to the results of numerical
methods.
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