key: cord-1023262-6utrm6gd authors: Yadav, Rohitash; Chaudhary, Jitendra Kumar; Jain, Neeraj; Chaudhary, Pankaj Kumar; Khanra, Supriya; Dhamija, Puneet; Sharma, Ambika; Kumar, Ashish; Handu, Shailendra title: Role of Structural and Non-Structural Proteins and Therapeutic Targets of SARS-CoV-2 for COVID-19 date: 2021-04-06 journal: Cells DOI: 10.3390/cells10040821 sha: b69895bbb0363ef0f46b5ed89c5edb8c420bc0aa doc_id: 1023262 cord_uid: 6utrm6gd Coronavirus belongs to the family of Coronaviridae, comprising single-stranded, positive-sense RNA genome (+ ssRNA) of around 26 to 32 kilobases, and has been known to cause infection to a myriad of mammalian hosts, such as humans, cats, bats, civets, dogs, and camels with varied consequences in terms of death and debilitation. Strikingly, novel coronavirus (2019-nCoV), later renamed as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), and found to be the causative agent of coronavirus disease-19 (COVID-19), shows 88% of sequence identity with bat-SL-CoVZC45 and bat-SL-CoVZXC21, 79% with SARS-CoV and 50% with MERS-CoV, respectively. Despite key amino acid residual variability, there is an incredible structural similarity between the receptor binding domain (RBD) of spike protein (S) of SARS-CoV-2 and SARS-CoV. During infection, spike protein of SARS-CoV-2 compared to SARS-CoV displays 10–20 times greater affinity for its cognate host cell receptor, angiotensin-converting enzyme 2 (ACE2), leading proteolytic cleavage of S protein by transmembrane protease serine 2 (TMPRSS2). Following cellular entry, the ORF-1a and ORF-1ab, located downstream to 5′ end of + ssRNA genome, undergo translation, thereby forming two large polyproteins, pp1a and pp1ab. These polyproteins, following protease-induced cleavage and molecular assembly, form functional viral RNA polymerase, also referred to as replicase. Thereafter, uninterrupted orchestrated replication-transcription molecular events lead to the synthesis of multiple nested sets of subgenomic mRNAs (sgRNAs), which are finally translated to several structural and accessory proteins participating in structure formation and various molecular functions of virus, respectively. These multiple structural proteins assemble and encapsulate genomic RNA (gRNA), resulting in numerous viral progenies, which eventually exit the host cell, and spread infection to rest of the body. In this review, we primarily focus on genomic organization, structural and non-structural protein components, and potential prospective molecular targets for development of therapeutic drugs, convalescent plasm therapy, and a myriad of potential vaccines to tackle SARS-CoV-2 infection. In late December 2019, an acute case of respiratory diseases was reported in Wuhan, Hubei People's Republic of China. Initially, clinical symptoms such as fever, sore throat, and respiratory distress amongst others overlapped with viral pneumonia. However, after genomic analysis of respiratory samples from patients, it was revealed as novel coronavirus (2019-nCoV) pneumonia [1] . Later on, 2019-nCoV was finally renamed as SARS-CoV-2 by the International Committee on Taxonomy of Viruses (ICTV) owing to its genetic similarity to an earlier known coronavirus (SARS-CoV) [2] . This coronavirus-induced disease was officially announced as Coronavirus Disease-19 , and on 11 March 2020, World Health Organization (WHO) declared it as a pandemic owing to its vast magnitude of global spread. As of 30 March, 2021, nearly 128 million of confirmed cases and more than 2.8 million of deaths has been reported across the globe (worldometers.info/coronavirus; accessed on 30th March 2021). Coronavirus is a large family of viruses that are capable of causing moderate illness such as common cold, to more severe life-threatening diseases like acute respiratory distress syndrome (ARDS) and organ malfunctions [3] . SARS-CoV-2 is taxonomically placed under order Nidovirales, subfamily Orthocoronavirinae, and four genera namely Alphacoronavirus (α), Betacoronavirus (β), Gammacoronavirus (γ), and Deltacoronavirus (δ) [4] . All viruses of Nidovirales order share several common features, such as they possess conserved genomic organization, replicase gene located downstream to 5 -UTR, expression of downstream genes following synthesis of multiple 3 -nested subgenomic mRNAs, expression of genes by ribosomal frameshift mechanism, and multiple unique intrinsic enzymatic activities in the large replicase-transcriptase polypeptide among others [5] . People are susceptible to infection by seven of these viruses, including 229E (α), NL63 (α), OC43 (β), HKU1 (β), MERS-CoV (β), SARS-CoV (β), and SARS-CoV-2 (β) [6] . Among them, the four HCoVs, namely, 229E, NL63, HKU1, and OC43, cause very mild to moderate upperrespiratory tract illness, whereas SARS-CoV, MERS-CoV, and SARS-CoV-2 