key: cord-1042282-7wirya95 authors: Xu, Hao; Yan, Chonghuai; Fu, Qingyan; Xiao, Kai; Yu, Yamei; Han, Deming; Wang, Wenhua; Cheng, Jinping title: Possible environmental effects on the spread of COVID-19 in China date: 2020-05-07 journal: Sci Total Environ DOI: 10.1016/j.scitotenv.2020.139211 sha: 3665d4b76e466f0184fb3b8e0da3851a725b3af4 doc_id: 1042282 cord_uid: 7wirya95 Abstract At the end of 2019, a novel coronavirus, designated as SARS-CoV-2, emerged in Wuhan, China and was identified as the causal pathogen of COVID-19. The epidemic scale of COVID-19 has increased dramatically, with confirmed cases increasing across China and globally. Understanding the potential affecting factors involved in COVID-19 transmission will be of great significance in containing the spread of the epidemic. Environmental and meteorological factors might impact the occurrence of COVID-19, as these have been linked to various diseases, including severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), whose causative pathogens belong to the same virus family as SARS-CoV-2. We collected daily data of COVID-19 confirmed cases, air quality and meteorological variables of 33 locations in China for the outbreak period of 29 January 2020 to 15 February 2020. The association between air quality index (AQI) and confirmed cases was estimated through a Poisson regression model, and the effects of temperature and humidity on the AQI-confirmed cases association were analyzed. The results show that the effect of AQI on confirmed cases associated with an increase in each unit of AQI was statistically significant in several cities. The lag effect of AQI on the confirmed cases was statistically significant on lag day 1 (relative risk (RR) = 1.0009, 95% confidence interval (CI): 1.0004, 1.0013), day 2 (RR = 1.0007, 95% CI: 1.0003, 1.0012) and day 3 (RR = 1.0008, 95% CI: 1.0003, 1.0012). The AQI effect on the confirmed cases might be stronger in the temperature range of 10 °C ≤ T < 20 °C than in other temperature ranges, while the RR of COVID-19 transmission associated with AQI was higher in the relative humidity (RH) range of 10% ≤ RH < 20%. Results may suggest an enhanced impact of AQI on the COVID-19 spread under low RH. Human beings have suffered two large-scale outbreaks of pneumonia caused by coronavirus in the first two decades of 21th century, caused by severe acute respiratory syndrome coronavirus (SARS-CoV) (Drosten et al., 2003) , and Middle East respiratory syndrome coronavirus (MERS-CoV) (Zaki et al., 2012) . In December 2019, 27 patients with pneumonia infection of unknown etiology were reported in the city of Wuhan, Hubei Province, China . Later, on 7 January, a novel coronavirus termed Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), was identified as the causative pathogen of COVID-19 (Lu et al., 2020) . Clinically, the common symptoms of COVID-19 appear to be fever, cough, myalgia or fatigue, hemoptysis, diarrhea, dyspnea, lymphopenia and kidney failure . More recently, anosmia and other forms of olfactory dysfunction in COVID-19 patients (Bagheri et al., 2020; Brann et al., 2020) were identified. Early confirmed cases of COVID-19 were speculated to have had contact history with a seafood market in Wuhan . Soon, human-to-human transmission was revealed through detection of infection in at least one household cluster (Chan et al., 2020) and in health workers caring for COVID-19 patients . There has been a rapid increase in COVID-19 confirmed cases since the identification of SARS-CoV-2. As of 15 February 2020, 68,500 cumulative confirmed cases and 1,665 deaths have been documented domestically (NHC, 2020b) , and 528 cases and 2 deaths were reported out of China (WHO, 2020b) . The World Health Organization Journal Pre-proof J o u r n a l P r e -p r o o f 4 declared the COVID-19 epidemic a public health emergency of international concern on 30 January 2020 (WHO, 2020a) . Respiratory viruses, such as SARS-CoV and MERS-CoV, contained in infectious droplets and body fluids are capable of contaminating the human conjunctival epithelium and inducing complications in infected patients, thus leading to respiratory infection (Belser et al., 2013; Olofsson et al., 2005) . The transmission of SARS-CoV-2 between humans may occur by three routes (NHC, 2020a): 1) direct transmission via inhalation of respiratory droplets (coughs or sneezes by infected patients in close proximity); 2) contact transmission through touch of a surface or object contaminated with the virus; and 3) aerosol transmission in confined spaces. An early study by Liu et al. (2020) suggests an