key: cord-1047150-x9uf99s0 authors: Ayele, Dagem Alemayehu; Teferra, Tadesse Fikre; Frank, Jan; Gebremedhin, Samson title: Optimization of nutritional and functional qualities of local complementary foods of southern Ethiopia using a customized mixture design date: 2021-11-22 journal: Food Sci Nutr DOI: 10.1002/fsn3.2663 sha: cf50a09ca7e059fe5d7074028d90fabaefaf9309 doc_id: 1047150 cord_uid: x9uf99s0 Commercially produced complementary foods are inaccessible to rural households in Ethiopia. This study aimed to optimize the nutritional and functional properties of local complementary foods using flours of the following locally available crops: maize, red kidney bean, kocho, and pumpkin fruit. Ten formulations were generated using a customized mixture design. A five‐point hedonic scale was used for the determination of organoleptic properties, and standard methods were used for the analyses of nutritional composition and functional properties. The flours were mixed in the range of 20%–30% for kocho, 10%–25% for pumpkin fruit, 10%–40% for red kidney bean, and 15%–30% for maize. Optimal nutritional and functional properties were obtained using 33.5% kocho, 22.5% maize, 17.5% pumpkin, and 26.5% red kidney bean. Optimal values for functional properties were 0.86 g/ml, 5.94 ml/g, 4.14 ml/g, 2.96 g/g, 5.0 ml/g, and 1225.3 cP for bulk density, water absorption capacity, oil absorption capacity, swelling capacity, swelling index, and viscosity, respectively. All formulations were within acceptable limits with scores ranging from 3.00 to 4.32 on a scale of 5. The inclusion of 25% pumpkin fruit flour and other ingredients between 20% and 30% increased the pro‐vitamin A carotenoid and vitamin E contents of the composite flours. Aside from optimization, a higher concentration of limiting amino acids was achieved with 40% kidney beans and 15%–25% of the other ingredients. The mineral contents improved with increasing pumpkin, kidney bean, and kocho. To sum up, the nutrient quality, energy density, and functional quality of complementary foods can be optimized at a low cost using local ingredients. Inadequate feeding practices are a major contributor to morbidity, mortality, as well as growth and development impairment in infants and young children Millward, 2017) . Globally, undernutrition contributes to nearly 50% of deaths among children under 5 years of age (UNICEF/ChildInfo, 2018) . Although Ethiopia has made some progress toward achieving the target for reducing wasting and stunting, 7% and 37%, respectively, in children younger than 5 years, the value is higher than the average (6.4%) for the African region (DHS & ICF, 2021; Global Nutrition Report, 2020) . Complementary feeding can play an important role in bridging the nutrient and energy gaps during the transition phase from exclusive breastfeeding to family foods. Because breast milk alone falls short of meeting all the nutrient requirements for optimal growth of infants, the WHO and UNICEF recommend that children should be introduced to nutritious and safe complementary foods at 6 months of age alongside continued breastfeeding (Beyene et al., 2015; Prell & Koletzko, 2016) . In low-income countries, inadequate nutrient intake from suboptimal complementary feeding in combination with a high incidence of infections at an early age is the major cause of high stunting rates and impaired development (Masuke et al., 2021) . Most rural households in these countries do not have access to animal protein or fortified foods (Hailegebriel, 2020) . Consequently, many resource-poor families rely on plant-based diets for their infants, which are usually based on a single type of cereal grain but prepared through different methods of cooking. Achieving dietary diversity is a major challenge among resourcepoor settings in the developing world (Bedada et al. 2020; Bosha et al. 2019) , particularly for children in rural Ethiopian households (Girma et al., 2015) . In Ethiopia, only 7% of children aged 6-23 months satisfied the minimum standards for all the three IYCF practices and only 14% of children had an adequately diverse diet whereas 45% had been fed the minimum number of times appropriate for their age (CSA and ICF, 2017) . Starchy staples, including cereals and foods from Ensete ventricosum (kocho, bulla, and amicho) , are commonly used for infant food preparation in central and southern parts of Ethiopia, even though they are low in protein and micronutrients and therefore a probable contributor to chronic undernutrition (Frühauf, 2018) . Pulses are another important group of crops growing in all parts of Ethiopia (Getachew, 2019) and may complement starchy staples in terms of their limiting amino acids. As cereals are high and legumes are low in sulfur-containing amino acids and cereals are low and legumes are