are quite deadly, and may cause fatal respiratory disease involving lower respiratory tract and down right to alveoli of lungs [6] . SARS-CoV-2 shows 88% sequence identity with bat-SL-CoVZC45 and bat-SL-CoVZXC21, and 79% and around 50% sequence identity with SARS-CoV and MERS-CoV, respectively. Therefore, SARS-CoV-2 is phylogenetically closer to bat-related SARS-CoV vis-à-vis MERS-related CoV and SARS-related CoV, indicating that it might have evolved from bats [7] . This knowledge of similarities and differences of SARS-CoV-2 with viruses, which are known to have caused earlier outbreaks, may help in developing better understanding of etiology, and consequently design curative strategy to tackle current pandemic. In contrast to SARS-CoV-2, MERS-CoV infection was first reported in Jordan, Saudi Arabia in 2012 [8] . Humans contract MERS-CoV following coming in contact with infected camel as well as infected humans. Since 2012, 27 countries have reported more than 24 thousand MERS cases, of which the majority of cases have occurred in Saudi Arabia. SARS-CoV was found in China in 2003 [9] , and has originated in bats, and was amplified in other animal reservoir before infecting humans. The outbreak was contained in mid-2003 with the implementation of infection control practices such as isolation and quarantine. Since then, a handful of cases have occurred due to laboratory accidents and related exposure which have been comprehensively reviewed [10] . SARS-CoV-2 is a new strain of corona virus that has not been traced in humans previously. In this review, we primarily focus on multiple features of SARS-CoV-2, including genomic organization, structural and non-structural protein components, and potential prospective molecular targets, against which either various FDA approved drugs used for other diseaseare being repurposed, or novel drugs under various phases of clinical trial are being tested. In addition, we also focus on plasma therapy and antibody cocktail, as well as 13 approved/authorized vaccines being administered worldwide to tackle current pandemic. The nucleotide length of genome of SARS-CoV-2 is ranging from 26.0 kb to 32.0 kb, having variable number of open reading frame (ORFs), and its genomic organization is considerably similar to other known HCoVs [11] . For instance, coronaviruses characterized till date are enveloped viruses with numerous surface-projected club-like spikes, and they possess an unsegmented, single-stranded (ss), +ve sense RNA genome with 5 -cap and 3poly(A) tail, allowing it to act as functional mRNA for translational synthesis of the replicase polyproteins [5] . Two-thirds of the viral genomic region i.e., initial 20 kb lying downstream to 5 -end, occupies replicase gene referred to as Open Reading Frame 1a and ab (ORF1ab), which potentially encode the nonstructural proteins (nsps) referred to as pp1a and pp1ab polyproteins, respectively. The pp1a non-structural protein corresponds to NSP1 to NSP11 and pp1ab non-structural protein comprises of NSP12 to NSP16. The remaining 10 kb region preceding 3 -end encodes various structural proteins involving surface (S), envelope (E), membrane (M), and nucleocapsid (N) proteins. Additionally, the structural genes encode nine accessory proteins, encoded by ORF3a, ORF3d, ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF14, and ORF10 genes [12] . Furthermore, the genomic region lying immediate to 5 -end possesses two distinct domains, leader sequence and untranslated region (UTR), capable of forming multitude of stem loop structures prerequisite for replication and transcription of viral genome. The transcriptional regulatory sequences (TRSs) precede each structural and accessory gene which are prerequisite for their functional expression. The structural component of 3 -UTR is required for replication of viral RNA ( Figure 1 ) [5] . The SARS-CoV-2 are spherical, enveloped, around 80-120 nm in diameter, with multiple outwardly projected club-like homotrimeric, glycosylated S proteins imparting them incredible appearance of a solar corona, prompting their popular name, CoVs. Enclosed within the lipid bilayer envelope of the virion is helically symmetrical nucleocapsids comprising complex of +ssRNA and capsid proteins. There are four important structural proteins-spike (S), membrane (M), envelope (E), and nucleocapsid (N) proteins-that are encoded by structural genes located within the region preceeding 3 end of genome. Apart from above-mentioned structural proteins, there are several non-structural and/or accessory proteins, which together are responsible for the structural and functional aspects of virus. The various structural and functional aspects of aforementioned proteins are summarized below. The S protein of virion is a type I transmembrane N-linked glycosylated protein (150-200 