even more severe transmissibility than SARS-CoV . There is significant evidence that air pollution is associated with premature mortality (Lelieveld et al., 2015; Giannadaki et al., 2014) and adverse health effects (West et al., 2013; Hirabayashi and Nowak, 2016) . A global estimate showed that 4.3 million deaths occurred as a result of deteriorated air quality (Lelieveld, 2017; Cohen et al., 2017) . Elevated nitrogen oxides (NO x ) and particulate matter (PM) concentrations have been linked to increased incidence rates of cardiovascular and pulmonary diseases, asthma, diabetes and cancers (Shiraiwa et al., 2017; Hertel et al., 2013) . Specifically, air pollution has been linked to virus-induced diseases, such as influenza (Chen et al., 2010; Thach et al., 2010) , pneumonia and acute lower respiratory infections (Horne et al., 2018; Glass and Rosenthal, 2018) , and severe acute J o u r n a l P r e -p r o o f 5 respiratory syndrome (SARS) (Cui et al., 2003) . A positive association between air quality and SARS case fatality was identified by Cui et al. (2003) . As a major air pollutant, particulate matter (PM) is capable of remaining airborne for a long period (Cowling et al., 2013; Kim et al., 2015) . Infectious virus and viral RNA can be detected on particles with aerodynamic diameters larger and smaller than 5 μm (Milton et al., 2013; Lindsley et al., 2010) . PM of 5 μm or less in diameter attached with viruses can be inhaled and penetrated deep into the respiratory tract and to the alveolar region (30% penetration for 5 μm particles). Inside the human body, viral agents attached on the PM can be delivered directly to the respiratory epithelial cells and translocated to other organs (Nemmar, 2004; Tellier, 2009) , thus inducing infections and various health effects. Particularly, airborne PM 2.5 (PM with aerodynamic diameter ≤ 2.5 μm) has been reported to be associated with daily human influenza cases (Lindsley et al. 2010; Liang et al. 2014; ) and respiratory syncytial virus infection (Vandini et al. 2013; Nenna et al., 2017) . Moreover, SARS mortality was found to be positively correlated with PM with aerodynamic diameter smaller than 10 μm (PM 10 ). Additionally, meteorological conditions, such as temperature and humidity are associated with the spread of numerous viral diseases, such as influenza and respiratory syncytial virus (Bloom-Feshbach et al., 2013; Lowen et al., 2007) , SARS and MERS (Lin et al., 2006; Gardner et al., 2019) . Epidemiological studies have shown that lower temperature may increase the risk of transmission for both J o u r n a l P r e -p r o o f 6 SARS and MERS (Lin et al., 2006; Gardner et al., 2019) , and infection with MERS-CoV is more likely to occur under dry conditions (Gardner et al., 2019) . Although much more about COVID-19 remains to be learned, the causal pathogen, SARS-CoV-2 belongs to the same virus family as SARS-CoV and MERS-CoV, and all three of these coronaviruses have been identified to be capable of airborne transmission Yu et al., 2004; Zumla and Hui, 2014) . Moreover, the transmission of SARS and MERS has been associated with air quality and meteorological conditions (Cui et al., 2003; Lin et al., 2006; Gardner et al., 2019) . Therefore, it is reasonable to speculate that environmental and meteorological factors might affect the spread of COVID-19. The spread of the COVID-19 epidemic has significantly declined in some counties, e.g., in China, due to unprecedented nationwide interventions. However, the COVID-19 outbreak shows no signs of slowing down from a global perspective. A more comprehensive understanding of COVID-19, including the possible potential impacts of environmental factors, would be of significance for containing its spread. Therefore, this study focuses on analyzing the association between the air quality index (AQI) and the confirmed cases of COVID-19 and investigating the effect of temperature and humidity on the AQI -COVID-19-confirmed case association. (Wang et al., 2015) . Since the outbreak of the COVID-19 epidemic, the daily, and even 12-hourly confirmed cases (mild, moderate, severe and critical), suspected cases, close contact cases, and deaths were reported to Health Commissions at all stages (county level, municipal, provincial and national). The COVID-19 patient numbers of the 33 cities were derived from the Health Commissions at the municipal and provincial levels. Air quality is monitored in China through a monitoring network covering four levels: We extracted daily averages of air quality data, including AQI, PM 2.5 , PM 10 , NO 2 , SO 2 and O 3 -8h over