high in lysine, the combined protein from both sources is of high biological value (Mariola Staniak and Bojarszczuk, 2014) . However, due to a lack of awareness in the population, pulses are not commonly used in the preparation of complementary foods. Also, locally available pigmented vegetables, such as pumpkin (Cucurbita pepo L.), which contains a high amount of provitamin A carotenoids and tocopherols (vitamin E) (Kulczynski and Gramza-Michałowska, 2019; Mahmoud et al. 2017) , have been overlooked for their use in complementary foods. We, therefore, hypothesized that it is possible to develop acceptable complementary food from locally available plant food sources to fill the nutrient and energy gaps in infants and young children in southern Ethiopia by making use of a customized mixture design. Experimental materials for complementary food formulation were selected based on local availability, cultural acceptability, nutritional composition, and affordability. Red kidney bean (Hawassa Dume Variety), white maize (DH-540 Variety), pumpkin (Cucurbita pepo L.), and a traditional processed product called kocho made from the corm of false banana (E. ventricosum) were all obtained from the local market of Boricha district located in Sidama Regional State, southern Ethiopia. Kidney beans were germinated to increase the bioavailability of minerals, the concentration of vitamin B (Oldewage-Theron et al., 2015) , nutrient density, and reduce the bulkiness of the complementary food (Nkhata et al., 2018) . Bean flour was prepared as described by Kassegn et al. (2018) . In brief, the kidney beans were cleaned and soaked in tap water (1:5, w/v) at 24°C for 12 hr. The water was drained and the beans were kept moist by covering with a moist muslin cloth in the dark at an average temperature of 22.5°C for 48 hr. The germinated beans were sun-dried for two consecutive days at an average temperature of 23°C, after which the sprouts were removed by abrasion. The dried beans were cooled, de-hulled using a mini grinding miller (Model: Alvan Blanch, Mini 9E), and subsequently milled to flour using a high-speed multifunction comminutor (Model: Ririhong, China), passed through a 710μm sieve and packed using polyethylene bags, and then stored under cold and dry conditions until required for formulation. Using the same method discussed under section 2.2.1, maize grains (Zea mays L.) were germinated. The grains were first winnowed and then hand-sorted to remove stones, leaves, and stalks, broken, undersized, and immature grains. The flour was prepared as described by Onwurafor et al. (2017) . Briefly, the cleaned maize was steeped in cold tap water (1:3 w/v) for 3 hr. The steeped grains were then spread in a dark room for germination for 2 days and sun-dried for another 2 days. The dried grains were gently pounded using a wooden mortar and pestle to remove a substantial amount of the pericarp as well as shoots and rootlets. The dry maize was then milled into flour and packed in polyethylene bags and stored at a temperature of 2°C until required for formulation. Kocho is an anaerobically fermented traditional food product extracted from the corms of the E. ventricosum plant (Gebremeskel et al., 2018) . Its flour was prepared as described previously by Getaneh et al. (2017) . In brief, traditionally prepared kocho mass was purchased from a local market and manually cut, mixed, squeezed, and sun-dried for 22 hr at an average temperature of 24°C. The dried kocho flour was passed through a 710µm sieve to reduce fiber and stored at 2°C in polyethylene bags until required for product formulation. Pumpkin pulp (Cucurbita pepo L.) flour was prepared as described by Usha et al. (2010) . In brief, the pumpkin fruit was washed under cold running tap water, peeled, halved, and seeds were completely removed. The flesh of the fruit was cut into even slices of 2-mm thickness and finely chopped using an electric mini chopper (Model: Philips, HR776, China). The pieces were then dried at 60°C for 1 hr and milled using a fluid-bed dryer (Sherwood Scientific, 230VAC, 50HZ); the powder was packed in polyethylene bags and stored in a dark and cold room until required for formulation. A 10-point customized mixture design (Table 1) with three center points was developed with JMP statistical software (a SAS Co. Product) to optimize nutrient composition (proximate, minerals, vitamins A and E) and functional properties (oil absorption capacity, water absorption capacity, swelling capacity, swelling index, and bulk density) of complementary foods. The optimal ranges of the combinations of flours of these crops were analyzed and reported as mixture profilers from all possible combinations. The dried flours were mixed at different proportions to make composite complementary flours based on a 10-point