kDa) consisting of 1273 amino acids, and displays varying degree of conservation across the Coronaviridae family. Following synthesis, three polypeptide chains of S protein associate with each other, forming homotrimeric assemblage. Each monomeric S protein consists of S1 and S2 subunits, which together possess multiple functional domains, from N to C-termini as follow: N-terminal domain (NTD), receptor binding motif (RBM) containing receptor binding domain (RBD), furin cleavage site (S1/S2, which is likely to be cleaved by the TMPRSS2 protease), fusion peptide (FP), central helix (CH), connecting domain (CD), heptad repeat (HR1/2) domain, transmembrane domain (TM), and cytoplasmic tail (CT). Furthermore, each monomeric S protein folds into a three-dimensional structure with three distict topological domains-i.e., head, stalk, and cytoplasmic tail [13] . The RBD/S1 (~200 amino acids) of S protein undergoes down-to-up conformational transition during interaction with membrane bound ACE2 recepetor, facilitating cell recognition and binding. In addition, RBD substantially contributes towards the overall mechanical stability of homotrimeric spike [14] . The S2 subunit with its fusion peptide (FP), central helix (CH), connecting domain (CD), heptad repeat (HR1/2) domain mediates integration between viral and host cell membrane. Evetually, the interaction between receptor binding motif of RBD of S1 subunit and ACE2 receptor leads to entry into host cells. Another remarkable feature of the S protein is its substantial N-linked glycosylation covering large proportion of protein's surface area, and shows conformation-dependent dyanamic changes. Apart from shielding, N-glycans especially at N165 and N234 positions are involved in modulation of RBD conformation, which may be used as potential therapeutic target [13] . Besides, the S protein consists of disulfide bonded extracellular N-terminus, a transmembrane domain, and a short intracellular C-terminal part with palmitoylation [15] . The S protein plays major determinant of host immune response, and is involved in viral pathogenesis through activation of endoplasmic reticulum (ER) stress response [15, 16] , and therefore any mutational change may lead to altered pathogenesis. The membrane (M) protein is O-linked glycoprotein of around 25-30 kDa, and is most abundant amongst various structural proteins, and possesses three distinct transmembrane domains [17] . The homodimeric M protein associates with other viral structural proteins, including nucleocapsid, facilitating the molecular assembly of virus particles as well as may be involved during pathogenesis [18] . Although M protein possesses diverse amino acid composition, but it is structurally preserved across the various genera [19] . Except β-CoVs and δ-CoVs which shows O-linked glycosylation, other coronavirus M protein undergoes N-linked glycosylation [20, 21] . The glycosylation plays vital role in organ tropism and IFN signalling [22] . Envelope (E) protein is smallest amongst all the structural proteins, around 8-12 kDa, and plays major role in pathogenesis, virus assembly, and release [23] . Using solid-state NMR spectroscopy, one study demonstrated the structure and drug binding of SARS-CoV-2 E protein. The E protein topology of SARS-CoV-2 represented a five-helix bundle surrounding adehydrated narrow pore with bipartite channel. Although, E proteins are highly divergent in terms of amino acid composition, but structurally preserved across various genera of β-coronaviruses with a short hydrophilic N-terminus, a large hydrophobic region, followed by hydrophilic C-terminal tail [24] . The N (nucleocapsid) protein is solely complexed in structural organization of the nucleocapsid. It distinctly possesses three highly conserved domains; an N-terminal domain, an RNA-binding domain or a linker region, and a C-terminal domain [25] . It has been observed that these three domains may together orchestrate RNA binding [26] , and its phosphorylated status is prerequisite for triggering a structural dynamism facilitating the affinity for viral versus non-viral RNA [27] . N protein participates in RNA packaging in a beads-on-a-string type conformation. In addition to be involved in organization of viral genome, N protein also facilitates virion assembly and enhances virus transcription efficiency amongst others [26, 28] . Owing to considerably high immunogenic nature, N protein may be useful as potential vaccine target. Most importantly, the M, E, and S proteins possess trafficking signal sequence, which enable their translocation to the endoplasmic reticulum (ER). Apart from aforementioned structural proteins there are several non-structural proteins, namely NSP1 to NSP 10 and NSP12 to NSP16, encoded by genes located within the 5 -region of viral RNA genome [29] . These