key: cord-1030988-9ixpj162 authors: Liu, Zhu; Deng, Zhu; Davis, Steven J.; Giron, Clement; Ciais, Philippe title: Monitoring global carbon emissions in 2021 date: 2022-03-21 journal: Nat Rev Earth Environ DOI: 10.1038/s43017-022-00285-w sha: 4b0177c376a55cea3ec78cb7ccfc052e5fd67742 doc_id: 1030988 cord_uid: 9ixpj162 Following record-level declines in 2020, near-real-time data indicate that global CO(2) emissions rebounded by 4.8% in 2021, reaching 34.9 GtCO(2). These 2021 emissions consumed 8.7% of the remaining carbon budget for limiting anthropogenic warming to 1.5 °C, which if current trajectories continue, might be used up in 9.5 years at 67% likelihood. Global CO 2 emissions have exhibited a rapid increase (Fig. 1 ). However, embedded within this long-term trend are interannual fluctuations arising from global energy, finance and health crises. For example, during 2020, global lockdowns owing to the COVID-19 pandemic temporarily reduced CO 2 emissions 1,2 . The Carbon Monitor program 1,3 -which provides near-real-time daily global CO 2 emissions from power generation (29 countries), industry (73 countries), road transportation (406 cities), aviation and maritime transportation, and commercial and residential sectors (206 countries) -offers an opportunity to track the evolution of these CO 2 emissions, and in doing so, assess remaining carbon budgets and progress in reaching the Paris Agreement. Here, we document the status of CO 2 and fossil CH 4 emissions for 2021, revealing a rebound from COVID-related 2020 reductions and a corresponding decrease in the remaining CO 2 budget. One of the key features of 2021 global CO 2 emissions is the rebound from 2020 levels (which exhibited a reduction from 2019 associated with COVID-19-related lockdowns 1,2 ; Fig. 1 ). In particular, global annual emissions increased from 33.3 GtCO 2 in 2020 (with a range of 33.0-33.6 GtCO 2 ; including the leap day of February 29, 2020) to 34.9 GtCO 2 (with a range of 34.6-35.2 GtCO 2 ) in 2021, representing a 4.8% increase (3.8-5.7% range). Despite rising case numbers and new variants, the impact of the COVID-19 pandemic on CO 2 emissions therefore appears to be less in 2021 compared to 2020 owing to a reduction in restrictive policies. These rebounds are apparent in most sectors and big emitting nations. For instance, 2021 emissions from power, industry and ground transport (the largest emitters) rebounded by 5.0% (657 MtCO 2 ), 2.6% (256 MtCO 2 ) and 8.9% (513 MtCO 2 ) from 2020 levels, respectively; collectively, these sectors contribute 89% (1.4 GtCO 2 ) of the total global rebound. However, the largest rebounds occurred in the aviation sector, including 25.8% (65 MtCO 2 ) and 18.1% (50 MtCO 2 ) increases from domestic and international aviation. At the country level, 2021 emissions in China, the USA, the 27 European Union countries (EU27) and the UK, India, and Russia, also rebounded by 5.7% (597 MtCO 2 ), 6.5% (296 MtCO 2 ), 6.7% (193 MtCO 2 ), 9.4% (212 MtCO 2 ), and 6% (91 MtCO 2 ) from 2020 levels, respectively. Among the top emitters, Japan was the only country not to exhibit a substantial rebound; here, emissions dropped 4.7% (51 MtCO 2 ) from 2019 levels in 2020, and 5% (54 MtCO 2 ) from 2019 levels in 2021. Methane (CH 4 ) emissions, a short-lived climate forcer with larger comparative impact than CO 2 , also exhibited substantial changes (Fig. 1 ). Similar to CO 2 , fossil-related methane emissions dropped by 5.7% from 2019 to 2020, but then rebounded by 3.7% in 2021 owing to increased demand of natural gas and other fossil fuels 4 . Although the amplitude of CO 2 and CH 4 changes (the initial drop and subsequent rebound) are unprecedented, such crises and rebounds are not unique. Indeed, since the 1970s there have been global events in every decade that caused temporary negative growth in global CO 2 emissions 5 : the energy (oil) crises of 1974, 1980-1982 and 1992 , and the financial crisis of 2008. In all cases, emissions rebounded substantially after the event, shifting the downward trend such that average decadal growth rates were 3%, 1%, 1%, 3% and 2% for each decade since the 1970s. Thus, while there was a record