customized mixture design ( Table 1 ). The flour was mixed with a manual flour mixer for 5 min and porridges from composite flours were prepared as described (Mezgebo et al., 2018) . For optimization purposes, customized mixture experimental design requires setting lower, center, and upper limits. Subsequently, these values were set as indicated in Table 2 based on reference values from previous studies (Abebe et al., 2007; Bresciani & Marti, 2019; Kuliakina et al., 2020) . Proximate composition (crude protein, total ash, and crude fat) of the optimized flour was determined in duplicate following the methods of the Association of Official Analytical Chemists International (AOAC, 2000) . The total carbohydrate (CHO) content was determined by the difference method (% CHO =100 − (% protein + % fat + % ash + % crude fiber + % moisture)) as indicated by Merrill and Watt (1973) . The moisture content of the sample was determined after drying using the hot air oven method. The gross energy content of composite flours was estimated based on guidelines from Codex Alimentarius (FAO/WHO, 2015) . Calories were calculated from fat, carbohydrate, and protein contents using the Atwater's conversion factors (4 kcal/g for protein and carbohydrates; 9 kcal/g for fat; FAO, 2003). The analyses were performed using slightly modified versions Carotenoids were extracted and analyzed in triplicate by HPLC as previously described (Lux et al., 2020) . Briefly, 100 mg of flour was weighed into a centrifuge tube. One milliliter of the internal stand- Vitamin E congeners were quantified in triplicate as previously described (Grebenstein & Frank, 2012) . In brief, about 200 mg flour was weighed into a glass tube and 2 ml of ethanol (containing 1% ascorbic acid (w/v)), 900 µl of H 2 O, and 600 µl of KOH were added and samples saponified for 30 min at 70°C. Samples were then extracted three times with 2 ml of hexane and in total 5 of 6 ml added hexane was collected and evaporated. Samples were dissolved in 100 µl of ethanol and analyzed on a Shimadzu (Kyoto, Japan) Prominence TA B L E 2 Reference values used to set lower limit, center points, and upper limits of proportions for ingredients in the customized mixture experimental design for 30 min, and the supernatant was measured in a 10-ml graded cylinder. The density of water was taken as 1.0 g/cm 3 and that of sunflower oil as 0.96 g/ml. Water/oil absorbed was calculated as the difference between the initial volume of water/oil added to the sample and that of the supernatant. where WAC is the water absorption capacity and OAC is the oil absorption capacity. The bulk density of each sample was measured as previously described by Adegbanke et al. (2018) . Briefly, a flour sample of 50 g was weighed into a 100-ml glass measuring cylinder. The measuring cylinder was then tapped repeatedly on a firm pad on the laboratory bench until the constant volume was achieved, and the volume was recorded. Bulk density (g/ml) was then calculated as: where BD is the bulk density. The swelling index is the amount of water-soluble solids per unit weight of the sample. It was measured as previously described by Adegbanke et al. (2018) . Briefly, 3 g sample was transferred to a 50-ml graded cylinder, and 30 ml of distilled water was added. The cylinder was swirled and then allowed to stand for 60 min at room temperature. The volume change was registered and the swelling index was calculated as: where SI is the swelling index. The gel (substance left after discarding the supernatant) obtained from the swelling index analysis was used to calculate the swelling capacity of the flour samples. The computational formula is given as: where SC is the swelling capacity. Porridge samples were prepared from each formula by cooking a mixture of flour and water (1:3, by volume) for 10 min. The cooked porridge was transferred to a 250-ml beaker and placed in a water bath (Model: Kottermann D 3165, Hänigsen, W. Germany) maintained at 40°C. A Brookfield viscometer (Model: RVDV-IT) was used to measure the porridge viscosity (in centipoises, cP) using spindle number 6 at a shear rate of 50 rpm as described . The nutrient density of the optimized composite flour was calculated using the results from the laboratory analyses described above and divided by the respective calculated energy and given as g/100 kcal. Sensory evaluation for acceptability of the optimized porridge sample was conducted at Boricha district Sidama regional state, southern Ethiopia. Infants and young children are not matured enough to involve in sensory and consumer research on account of inability to communicate verbally, limited cognitive abilities, low sensitivity, and very low attention period (Lawless and Lawless, 1998) . Thirty-two healthy and untrained panelists (mothers/caretakers and child