non-structural proteins with their corresponding functions along with other associated molecular features are tabulated below (Table 1) . There are nine accessory proteins-ORF3a, 3d, 6, 7a, 7b, 8, 9b, 14, and 10-produced from at least five ORFs encoding accessory genes (ORF3a, ORF6, ORF7a, ORF7b, and ORF8), novel overlapping ORF3d (earlier known as 3b), leaky scanning of sgRNA of N gene (ORF9b and 14) , and ORF10 from downstream of N gene (Figure 1 ). Aforementioned accessory genes show considerable variability amongst coronavirus group. However, number of exact ORFs is still debated and awaits further experimental verification. These proteins along with abovementioned NSPs play very crucial role in viral replication. The accessory factor 3a is encoded by ORF3a located in between the S and E genes, and is the largest accessory proteins of SARS-CoV-2, consisting of 274 amino acid residues. Hydrophobicity analysis and topology studies have revealed that 3a protein is an O-linked glycosylated, possessing three transmembrane domains. ORF3a forms dimer and its six transmembrane helices together create ion channelin the host cell membrane, which is highly conducive for Ca 2+ /K + cations compared to Na + ion [40] . It is also involved in virus release, apoptosis and pathogenesis [41] . Similarly, ORF3d (one amongst youngest genes) encodes 3d protein which consists of 154-aa long polypeptide chain, and is found to be located in the nucleolus and mitochondria. However, the presence of ORF3d in SARS-CoV-2 has also been confirmed [12] . SARS-CoV ORF6 protein is a 61-amino acid long membrane-associated protein. The expression of this protein was confirmed in virus-infected Vero E6 cells, and also in the lung and intestine tissues of patients. It is actually placed in the ER and Golgi compartments in expressing cells and virus infected cells [42] . ORF7a and ORF7b accessory proteins are synthesized from the bicistronic subgenomic RNA 7 of SARS-CoV-2. The 122-aa ORF7aprotein is a type-I transmembrane protein containing a 15 aa signal peptide sequence, an 81aa luminal domain, 21aa transmembrane domain and a short C-terminal tail [43, 44] . The ORF7b protein consists of 44-amino acids, and is an integral membrane protein, expressed in SARS-CoV-infected cells wherein it remains localized in the Golgi compartment. Furthermore, there is production of anti-7b antibody in SARS patient serum, indicative of its expression in infected patients. In addition, 7b protein was found to be closely associated with intracellular virus particles, strengthening the findings related to its expression and importance [43, 44] . ORF8, one amongst youngest genes, shows low homology to SARS-CoV due to deletion. This protein consists of 121 amino acid residues, and its shape resemble immunoglobulin (Ig)-like fold owing to β-strand core (18-121 residues). The 1-17 residues comprise N-terminal siganal sequence, prerequisite for transport to ER. ORF8 has been found to interact with major histocompatibility complex-I (MHC-I), thereby mediating their degradation in cell culture, and therefore may help in immune evasion [45] . It consists of 97 amino acid residues, and is probably expressed by leaky scanning of sgRNA of N gene. It tends to associate with adaptor protein, TOM70, and therby suppress IFN-I mediated antiviral response [46] . Therefore, developing greater insight into 9b-TOM70 interaction may help in desiging therapeutic molecule. Gene encoding ORF10 protein is predicted to be located downstream of the N gene. Although its corresponding sgRNA is rarely detected, however ORF 10 protein has been found in infected cells [47] . It is made up of 73 amino acid residues, and is also likely to be synthesized by leaky scanning of sgRNA of N gene [48] . However, its function is not clearly understood. Apart from crucial role in virus replication, accessory proteins may also be involved in host immune escape. For instance, during infection of MERS-CoV, accessory ORFs 3-5 inhibit the host's innate immune response, including perturbation of type I interferon, blockade of NF-κB and RNaseL activation, among others [49] [50] [51] . Study from Li J.Y. et al. has demonstrated the role of ORF6, ORF8, and nucleocapsid protein in inhibiting type I interferon (IFN-β) and NF-κB-responsive promoter, and impede interferon signaling [52] . Following study from Miorin et al. demonstrates the impairment in nuclear translocation of STAT1 and STAT2 leading to inhibition of transcriptional induction of IFN-stimulated genes [53] . Another report has shown the association of SARS-CoV-2 ORF9b to host mitochondrial import receptor subunit (TOM70), and thereby suppresses type I interferon signaling [46] . Life cycle of SARS-CoV-2 consists of cellular invasion of virus, expression of viral genes, and formation of progeny and eventual