key: cord-1018257-ymygywzo authors: Signorini, Cinzia; Pignatti, Patrizia; Coccini, Teresa title: How Do Inflammatory Mediators, Immune Response and Air Pollution Contribute to COVID-19 Disease Severity? A Lesson to Learn date: 2021-02-25 journal: Life (Basel) DOI: 10.3390/life11030182 sha: a61ae1601ce87890aec785f2cb223abf2b285bd8 doc_id: 1018257 cord_uid: ymygywzo Inflammatory and immune processes are defensive mechanisms that aim to remove harmful agents. As a response to infections, inflammation and immune response contribute to the pathophysiological mechanisms of diseases. Coronavirus disease 2019 (COVID-19), whose underlying mechanisms remain not fully elucidated, has posed new challenges for the knowledge of pathophysiology. Chiefly, the inflammatory process and immune response appear to be unique features of COVID-19 that result in developing a hyper-inflammatory syndrome, and air pollution, the world’s largest health risk factor, may partly explain the behaviour and fate of COVID-19. Understanding the mechanisms involved in the progression of COVID-19 is of fundamental importance in order to avoid the late stage of the disease, associated with a poor prognosis. Here, the role of the inflammatory and immune mediators in COVID-19 pathophysiology is discussed. The pathogenesis of coronavirus disease 2019 (COVID- 19) , which is due to infection by the novel coronavirus (SARS-CoV-2) [1, 2] , is driven by immune responses, hyperinflammation, and hyper-coagulation [3] [4] [5] . COVID-19 resembles flu by involving the upper airways with mild symptoms, but patients may also develop severe symptoms with the involvement of the lower airways. Mainly, COVID-19 gives rise to a peculiar severe acute respiratory syndrome and bloodstream alterations as consequences of changes in inflammatory activities, which occur as defence mechanisms, leading to multi-organ dysfunction in patients at high risk [6] . SARS-CoV-2 targets host cells through the viral structural spike protein that binds to the angiotensin-converting enzyme 2 (ACE2) receptor. The spike protein is most prominent on the virion surface and confers the specific appearance of a corona [7] . The type 2 transmembrane serine protease (TMPRSS2), present in the host cell, promotes viral uptake by cleaving ACE2 and activating the SARS-CoV-2 S protein, which mediates coronavirus entry into host cells. Interestingly, ACE2 and TMPRSS2 are expressed in host target cells, particularly alveolar epithelial type II cells [8] [9] [10] . From the beginning of the pandemic, accumulated clinical experiences have shown that the prognosis of the disease was greatly influenced by the development of lung injury, which can evolve into the manifestation of acute respiratory distress syndrome (ARDS) that usually occurs in the late stages of the infectious process [1, 11] . ARDS, whose pathophysiology is linked to inflammation Infection by SARS-CoV-2 triggers a local immune response, including recruitment of cell populations involved in innate immune response, which supports the inflammatory process, and the generation of viral-specific adaptive responses by both B and T cells, resulting in effective serum antibody titers as antiviral immunoglobulin-M and -G (IgM, IgG). Frequently, an appropriate immune response is mediated by antibodies, which bind and opsonise SARS-CoV-2, whereas alveolar macrophages phagocytise the neutralised viral particles. Additionally, the generation of viral-induced T cell responses eliminates infected cells and prevents cell-to-cell viral spread, reducing inflammation and lung damage. However, when the cytopathic effect of SARS-CoV-2 overwhelms the first line of defence, the innate immune response, alterations in signals regulating inflammatory homeostasis, release of damage-associated molecular patterns (DAMPs), and pathogen-associated molecular patterns (PAMPs) [43] . Such events contribute, together with the viral infection, to worse outcomes via an exacerbation of the inflammatory process [44] . The involvement of neutrophils in the inflammatory mechanisms of COVID-19 has been confirmed by an increased number of circulating neutrophils that have been reported to be an indicator of the severity of respiratory symptoms and poor clinical outcomes in COVID-19 [45] . The role of inflammatory signals in COVID-19 pathophysiology has also been confirmed by the increased concentration of neutrophil extracellular traps (NETs) detected in plasma, tracheal aspirate, and lung autopsies tissues from COVID-19 patients [46] . Since NETs are important mediators of tissue damage in inflammatory diseases, their release by healthy neutrophils, as a consequence of SARS-CoV-2 infection, contributes to the lung epithelial injury [47] . Interestingly, the release of NETs by healthy neutrophils is linked to the ACE2 receptor-serine protease axis, which is