pairs) were screened for the sensory evaluation while applying the lottery method. Following orientation, coded and freshly cooked samples were served in a white plastic cup along with bottled water to cleanse their palate between samples and during evaluation of the sensory attributes of porridge. The products were assessed for their appearance, texture, aroma, taste, and overall acceptability based on five-point hedonic scales, where 1 = Dislike extremely, 2 = Dislike moderately, 3 = Neither like nor dislike, 4 = Like moderately, and 5 = Like extremely. The highest concentrations of calcium, phosphorus, and potassium were present in the pumpkin flour (Figure 1) (Figure 4; Table 3 ). The nutrient and energy density of optimized flours are indicated in Table 4 . High calcium density (27.7 mg/100 kcal) was observed in the sample in which the proportion of kocho and maize flours were high 35% and 22.5%, respectively, while the lowest value (19.3 mg/100 kcal) corresponded to the samples with a lower proportion of maize 15% in the mixture and the optimal value was 24.1%. The optimal value for dietary iron was 1.3 mg/100 kcal, and the high density of 1.5 mg/100 kcal corresponded to the formulation containing the highest level of kocho (35%). On the contrary, the lowest value of iron density (1.1 mg/100 kcal) was observed for the samples in which the proportion of kocho was low (20%). The highest zinc density (0.7 mg/100 kcal) was recorded in the sample mixture containing a high proportion of pumpkin, maize 20%, and 30%, respectively, correspondingly lowest value of 0.3 mg/100 kcal was observed in the samples with the and 79.7 mg/100 kcal respectively in the same samples containing the highest proportion of pumpkin and red kidney bean 25% and 40% respectively. A high protein density of 3.6 mg/100 kcal was observed in the samples containing the highest proportion of kidney bean (40%). Finally, the energy density was almost similar to 3.3 kcal/g in all formulations. The concentration of lysine, cysteine, tryptophan, methionine, and threonine in the current optimized composite flours was observed to be as high as 0.67%, 0.13%, 0.12%, 0.14%, and 0.44%, respectively, and this was observed in the sample containing the highest propor- The functional properties (water absorption capacity, oil absorption capacity, swelling capacity, swelling index, and viscosity) of the developed composite flours are presented in the mixture profiler ( Figure 4 ) and in the prediction profiler ( Figure 3 ). Both water absorption capacity and bulk density were slightly decreased with increasing amounts of kocho, and significantly increased with red kidney bean proportion in the mixture (Figure 3 ). Oil absorption capacity decreased with increasing contents of kocho, pumpkin, and kidney bean, but slightly increased with that of maize. The swelling capacity increased with the amount of kocho, pumpkin, and kidney beans, but reduced with the proportion of maize in the flours. The swelling index increased with the portion of kidney beans but was not significantly affected by the other flours. Viscosity increased with increasing kocho, and decreased with increasing pumpkin and maize flour (Figure 3 ). The mean sensory scores for cooked porridges using the developed local composite flours R1-R10 ranged from 3.0 to 4.3 (average values) on a scale of 5 (Table 5 ). All porridges were accepted in terms of all the sensory attributes considered with the scores of 4 and 5 most frequently granted for overall acceptability. The scores for taste, texture, and overall acceptance seemed to increase together with the proportion of pumpkin flour, although there is no clear statistical segregation (p > .05). The optimal proximate composition, functional properties, and micronutrient concentrations of the developed complementary flours were achieved with 33.5% kocho, 22.5% maize, 17.5% pumpkin, and 26.5% red kidney beans. The optimal composition is indicated by a circle around the juncture of three lines meeting from the three ingredients ( Figure 4) . The optimal proximate (crude protein, crude fat, total carbohydrate, and crude fiber) composition of the developed composite flour was determined and is shown in the mixture profilers (Figure 4) . The moisture content of the developed composite flour slightly increased with increasing amounts of starchy ingredients (kocho and maize) and decreased with the increasing content of kidney beans and pumpkin. The crude protein and ash contents slightly increased with the amount of pumpkin and kidney beans, and slightly de- The highest energy density value for the formulated composite flour made from kocho, pumpkin, maize, and red kidney bean was 3.3 kcal/g (Table 4 ). According to the Codex standard for processed cereal-based foods for infants and young children, the