exit. It can roughly be divided into following 5 steps (Figure 2 ). The S protein system is homotrimeric, consisting of three monomeric S polypeptides. Each monomeric polypeptide contains S1 and S2 subunits with multiple functional domains and motifs, which undergo several conformational changes. SARS-CoV-2 via its receptor binding domain (RBD)of S1 subunit (RBD/S1 with down-to-up conformation) of homotrimeric spike glycoprotein binds host cell receptor ACE2 (angiotensin-converting enzyme 2) [14] zinc-binding carboxypeptidase, which is normally involved in cardiac function and blood pressure regulation. ACE2 is primarily expressed by epithelial cells of the lungs and small intestine as well as kidney, heart, and other tissues [54, 55] . In addition, a recent molecular simulation-based work has proposed that SARS-CoV-2 s S protein can also bind to nicotinic acetylcholine receptors (nAChRs), indicative of its diverse binding potential, and may be one of the underlying reasons for multi-organ pathogenesis [56] . Whereas the S2 domain of S protein possesses heptad repeat region and fusion peptide, mediating fusion following conformational rearrangement [57] . Following the binding of S protein of SARS-CoV-2 to the host protein ACE2, the spike protein undergoes proteasemediated cleavage at the S1/S2 cleavage site for priming and a cleavage for activation at the S 2 site, a position adjacent to a fusion peptide within the S2 subunit. The S1/S2 site are also subjected to cleavage by other proteases such as transmembrane protease serine, 2 (TMPRSS2), cathepsin L and/or other proteases. Subsequent cleavage at the S 2 site presumably triggers membrane fusion via irreversible, conformational changes and thereby facilitates access to host cell cytosol [58, 59] . In addition to the involvement in infection and cross-species transmission, the S protein is crucial target for anti-virus neutralizing antibodies, and crucial mutation in it may lead to considerable alteration in pathogenesis. Figure 2 . SARS-CoV-2 begins by binding with its S protein (RBD/S1) on host cell receptor, ACE2, driving conformational change in the S2 subunit, and thereby facilitating its fusion with plasma membrane. Immediately after release of +ssRNA, translation leads to formation of non-structural polyproteins pp1a and pp1ab, which undergo proteolytic cleavage and are eventually assembled into functional replicase. The replicase leads to formation of a negative-sense intermediate, which is eventually replicated to form multiple copies of gRNA as well as nested set of sgRNA by discontinuous transcription. These sgRNA are translated into various structural and accessory proteins, which are assembled as virion in the ERGIC, and eventually exit cell via exocytosis. After fusion of viral spike glycoprotein with ACE2 there is subtle conformational changes, releasing the viral nucleocapsid into the cell cytosol. This process is aided by several host factors, including type II transmembrane protease serine 2 (TMPRSS2) protease and cathepsin L. Immediately after release of viral nucleocapsid, +ssRNA serves as functional mRNA with respect to ORF1a and ORF1b encoding polyprotein pp1a (440-500 kDa) and pp1ab (740-810 kDa), respectively. However, pp1a is 1.2-2.2 folds more expressed compared to pp1ab owing to differential efficiency of frameshift between ORF1a and ORF1b genes [60] . These two polyproteins undergo autoproteolytic processing yielding 16 nsps, which together form the RTC for viral RNA synthesis. This functional RTC results into formation of a nested set of sgRNAs via discontinuous transcription [61] . The formation of RTC sets molecular process in motion leading to synthesis of multiple copies of viral RNA. These -ssRNA (negative ssRNA) serves as intermediate template. Meanwhile, polymerase switches template at short motifs, transcription regulated sequences (TRS) during -ssRNA synthesis, thereby producing a multiple 5 -nested set of negative sense sgRNAs which, in turn, used as templates to form a 3 -nested set of positive sense sgRNAs. Thereafter, they associate with host ribosome, synthesizing various structural and accessory proteins building multiple virus structure [62] . Most of the structural and accessory proteins associated with membrane such as S, M, and E are synthesized by endoplasmic reticulum-bound ribosomes, whereas other viral proteins, including N protein, are translated by free cytosolic ribosomes of host cells. In addition, these structural proteins also undergo posttranslational modification that modulate their functions. The assembly of virion converges at site of endoplasmic reticulum-Golgi intermediate compartment (ERGIC), wherein M protein provides scaffold and orchestrate virion morphogenesis by heterotypic interaction with other structural proteins, such as M-S and