the study period from a data platform (https://www.aqistudy.cn/historydata/), whose data are recorded from an air quality data publishing platform operated by CNEMC. Weather variables, including temperature, relative humidity, atmospheric pressure, and wind speed, were obtained as daily averages (mean daily values are derived by averaging the hourly values when the average daily data are not available, from a meteorological data provider (http://hz.zc12369.com/home/) and the China Meteorological Data Service Center (http://data.cma.cn/en)). Meteorological variable, air quality data and number of COVID-19 confirmed cases are summarized as the mean daily averages over the study period in the Supporting Information (SI). J o u r n a l P r e -p r o o f 9 The time-series Poisson regression, which has been frequently used in corresponding studies (Gasparrini et al., 2012 (Gasparrini et al., , 2015 Guo et al., 2013) , is used in this study. Since the weather conditions are correlated with health effects and the impact may last for a few days (Patz et al., 2000; Peng et al., 2006) , the meteorological factors, including daily mean temperature (T), relative humidity (RH), atmospheric pressure and wind speed, are controlled for eliminating the potential confounding effects, with a seven-day moving average and a natural cubic spline with three degrees of freedom (Chen et al., 2017; Gasparrini et al., 2013) . The association between AQI and the confirmed cases of COVID-19 is investigated by estimating the effect of AQI on the confirmed cases associated with an increase in each AQI unit, which is referred to as relative risk (RR). To characterize the lag associations between AQI and the number of COVID-19 confirmed cases, the associations were examined using a lag model (from lag 0 to lag 7). The lag-response association suggests the temporal variation in risk after a specific exposure, and it reveals the distribution of current and delayed effects that accumulate across the lag period (Gasparrini et al., 2015) . While exploring the possible effect of ambient temperature and humidity on the associations between AQI and confirmed cases of COVID-19, an interactive term between AQI and confirmed cases of COVID-19 was added on the basis of daily temperature and humidity. The daily temperature and relative humidity during the study period are categorized in different J o u r n a l P r e -p r o o f 10 range groups (see Table 2 and Table 3) , and the temperature range of 20 °C < T ≤ 24.9 °C during the study period and the relative humidity range of 10% ≤ RH < 20% (RH below 10% not appeared) are considered as the reference group for the effect estimation. Data were analyzed using R version 3.6.2 (R Core Team, 2019) and the supplementary package of 'dnlm'. Figure 1A illustrates the spatial distribution of AQI in investigated cities, from which a geographical heterogeneity was observed. The highest levels of AQI were represented by cities located in western and northern regions of China, such as Urumqi, Shijiazhuang and Xi'an, all of them are inland cities, while cities with lower AQI are mostly located in the south of China, and mostly in coastal areas, e.g., Shenzhen, Sanya and Guiyang. During the period of study, the highest AQI was recorded in Urumqi, whereas the lowest was represented by Shenzhen among the 33 investigated locations. As detailed in Figure 1B , the number of COVID-19 patients appears to be higher in cities like Chongqing, Wenzhou, Shenzhen, Beijing and Shanghai, which are economically more capable, while cities such as Lhasa, Ordos, and Xining reported much fewer confirmed cases of COVID-19; these cities are Air quality data are correlated with meteorological parameters (Kumar and Goyal, 2011; Luo et al., 2017) . The Pearson correlations of AQI and meteorological variables over the study period are summarized in Table 1 . The AQI was statistically significantly negatively correlated with temperature and wind speed (r = -0.30, and -0.20, respectively), while no significant correlation was observed with atmospheric pressure. There was a strong correlation between relative humidity and atmospheric pressure (r = 0.53) and temperature (r = 0.42), while weak or no significant correlations were observed between other meteorological factors. The association between AQI and count of confirmed COVID-19 cases, considered as relative risk, for each individual location is detailed in Figure 2 . The relative risk estimated is variable by cities. Statistically significant correlations between AQI and count of confirmed cases were observed in Jinzhong (RR = 1.008, 95% CI: 1.003, 1.014), Beijing (RR = 1.006; 95% CI: 1.005, 1.008), Tianjin (RR = 1.005, 95% CI: 1.004, 1.006) and Xi'an (RR = 1.003; 95% CI: 1.001, 1.005), which are located in the north and north-west of China, whereas no statistical significance was detected for Figure 3 demonstrates the lag association of AQI and the number of confirmed COVID-19 cases. The effect of AQI on the COVID-19 confirmed cases was statistically significant at lag day 1 (RR = 1.0009, 95% CI: 1.0004, 1.0013), day 2 (RR = 1.0007, 95% CI: 1.0003, 1.0012) and day 3 (RR = 1.0008, 95% CI: 1.0003, 1.0012), indicating a significant association of the effect of AQI on the COVID-19-confirmed cases at lag 1 -3 days. Table 2 and Table 3 detail the results of the effects of temperature and relative humidity on the association of AQI and the count of confirmed COVID-19 cases. The effect of AQI on the confirmed COVID-19 cases in the temperature range of 10 °C ≤ T < 20 °C might be stronger (with higher RR value) than in other temperature ranges. With regard to the effect of AQI on the COVID-19-confirmed cases in different humidity ranges, the RR values were lower in the relative humidity ranges of 20%≤RH<40%, 40%≤RH<60%, 60%≤RH<80% and 80%≤RH ≤ 100% than in the range of 10% ≤ RH < 20%, indicating an enhanced effect of AQI on the confirmed cases under lower RH. This may reflect the fact that viruses (such as respiratory virus and SARS-CoV) (Paynter, 2015; Chan et al., 2011) have better stability under low humidity, resulting in strengthened transmission capability. J o u r n a l P r e -p r o o f 13 Identifying the key factors that impact the spread of COVID-19 will be of great significance in containing the spread of the COVID-19 epidemic. Generally, infectious agent, host and environment are the three factors that affect the epidemiology of transmissible diseases (Lin et al., 2006) . Since respiratory diseases are more common in late winter and early spring, such as SARS (Lin et al., 2006; Cui et al., 2003) , the occurrence of COVID-19 might, partially, be subjected to environmental and meteorological conditions. Both long-and short-term exposure to air pollution has been associated with a variety of adverse health effects, including acute respiratory inflammation, asthma and chronic obstructive pulmonary disease (COPD) (McConnell et al., 2010; Sarnat et al., 2012; Gan et al., 2013; Andersen et al., 2011), and SARS (Cui et al., 2003) . Although the mechanisms for a causal association between air quality and SARS-CoV-2 transmission could be complicated, previous studies may provide clues. Viruses are among the smallest of common primary aerosol particle classes, with physical diameters as low as 20 nm (Duan, 2008) , e.g., SARS-CoV-2 has enveloped virions that measure approximately 50 -200 nm . However, viruses are not commonly airborne as independent individuals and are more likely attached to other suspended particles (Yang et al., 2011; Chen et al., 2010) , such as PM 2.5 . Particles that are small enough will remain airborne for a long period of time because of their low settling velocity, e.g., a 3-m fall takes 67 min for a 5-μm particle (Tellier, 2009 ). Hence, the air pollutant concentration, such as PM 2.5 and PM 10 concentrations, may J o u r n a l P r e -p r o o f 14 affect the aerosol transmission of SARS-CoV-2. Fine particles with viruses attached can be inhaled, resulting in the direct delivery of the viral agents to the respiratory epithelial cells (Chen et al., 2010; Jaspers et al., 2005) . PM 10 has been speculated to impact the transmission of SARS (Cui et al., 2003) . Additionally, studies have revealed that both Na + and Clions can interact with virus lipid bilayers (Valley et al., 2011) , while Mg + and Ca 2+ can induce structural and mechanical changes in lipid bilayers through strong binding (Cordom et al., 2008; Lee et al., 2008) . Thus, chemical components of airborne particles may affect the virus inactivation and the transmission capability. Exhaled viruses in airborne environments are generally coated with saliva or mucus that serve as a resistance against environmental extremes (Tang, 2009) . High temperature may affect the survival of viruses, as it can impact the state of viral proteins (including enzymes) and genome (RNA or DNA) (Tang, 2009) . A number of studies have emphasized the correlation of temperature and health (Deschenes, 2014; Stafoggia et al., 2008; Gasparrini et al., 2015) , e.g., primary MERS human cases in Saudi Arabia were more likely to occur in cold conditions (Gardner et al., 2019) , and there was a much higher