energy density of a cereal-based complementary food should be ≥0.8 kcal/g (Commit Codex Alimentarius, 2006) . Hence, our optimized composite flours can help to meet the minimum daily energy requirements for infants and young children aged 6-23 months but lower from another study for sweet potato-based infant wean-mix (4.4 kcal/g; Amagloh et al., 2011) . The range of protein in the optimized formulations was 1.7-3.6 and the optimal value was 3.0 g/100 kcal (Table 4 ). The Codex standard sets the upper threshold of protein requirements for infants and children at 5.5 g/100 kcal (Commit Codex Alimentarius, 2006) ; thus, our developed complementary food can also help to meet this requirement if 250-ml cup of this meal is fed two to three times per day for children aged 6-8 months and three to four times per day for children aged 9-11 and 12-24 months accompanied by additional nutritional snacks and average breastfeeding (K. Dewey, 2000; WHO, 2009) . These values were in agreement with teff-soybean-based complementary food by Tenagashaw et al. (2017) . However, protein density and energy density in this study are slightly lower than those of local complementary foods from West Africa (protein 4.00 g/100 g; energy 4.00 kcal/g) reported by Onofiok and Nnanyelugo (1998) and Nigeria (protein F I G U R E 2 Concentrations (least square mean, error bars show SEM) of limiting amino acids in selected composite flours. For each amino acid, bars not sharing a common letter are significantly different (p <.05). Flour compositions for sample coding R1-R10 are given under Table 1 ; R14 = (100% pumpkin fruit flour) 6.52 g/100 g; energy 4.0-4.2 kcal/g) as described by Oluwole Steve and Isaac Babatunde (2013). Alternatively, these values are higher than the energy and protein densities of local complementary foods from Ethiopia-0.48-0.53 kcal/g and 2.13-2.48 g/kcal, respectively (Abebe et al., 2006; Geleta et al., 2016) . Cereals and pulses differ in their limiting amino acids. The biological value of the protein can therefore be improved by combining both protein sources in a single meal (Hall et al., 2017; Sozer et al., 2017) . This was considered in the development of the optimized formulations in this study. The vitamin A density of the optimized complementary food ranged from 34.9 to 79.6 and the optimal value was 63 μg RE/100 kcal; the current result was two-fold higher when compared with the daily requirement of 31 μg RE/100 kcal for cereal-based complementary foods for 6-to 23-month-old infants (K. G. Dewey & Brown, 2003) . The current finding was higher than for complementary food made In the same way, the presence of fat in a meal facilitates the incorporation of carotenoids into mixed micelles and therefore an intake of 3-5 g of fat is recommended to aid carotenoid absorption (Murkovic et al., 2002; Priyadarshani, 2017; Roodenburg et al., 2000) . This can be achieved, for example, by feeding plant-based complementary foods together with breast milk (Giugliani & Victora, 2000) . The calcium density in our optimized formulation was 24.1 mg/100 kcal (Table 4) , which can meet 25% of the daily requirement as set by the WHO for infants aged 6-8 months and 32% for infants aged 9-11 months (K. G. Dewey & Brown, 2003) or nearly 50% of the minimum calcium intake for infants (50 mg/100 kcal; Koletzko et al., 2010) . Overall acceptability 3.9 a 3.9 a 4.2 a 3.8 a 3.7 a 4.1 a 3.7 a 3.7 a 0.0 Note: Compositions of formulations, coding (R1-R10), and abbreviation are explained in the footnote of Table 1 . Thirty-two untrained panelists were involved in the current sensory evaluation. The iron density in the optimized formulation was 1.3 mg/ kcal, which does only meet 28.9% of the recommended iron density for complementary foods for 6-to 11-month-old infants of 4.5 mg/100 kcal (K. G. Dewey & Brown, 2003) . The absorption of iron from plant-based foods is low but can be enhanced by the simultaneous intake of vitamin C. Hence, the addition of locally available fruits, such as papaya and mango, and vitamin C-rich vegetables, such as spinach, cabbage, and potato, is recommended for optimal iron absorption (Hurrell & Egli, 2010) . The present result for iron and calcium density is in agreement with complementary foods in southern Ethiopia, but slightly lower than for zinc density . The zinc density in the optimized formulation was 0.4 mg/100 kcal (Table 4 ) and thus below the recommended value of 1.6 mg/100 kcal for 6-to 8-month-old infants. The Ca, Fe, and Zn contents of the individual flours used in the current formulation were in agreement with those reported in the literature, in particular for kocho (Abebe et al., 2007; Andeta et al., 2019; Atlabachew & Chandravanshi, 2008; Hailegebriel, 2020) . To meet the daily requirements for Na, Mg, P, and K for infants and young