CO 2 decline in 2020, the rebound in 2021 could signal that history is being repeated, reducing confidence in global climate mitigation actions. Countdown of the dwindling carbon budget Carbon budgets estimate the maximum amount of cumulative net global anthropogenic CO 2 emissions that would limit warming to a given level with a given probability from a specified date, taking into account other anthropogenic climate forcers. Starting from 2020, the IPCC estimates that the global carbon budget for 1.5 °C and 2 °C warming is 400 GtCO 2 and 1,150 GtCO 2 with 67% likelihood, respectively, or 300 GtCO 2 and 900 GtCO 2 with 83% likelihood 6 For example, despite dramatic reductions in 2020, emissions for that year still consumed 8.3 ± 0.07% of the remaining 1.5 °C budget, or 2.9 ± 0.02% of the remaining 2 °C budget with 67% likelihood. In accordance with the rebound and enhanced emissions, budget use increased further in 2021. Specifically, 2021 emissions used 8.7 ± 0.1% of the 1.5 °C budget and 3.0 ± 0.03% of the 2 °C budget with 67% likelihood. As of the end of 2021, 332 GtCO 2 and 1,082 GtCO 2 remain for the 1.5 °C and 2 °C budgets with 67% likelihood, respectively. Assuming that emissions continue at 2021 levels without immediate reduction strategies, these values permit quantification of the timescale at which the remaining CO 2 budget might be used, and thus when limits to constrain warming to Paris Agreement levels might be exceeded (at least based on the IPCC remaining CO 2 budgets). To stay within only 1.5 °C warming, it is estimated that the remaining CO 2 budget might be used within 9.5 ± 0.1 years (in 2031) at 67% likelihood, or 6.6 ± 0.1 years (in 2028) with 83% likelihood. For 2 °C warming, budgets could be used within 31.0 ± 0.3 years (in 2052) or 23.8 ± 0.2 years (in 2045) with 67% and 83% likelihood, respectively. The impacts of 2020 and 2021 on the carbon budget highlight an immediate necessity for more stringent actions towards carbon neutrality. Indeed, even ignoring the rebound effects, the 6% temporary decrease in CO 2 emissions arising from global COVID-related lockdowns is lower than the required 8% reductions needed per year to limit anthropogenic warming to 1.5 °C by 2100 with 67% likelihood. Currently, the USA, EU and UK plan to reach net zero by 2050, China and Russia by 2060, and India by 2070, leaving limited time to meet emission targets. Assuming that each country's emissions continuously decline by the same amount per year to achieve net zero by the target, the US and the EU27 and UK all of the remaining 1.5 °C budget (67% likelihood) by 2045. Even if nations were on track to achieve their Nationally Determined Contributions, global greenhouse gas emissions have not yet peaked 8 . Indeed, preliminary Carbon Monitor data already suggest a further increase of global emissions in early 2022. More costly and aggressive emission reduction actions are therefore needed to curb the emissions growth trend and contribute to the achievement of the 1.5 °C, or at least 2 °C, Paris Agreement goals. Doing so requires continuous monitoring, documentation and evaluation 9 of national carbon emissions. Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement Carbon Monitor, a near-real-time daily dataset of global CO2 emission from fossil fuel and cement production Report (Publications Office of the European Union The Physical Science Basis Challenges and opportunities for carbon neutrality in China Nationally Determined Contributions Under the Paris Agreement FCCC/PA/CMA/2021/8 (UNFCCC, 2021) Comparing national greenhouse gas budgets reported in UNFCCC inventories against atmospheric inversions IAMC 1.5°C Scenario Explorer and Data hosted by IIASA (Integrated Assessment Modeling Consortium & International Institute for Applied Systems Analysis The authors thank those that contributed to the 2020 and 2021 Carbon Monitor dataset. We acknowledge the National Natural Science Foundation of China (grant 41921005 and 71874097), Beijing Natural Science Foundation (JQ19032) and the Qiu Shi Science & Technologies Foundation. The authors declare no competing interests. Carbon monitor: https://carbonmonitor.org/