M-E, thereby facilitating molecular incorporation. Furthermore, M-N interactions mediates condensation of the nucleocapsid with the envelope along with E protein [61] . Post molecular assembly, progeny virions are transported in smoothwall vesicle and using secretory pathway they are trafficked to plasma membrane and eventually exit though exocytosis and spread to other parts of body [63, 64] . Currently, SARS-CoV-2 has rapidly spread across world beginning from Wuhan, capital of Central China's Hubei province, causing a fatal outbreak of acute infectious pneumonia. Till date, considerable success has not been achieved regarding development of specific anti-virus drugs or vaccines for the treatment of this disease despite consistent efforts made by researchers around the world. Nonethless, lots of efforts are being made to drug repurposing of FDA-approved/clinical-trial drugs in order to use them against COVID-19. In this direction, various pharmaceutical companies and government agencies have reportedly succeeded to a certain extent, necessitating further research work to find the cure. There are various potential therapeutic drug molecules, compounds and antibodies under clinical trial, offering considerable benefits are listed in Table 2 below. Table 2 . Selected list of therapeutic molecules currently in clinical trial and their respective targets on SARS-CoV-2. 1 Pyridone-containing α-ketoamides Targets M pro , also referred to as 3C-like proteinase or NSP5, and thereby interfering with viral replication [65] 2 Chloroquine and formoterol They may act as papain-like protease (PLpro), inhibiting proteolytic generation and maturation of NSP1, NSP2 and NSP3 thereby interfering with virus replication [66] . Chloroquine interferes with terminal glycosylation of ACE2 receptor, thereby inhibiting its interaction with S protein of SARS-CoV-2 Plasma therapy is being tested and adopted as one of the crucial therapeutic regimes to treat COVID-19 patients. This is based on fact that polyclonal antibodies produced in convalescent persons following infection may help neutralize viruses, and substantially reduces the duration of viremia and hospitalization. During this therapy, isolated anti-SARS-CoV-2 antibodies from recovered patients are administered in patient in order to effectively neutralize the virus through multiple immunological mechanisms. Besides, it could also provide prophylactic immunity prior to the occurrence of viral infection. Furthermore, various epitopes on the spike protein can be targeted using antibody cocktails. This line of supportive treatment has shown quite promising results in preliminary investigations carried out across the world, and therefore, is being scaled up to an unprecedented level [75, 76] . However, it requires further detailed investigation and optimization at multiple levels, including antibody concentration, dose and frequency of administration. Besides, genetic engineering has enabled development of single-domain antibodies (sdAbs), or nanobodies against S and N proteins in order to prevent viral attachment to host cells by blocking ACE2 binding [77] . One of the central hypotheses regrading coronavirus disease is based on the empirical observation that complications and death are the consequences of viral load whose reversal may bring clinical benefits to the patient concerned. Following this hypothesis, a recent study involving RGEN-COV2 (antibody cocktail consisting of two fully human antibody, noncompeting IgG1 against RBD of SARS-CoV-2 S protein) has shown substantial benefit in term of enhanced viral clearance and hence, may be adopted as antiviral therapy, particularly in patient with weakened immune response [78] . Cytokine storm following SARS-CoV-2 infection leads to substantial complications and tissue damage leading to ARDS (Acute Respiratory Distress Syndrome). Therefore, controlling cytokine storm by using therapeutic antibodies, which can target TLR4 (EB05), CXCL10 (EB06), and IL6 (Levilimab) amongst others, may suppress proinflammatory response and hence consequent histological damage in multiple tissues following infection [75, 79] . The worldwide endeavor for manufacturing vaccines to tackle SARS-CoV-2 infection has been growing since the beginning of the current pandemic. Vaccine is administered to all age groups of people to help them develop and strengthen both humoral and cellmediated immunity so that they can fight infection. Until now, there have been the development and authorization/approval of 13 vaccines worldwide, and around 58 vaccines are under various phases of trial (https://www.raps.org/news-and-articles/newsarticles/2020/3/covid-19-vaccine-tracker; accessed on 30 March 2021). Inactivated vaccine accounts for 38% of total approved vaccines worldwide ( Figure 3 ). The various aspects of 13 approved