children, it would be necessary to feed the optimized formulation two to three times per day. Water absorption capacity depends on the ability of a polysaccharide or protein matrix to absorb, retain, and also physically entrap water against gravity and is strongly associated with flour thickness and viscosity (Traynham et al., 2007) . A high water absorption capacity is an indicator of higher moisture in the matrix and the water will thus dilute the energy and nutrient content of the composite flour (Michaelsen et al., 2017) . Both the swelling capacity of 2.98 g/g and swelling index of 4.98 ml/g of the optimized flour ( Figure 3) were higher than those of cereal-nut-based complementary foods-1.26 ml/g and 0.55 ml/g, respectively (Adegbanke et al., 2018) . The optimal bulk density of the developed flour mix (0.86 g/ml; Figure 3 ) is in agreement F I G U R E 4 Optimal formulation (blue circle) for proximate composition, functional properties, and micronutrient contents of complementary foods in fractions based on their dry weight. [a] Combinations of kocho, pumpkin, and maize; [b] combinations of pumpkin, kocho, and RKB. The bigger triangular region is the design space, whereas the white region satisfies all the constraints in the DOE and the lines in the white region indicate the trend of increasing or decreasing nutritional and functional properties; blue circles indicate the optimal ratio for each ingredient. RKB = red kidney bean; and DOE = design of experiment with the bulk density of legume-based and cereal-legume-based complementary foods (0.82 g/ml; Borbi et al., 2020; Ijarotimi & Keshinro, 2012) , but lower than pumpkin-based complementary food (0.46 g/ml; Bello et al., 2017) . The variation in bulk density of foods could be due to the variation in starch and initial moisture content of the foods and increase correspondingly with the starch content (Iwe et al., 2016; Godswill et al., 2019) . The high value of bulkiness is undesirable for complementary food due to the physiology of the alimentary canal and stomach capacity of the infant that is usually small to accommodate bulky food material (Adeyeye, 2009; Singh, 2013) . The optimal viscosity (1225.2 cP; Figure The mean scores for sensory attributes for optimized porridge samples are indicated in Table 5 . The appearance of porridge samples prepared from optimized composite flour ranged from 3.0 to 4.0, and a formulation containing the highest proportion of pumpkin and maize 25% and 30%, respectively, was liked most for its appearance. A similar result was reported by Olika et al. (2021) for optimized sorghum-soybean-based flour gruel, which had exhibited no significant difference (p > .05) when kocho flour in the optimized mixture was increased from 20% to 50%. Differently, the mean taste score ranged from 3.3 to 4.1 and had no significant difference for all optimized formulations (p > .05). The mean score for aroma ranged from 3.4 to 4.2 and showed no significant difference (p > .05) except in two formulas containing a high proportion of kocho (35%) and in a mixture containing a high proportion of kidney bean (40%) and a low proportion of pumpkin (10%). This is in agreement with Mekuria et al. (2021) for grain-based weaning food in which aroma score ranged from 3.73 to 4.23. As regards the texture, the mean score for most of the formulations showed no significant difference (p > .05). The least preference showed on overall acceptability was observed in the porridge containing the highest proportion of kidney bean flour (40%); this could be due to the development of undesirable beany flavor masking the final product (Bresciani & Marti, 2019; Roland et al., 2017) . The current optimized complementary food is also far better in all sensorial attributes than soya bean-moringa-based complementary food formulated by Gebretsadikan et al. (2015) . In the most preferred formulation, each ingredient in the optimized mixture was proportionally equal; this probably made the product develop familiar sensory properties with the existing local complementary foods in the locality, though there was no significant difference (p < .05) among formulations for overall acceptability. Due to budget limitations as well as COVID-19-enabled travel restrictions, parameters such as food safety or microbial analyses and protein digestibility of the final products were not analyzed. For the same reasons, vitamins A and E as well as amino acids were not analyzed for all samples and their replications. The presented data support that it is possible to develop acceptable, nutrient-and energy-dense complementary foods using only locally available foods in southern Ethiopia, namely kocho, pumpkin, maize, and red kidney bean. We identified pumpkin fruit flour as an important source of provitamin A carotenoids and minerals