risk of increased daily SARS incidence on days with lower temperature (Lin et al., 2006) . Many airborne viruses have been shown to be sensitive to ambient humidity, which has been hypothesized to be attributed to virus inactivation resulting from the removal of structural water molecules from the virus's capsid (Yang and Marr, 2012) and damage to the virus on the surface of aerosol due to surface tension, shear stress, and J o u r n a l P r e -p r o o f conformational rearrangement driven by hydrophobicity. Generally, enveloped viruses (such as SARS-CoV-2) , which contain a lipid membrane, survive better at lower relative humidity (Sobsey and Meschke, 2003) , e.g., more MERS cases were likely to occur under dry conditions (Gardner et al., 2019) , while nonenveloped viruses tend to be more stable at higher RH (Sobsey and Meschke, 2003) . In this study, the effect of humidity on confirmed cases of COVID-19 and AQI correlation might be enhanced under lower RH ranges. However, many exceptions have been identified and remain unexplained (Lakadamyali et al., 2003; Laliberte et al., 2011) . As a novel coronavirus, the effect of humidity on the spread of COVID-19 deserves further investigation. Several limitations in this study must be acknowledged. First, the reproductive number (R 0 ) of SARS-CoV-2, which has been estimated to be much higher than that of SARS-CoV , and the controlling measures imposed by the governments of all stages have not been accounted for in this study. Second, data at the individual level are not accessible; as such, the effects or confounding effects of potential factors affecting COVID-19 infection, such as age, gender, medical history and smoking status, could not be assessed. Additionally, the difference in medical competence and socioeconomic by region might also affect the number of COVID-19 patients. Nevertheless, efforts in attempting to analyze the possible environmental and meteorological impacts might be significant in protecting medical professionals and in containing the COVID-19 epidemic. Future studies with more detailed J o u r n a l P r e -p r o o f 16 consideration of the epidemiological parameters of COVID-19, such as reproductive number, hospitalization period, case fatality proportion, individual air pollutants (e.g., PM 2.5 , PM 10 and O 3 ), and social circumstance, might be more helpful. In this study, the data of COVID-19 confirmed cases in 33 locations in China, together with air quality and meteorological data for the COVID-19 outbreak period of 29 January 2020 to 15 February 2020, were collected. The association between the confirmed cases and AQI is analyzed. The results of this study suggest that the AQI was statistically significantly associated with confirmed cases of COVID-19 in several cities, such as Jinzhong and Beijing. The AQI effect on COVID-19 spread was statistically significant on lag day 1, lag day 2 and lag day 3. Examination of temperature and humidity effect on the AQI -confirmed case association shows that the relative risk of COVID-19 transmission associated with AQI was higher in the temperature range 10°C ≤ T < 20 °C, and the AQI might have a stronger effect on the confirmed cases in the relative humidity range of 10% ≤ RH < 20%. would like to express our sincerest and greatest gratitude and respect to the medical professionals and all those fighting the COVID-19 epidemic. Andersen, Z.J., Hvidberg, M., Jensen, S.S., Ketzel, M., Loft, S., Sørensen, M., Tjønneland, A., Overvad, K., Raaschou-Nielsen, O., 2011 Relative humidity -0.08* 0.42** 1.00 Wind speed -0.20** 0.05 0.07 1.00 Atmospheric pressure 0.08 0.21** 0.53** 0.06 1.00 **: P < 0.01, P* < 0.05. Is short-term exposure to ambient fine particles associated with measles incidence in China? A multi-city study Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study Ambient Influenza and Avian Influenza Virus during Dust Storm Days and Background Days Introduction of National Environmental Air Quality Monitoring Network in China Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study Effect of Ions on a Dipalmitoyl Phosphatidylcholine Bilayer. A Molecular Dynamics Simulation Study Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome From the Smallest Virus to the Biggest Gene: Marching Towards Gene Therapy for Duchenne Muscular Dystrophy 7 Associations of Ambient Air Pollution with Chronic Obstructive Pulmonary Disease Hospitalization and Mortality A case-crossover analysis of the impact of weather on primary cases of Middle East respiratory syndrome Multivariate meta-analysis for non-linear and other multi-parameter