vaccines are mentioned in Table 3 . The SARS-CoV-2 is the causative pathogen for the current pandemic, and is evolving through recombination and mutation into several strains over a period of time. Owing to free geopolitical borders, lack of knowledge regarding its spread, and initial negligence by various stakeholders have led to quick spread of COVID-19, causing millions of deaths and debilitation, as well as huge burden on socio-economic and health system of nations, and territories worldwide. Nevertheless, technological and methodological advances in the field of virology, molecular biology, and pharmacology haves helped us understand the structural and genomic organization as well as mechanism underlying cellular entry, lifecycle, and pathophysiological characteristics of SARS-CoV-2 to some extent. However, there is still need for establishing cellular and animal models for SARS-CoV-2 to develop even greater insights into mechanisms underlying viral replication, pathogenesis, and transmission dynamics. Globally, such studies are being carried out, aiming at the development of therapeutic strategies against the zoonotic coronavirus epidemic. The development of therapeutic strategies could rely upon studying the molecular mechanisms underlying host-pathogen interaction, ever-evolving virus genome through recombination and mutation, host immune response involving innate and adaptive immunity, and so forth. Amongst such therapeutic studies are the development and/or repurposing of various drugs (Table 2) , targeting cellular entry and replication to reduce the severity of the disease. In addition, plasm therapy is also being used as a supportive treatment to neutralize the virus and as a prophylactic measure as it involves mixture of antibodies against multiple epitopes on various structural moleculessuch as S and N proteins. Genetically engineered nanobodies and antibodies suppressing cytokine storms have also shown promising results [77, 79] . The worldwide effort has also resulted in the development of various types of vaccines, which are being administered, and promising results have been obtained. Therefore, considering above advancement in the field of etiology, drug, and vaccine development, we may hope for promising outcome in near future. Author Contributions: R.Y., J.K.C., N.J., P.K.C., and S.K. contributed equally in conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, project administration, resources, software, supervision, validation, visualization, writing-original draft, Writingreview and editing. P.D., A.S., A.K., and S.H. contributed to evaluating, editing, and reviewing the manuscript. All authors have read and agreed to the published version of the manuscript. The conception: design, writing, and editing of this review article has not utilized any specific grant. Informed Consent Statement: Not applicable. Data Availability Statement: Not applicable. A pneumonia outbreak associated with a new coronavirus of probable bat origin Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding History is repeating itself: Probable zoonotic spillover as the cause of the 2019 novel Coronavirus Epidemic A Novel Coronavirus from Patients with Pneumonia in China An Updated Overview of Their Replication and Pathogenesis Fully automated detection and differentiation of pandemic and endemic coronaviruses (NL63, 229E, HKU1, OC43 and SARS-CoV-2) on the Hologic Panther Fusion Genomic characterization of the 2019 novel humanpathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan Epidemiological findings from a retrospective investigation Human infection with MERS coronavirus after exposure to infected camels Severe Acute Respiratory Syndrome: Historical, Epidemiologic, and Clinical Features From SARS to MERS, Thrusting Coronaviruses into the Spotlight Dynamically evolving novel overlapping gene as a factor in the SARS-CoV-2 pandemic Beyond Shielding: The Roles of Glycans in the SARS-CoV-2 Spike Protein Characterization of Structural and Energetic Differences between Conformations of the SARS-CoV-2 Spike Protein. Materials (Basel) 2020 Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19 Pathological Aspects of COVID-19 as a Conformational Disease and the Use of Pharmacological Chaperones as a Potential Therapeutic Strategy Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid A structural analysis of M protein in coronavirus assembly and morphology A conserved domain in the coronavirus membrane protein tail is important for virus assembly Characterization and translation of transmissible gastroenteritis virus mRNAs Structural requirements for O-glycosylation of the mouse hepatitis virus membrane protein Single amino acid changes in the viral glycoprotein M affect induction of alpha interferon by the coronavirus transmissible gastroenteritis