that could help to combat vitamin A deficiency. We further observed that by optimizing the ratios of kidney bean, maize, and kocho flours, the content of limiting amino acids can be increased and the protein and energy densities of complementary food are enhanced. To sum up, the use of locally available crops in the formulation of complementary food can be a successful strategy to combat protein energy and micronutrient malnutrition in infants and young children. The authors acknowledge the financial support provided within the Informed verbal consent was obtained from each of the sensory panelists. The dataset supporting this study will be available from the corresponding author upon reasonable request. Phytate, zinc, iron and calcium content of selected raw and prepared foods consumed in rural Sidama, Southern Ethiopia, and implications for bioavailability Nutritive value and sensory acceptability of corn-and kocho-based foods supplemented with legumes for infant feeding in Southern Ethiopia Complementary Feeding: Review of Recommendations, Feeding Practices, and Adequacy of Homemade Complementary Food Preparations in Developing Countries -Lessons from Ethiopia Physicochemical and sensory qualities of complementary meal made from sprouted and unsprouted sorghum, Irish potato and groundnut Comparative Evaluation of the nutritional quality, functional properties and amino Acid Profile of Co-Fermented Maize/Cowpea and Sorghum/Cowpea Ogi as Infant Complementary Food Original Article A householdlevel sweet potato-based infant food to complement vitamin A supplementation initiatives Development and validation of lactic acid starter cultures for enset (Ensete ventricosum) fermentation. LWT, 115, 108462 Official methods of analysis Levels of major, minor and trace elements in commercially available enset (Ensete ventricosum (Welw.), Cheesman) food products (Kocho and Bulla) in Ethiopia Dietary Diversity Practice and Associated Factors among Children Aged 6-23 Months in Robe Town Proximate composition and functional properties of sprouted sorghum and defatted fluted pumpkin seed flour blends Formulation of quality protein maize (QPM) based nutritionally improved complementary food (CF): The case of Shebedino Woreda, Southern Ethiopia Dietary diversity, meal frequency and associated factors among infant and young children in Northwest Ethiopia: A cross-sectional study Development and quality evaluation of banana-rice-bean porridge as weaning food for older infants and young children Dietary diversity and anthropometric status of mother-child pairs from enset (False banana) staple areas: A panel evidence from southern Ethiopia Using pulses in baked products: lights, shadows, and potential solutions Codex standard for processed cerealbased foods for infants and young children CODEX STAN 074-1981 Central Statistical Agency (CSA) (Ethiopia) and ICP. 2016. Ethiopia demographic and health survey 2016. CSA and ICF Complementary feeding WHO/PAHO. Guiding principles for complementary feeding of the breastfed child. World Health Organization, UNICEF Update on technical issues concerning complementary feeding of young children in developing countries and implications for intervention programs FAO Food and Nutrition paper 77. Food energy -methods of analysis and conversion factors Vitamin and mineral requirements in human nutrition Second edition Energy-nutrition labelling Carotenoids bioavailability from foods: From plant pigments to efficient biological activities The physico-chemical composition and sensorial quality of kocho bread blended with wheat (Triticum aestivum) and soybean Nutritional quality and acceptability of sweet potato-soybeanmoringa composite porridge Evaluation of energy, protein, and selected micronutrient density of homemade complementary foods consumed by children between 6 months and 23 months in food insecure woredas of Wolayita zone, Southern Ethiopia. Nutrition and Dietary Supplements Pulse crops production opportunities, challenges and its value chain in Ethiopia: A review article Prevalence of anemia and associated factors among school children in Gondar town public primary schools, northwest Ethiopia: A school-based cross-sectional study Dietary diversity and associated factors among rural households in south gondar zone, northwest Ethiopia Global nutrition country profile. Retrieved from globa lnutr ition report The functional properties of foods and flours Rapid baseline-separation of all eight tocopherols and tocotrienols by reversed-phase liquidchromatography with a solid-core pentafluorophenyl column and their sensitive quantification in plasma and liver Prevalence and determinants of stunting and thinness/Wasting among schoolchildren of Ethiopia: A systematic review and meta-analysis Composition, nutritional value, and health benefits