associations Modeling exposure-lag-response associations with distributed lag non-linear models Modeled global effects of airborne desert dust on air quality and premature mortality International Approach to Environmental and Lung Health. A Perspective from the Fogarty International Center The burden of air pollution on years of life lost in Beijing, China, 2004-08: retrospective regression analysis of daily deaths Utilizing Monitoring Data and Spatial Analysis Tools for Exposure Assessment of Atmospheric Pollutants in Denmark Comprehensive national database of tree effects on air quality and human health in the United States Short-Term Elevation of Fine Particulate Matter Air Pollution and Acute Lower Respiratory Infection Diesel Exhaust Enhances Influenza Virus Infections in Forecasting of daily air quality index in Delhi Visualizing infection of individual influenza viruses The Membrane Fusion Step of Vaccinia Virus Entry Is Cooperatively Mediated by Multiple Viral Proteins and Host Cell Components Molecular Dynamics Simulations of Asymmetric NaCl and KCl Solutions Separated by Phosphatidylcholine Bilayers: Potential Drops and Structural Changes Induced by Strong Na+-Lipid Interactions and Finite Size Effects The contribution of outdoor air pollution sources to premature mortality on a global scale Clean air in the Anthropocene in Beijing -temporal pattern and its association with influenza Environmental factors on the SARS epidemic: air temperature, passage of time and multiplicative effect of hospital infection Measurements of Airborne Influenza Virus in Aerosol Particles from Human Coughs Time-varying transmission dynamics of Novel Coronavirus Pneumonia in China (preprint) Influenza Virus Transmission Is Dependent on Relative Humidity and Temperature Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding EFFECTS OF EMISSION CONTROL AND METEOROLOGICAL PARAMETERS ON URBAN AIR QUALITY SHOWED BY THE 2014 YOUTH OLYMPIC GAMES IN CHINA Childhood Incident Asthma and Traffic-Related Air Pollution at Home and School Report on the State of the Ecology and Environment in China Influenza Virus Aerosols in Human Exhaled Breath: Particle Size, Culturability, and Effect of Surgical Masks Possible mechanisms of the cardiovascular effects of inhaled particles: systemic translocation and prothrombotic effects Respiratory syncytial virus bronchiolitis, weather conditions and air pollution in an Italian urban area: An observational study 2020a. Pneumonia diagnosis and treatment of 2019-nCoV infection from Chinese NHC and CDC 2020 2020b. Update on new coronavirus pneumonia epidemic as of 24:00 on Avian in uenza and sialic acid receptors: more than meets the eye? The Effects of Changing Weather on Public Health Humidity and respiratory virus transmission in tropical and temperate settings Model choice in time series studies of air pollution and mortality Air Pollution and Acute Respiratory Response in a Panel of Asthmatic Children along the Aerosol Health Effects from Molecular to Global Scales Does Temperature Modify the Association between Air Pollution and Mortality? A Multicity Case-Crossover Analysis in Italy The effect of environmental parameters on the survival of airborne infectious agents Aerosol transmission of influenza A virus: a review of new studies Air pollutants and health outcomes: Assessment of confounding by influenza NaCl Interactions with Phosphatidylcholine Bilayers Do Not Alter Membrane Structure but Induce Long-Range Ordering of Ions and Water Respiratory syncytial virus infection in infants and correlation with meteorological factors and air pollutants A novel coronavirus outbreak of global health concern Spatial and temporal variations of the concentrations of PM 10 , PM 2.5 and PM 1 in China Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health 2020a. Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus secondmeeting-of-the-international-health-regulations-(2005)-emergency-committeeregarding-the-outbreak-of-novel-coronavirus-(2019-ncov) Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission Concentrations and size distributions of airborne influenza A viruses measured indoors at a health centre, a day-care centre and on aeroplanes Mechanisms by Which Ambient Humidity May Affect Viruses in Aerosols Evidence of Airborne Transmission of the Severe Acute Respiratory Syndrome Virus Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia Emerging Understanding of Etiology and Epidemiology of the Novel Coronavirus (COVID-19) infection in Wuhan, China (preprint) Infection control and MERS-CoV in health-care workers