virus Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis Coronavirus envelope protein: Current knowledge The coronavirus nucleocapsid is a multifunctional protein Modular organization of SARS coronavirus nucleocapsid protein Phosphoproteins of murine hepatitis viruses Analysis of preferred codon usage in the coronavirus N genes and their implications for genome evolution and vaccine design Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China SARS coronavirus nsp1 protein induces template-dependent endonucleolytic cleavage of mRNAs: Viral mRNAs are resistant to nsp1-induced RNA cleavage Severe acute respiratory syndrome coronavirus nonstructural protein 2 interacts with a host protein complex involved in mitochondrial biogenesis and intracellular signaling Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein Two-amino acids change in the nsp4 of SARS coronavirus abolishes viral replication Coronavirus NSP6 restricts autophagosome expansion The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension Cryo-EM structure of the human cohesin-NIPBL-DNA complex Imbert, I. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities A high ATP concentration enhances the cooperative translocation of the SARS coronavirus helicase nsP13 in the unwinding of duplex Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2'-O-methyltransferase nsp10/nsp16 complex Cryo-EM structure of the SARS-CoV-2 3a ion channel in lipid nanodiscs The ORF3a protein of SARS-CoV-2 induces apoptosis in cells A putative diacidic motif in the SARS-CoV ORF6 protein influences its subcellular localization and suppression of expression of co-transfected expression constructs SARS-CoV-2 Virion Stabilization by The ORF7b protein of severe acute respiratory syndrome coronavirus (SARS-CoV) is expressed in virus-infected cells and incorporated into SARS-CoV particles The ORF8 Protein of SARS-CoV-2 Mediates Immune Evasion through Potently Downregulating MHC-I SARS-CoV-2 Orf9b suppresses type I interferon responses by targeting TOM70 Proteomics of SARS-CoV-2-infected host cells reveals therapy targets Sequence Analysis and Structure Prediction of SARS-CoV-2 Accessory Proteins 9b and ORF14: Evolutionary Analysis Indicates Close Relatedness to Bat Coronavirus MERS-CoV Accessory ORFs Play Key Role for Infection and Pathogenesis Inhibition of Stress Granule Formation by Middle East Respiratory Syndrome Coronavirus 4a Accessory Protein Facilitates Viral Translation, Leading to Efficient Virus Replication Antagonism of the interferoninduced OAS-RNase L pathway by murine coronavirus ns2 protein is required for virus replication and liver pathology The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis Simulations support the interaction of the SARS-CoV-2 spike protein with nicotinic acetylcholine receptors and suggest subtype specificity Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites Functional analysis of potential cleavage sites in the MERScoronavirus spike protein The coding capacity of SARS-CoV-2 Coronavirus biology and replication: Implications for SARS-CoV-2 Continuous and Discontinuous RNA Synthesis in Coronaviruses Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods Adenine C-Nucleoside (GS-5734) for the Treatment of Ebola and Emerging Viruses Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV The severe acute respiratory syndrome (SARS) coronavirus NTPase/helicase belongs to a distinct class of 5' to 3' viral helicases SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor Virtual screening and dynamics of potential inhibitors targeting RNA binding domain of nucleocapsid phosphoprotein from SARS-CoV-2 Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro Neutralization of UK-variant VUI-202012/01 with COVAXIN vaccinated human serum Convalescent Plasma Therapy for COVID-19: State of the Art Effect of Convalescent Plasma Therapy on Time to Clinical Improvement in Patients With Severe and Life-threatening COVID-19: A Randomized Clinical Trial Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2 REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with Covid-19 Innate Immune Signaling and Proteolytic Pathways in the Resolution or Exacerbation of SARS-CoV-2 in Covid-19: Key Therapeutic Targets? Front Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine Impact of age, ethnicity, sex and prior infection status on immunogenicity following a single dose of the BNT162b2 mRNA COVID-19 vaccine: Real-world evidence from healthcare workers Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK Double-Blind, Randomized, Placebo-Controlled Phase III Clinical Trial to Evaluate the Efficacy and Safety of treating Healthcare Professionals with the Adsorbed COVID-19 (Inactivated) Vaccine Manufactured by Sinovac-PROFISCOV: A structured summary of a study protocol for a randomised controlled trial