of pulses Contents of iron, calcium, zinc and β-carotene in commonly consumed vegetables in Bangladesh Iron bioavailability and dietary reference values Ethiopia Mini Demographic and Health Survey Formulation and nutritional quality of infant formula produced from germinated popcorn, Bambara groundnut and African locust bean flour Proximate, functional and pasting properties of FARO 44 rice, African yam bean and brown cowpea seeds composite flour Formulation of Maize -Based complementary porridge using orange -Fleshed Sweet Potato and Bean Flour for Children Aged 6-23 Months in Kachabira Woreda, Southern Ethiopia Evaluation of physicochemical and functional properties of composite flour.pdf Effect of germination process on nutrients and phytochemicals contents of faba bean (Vicia faba L.) for weaning food preparation Global standard for the composition of infant formula: Recommendations of an ESPGHAN coordinated international expert group The profile of carotenoids and other bioactive molecules in various pumpkin fruits (Cucurbita maxima Duchesne) cultivars Assessment of the biochemical composition and technological properties of Far Eastern dessert pumpkin varieties for the production of functional products Effects of color and odor on judgments of sweetness among children and adults Poly)phenols, carotenoids, and tocochromanols in corn (Zea mays L.) kernels as affected by phosphate fertilization and sowing time Chemical composition, functional and organoleptic properties of complementary foods formulated from millet, soybean and African locust bean fruit pulp flour blends Nutritional potential, mineral composition and antioxidant activity of squash (Cucurbita Pepo L.) Fruits Grown in Egypt Mixtures of legumes with cereals as a source of feed for animals Effect of inappropriate complementary feeding practices on the nutritional status of children aged 6-24 months in urban Moshi. Northern Tanzania: Cohort Study Development of legume based complementary food products Nutritional quality and safety of complementary foods developed from blends of staple grains and honey bee larvae (Apis mellifera) Energy value of foods: basis and deri-vation. Agriculture Handbook No. 74 Optimization of red teff flour, malted soybean flour, and papaya fruit powder blending ratios for better nutritional quality and sensory acceptability of porridge Emerging issues in complementary feeding: Global aspects. Maternal and Child Nutrition Nutrition, infection and stunting: The roles of deficiencies of individual nutrients and foods, and of inflammation, as determinants of reduced linear growth of children Carotenoid content in different varieties of pumpkins Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes Nutrition knowledge and dietary intake of adolescents in Cofimvaba Heliyon Optimization of nutritional and sensory qualities of complementary foods prepared from sorghum, soybean, karkade and premix in Benishangul -Gumuz region Chemical compositions and nutritional properties of popcorn-based complementary foods supplemented with Moringa oleifera leaves flour Weaning foods in West Africa: Nutritional problems and possible solutions Chemical, functional, pasting and sensory properties of sorghum-maize-mungbean malt complementary food Breastfeeding and complementary feeding recommendations on infant nutrition A review on factors influencing bioaccessibility and bioefficacy of carotenoids The effect of Amygdalus scoparia Spach and Lepidium sativum L. seed gums on the properties of formulated food supplement for soldiers using Response Surface Methodology Flavor aspects of pulse ingredients Amount of fat in the diet affects bioavailability of lutein esters but not of α-carotene, β-carotene, and vitamin E in humans Assessment of functional properties of different flours Traditional and new food uses of pulses Micronutrient status in lactating mothers before and after introduction of fortified flour: Cross-sectional surveys in Maela refugee camp Nutrient density of complementary foods formulated from a blend of teff. Soybean and Orange-fleshed Sweet Potato Improvement of energy and nutrient density of sorghum_based complementary foods using germination Improvement of energy and nutrient density of sorghum-based complementary foods using germination Evaluation of water holding capacity of wheat-soya flour blends Nutrition Profile Ethiopia Nutritional, sensory and physical analysis of pumpkin flour incorporated into weaning mix Infant and young child feeding for medical students and allied health professions Complementary feeding of young children in developing countries: a review of current scientific knowledge. World Health Organization Optimization of nutritional and functional qualities of local complementary foods of southern Ethiopia using a customized mixture design