involved in the molecular interaction between the virus membrane glycoprotein spike (S) and human host cells [48] , as previously mentioned. Nevertheless, peripheral blood neutrophilia has been found in COVID-19 [49, 50] . Therefore, neutrophil-linked inflammatory mechanisms involved in COVID-19 pathophysiology rely on different conditions: (i) inflammatory mediators stimulate neutrophil activity and increase the trafficking of neutrophils to sites of inflammation; (ii) aberrant NET formation is linked to pulmonary diseases, thrombosis, mucous secretions in the airways, and cytokine production; (iii) neutrophils, able of phagocytosis, are implicated in the hyperinflammation that drives to severe COVID-19. Their aberrant activation is linked to lung inflammation and elevated serum proinflammatory cytokines resulting in lung damage and thrombosis. Cytokines are part of the physiologically-regulated immune response to infectious agents, and the term "cytokine storm" was firstly described in the graft-versus-host disease [51] and as a serious adverse event developed after chimeric antigen receptor (CAR) T-cell therapy [52] . Currently, pathophysiological and clinical features of cytokine storms have been deeply described [53] , and the term "cytokine storm" is used to describe a sudden cytokine release, which takes place when the immune system is over-activated with elevated levels of circulating cytokines and immune cells. Such hyper-inflammation and overproduction of inflammatory cytokines can be due to different conditions leading to a failure of negative feedback mechanisms meant to regulate the system [52] . Consequently, cytokine release syndrome occurs as a condition in which the immune response to the pathogen, but not the pathogen itself, can contribute to multiorgan dysfunction. The occurrence of a cytokine storm is associated with different clinical conditions, such as sepsis [54] . Cytokine storm was previously noted in SARS patients as an interferon-γ-related biological manifestation; it was described to be induced post-SARS coronavirus infection and was involved in causing immunopathological damage [17] . In COVID-19, cytokine storm has been defined among the primary pathophysiologic features [32] , and it appears to be related to the involvement of virus interaction with ACE2. The consequent loss of control over angiotensin II activity, in addition to manifesting its effects on the altered homeostasis of arterial and/or pulmonary pressure [55] [56] [57] [58] , culminating in a hypertension status, activates cells of the immune system in lung tissue [15] . When COVID-19 progresses to severe illness, an immune system overreaction that culminates in abnormally increased serum levels of CCL2, CCL3, and CXCL10, has been reported. In patients with cytokine storm secondary to COVID-19, elevated serum cytokine levels are mainly related to IL-1β, IL-6, CXCL10, TNF-α, IFN-γ, macrophage inflammatory protein (MIP) 1α and 1β, and VEGF [1, 59] . Levels of four cytokines (IL-6, CXCL8, TNF-α, and IL-1β) were associated with indices of severity concerning inflammation and coagulation: C-reactive protein (CRP), D-dimer, and ferritin. Moreover, IL-6 and IL-1β were additionally associated with fever [60] . Hugh serum levels were also detected for IL-17, G-CSF, GM-CSF, MCP1, MIP-1α in patients with severe COVID-19 [44] . Cytokine storm can lead to multi-organ failure [6, 61] . Accordingly, IL-6 and IL-10 serum levels have been shown as disease severity predictors [62] . In particular, higher IL-6 levels were strongly associated with shorter survival [60] . Moreover, thromboembolic events (described below) appear to be more frequent in COVID-19 associated cytokine storm [63] . Thus, as a relevant point, the profile of serum cytokines is a predictor of the severity of disease [62] . Inflammatory cytokines may activate T-helper type 1 cell response as well as T-helper type 2-derived cytokines in COVID-19 patients [1] . Moreover, a further key event leading to hyper-inflammation seems to be the activation of an immune response regulated by T helper 17 (Th-17) lymphocytes [18] . Activation of Th-17 plays a role in neutrophil production and recruitment in COVID-19-associated cytokine storm [64] . Nevertheless, the role of cytokine storms in COVID-19-induced organ dysfunction is still under discussion [65] . A meta-analysis of data from 25 COVID-19 studies showed that inflammatory cytokine elevations in patients with severe and critical COVID-19, were lower than those reported in patients with other inflammatory syndromes, such as pulmonary disease unrelated to COVID-19, sepsis, and CAR T cell-induced cytokine release syndrome [65] . Additionally, acute-phase reactants (i.e., CRP, D-dimer, and ferritin) appeared to be similarly elevated in patients with COVID-19 and in patients with other inflammatory syndromes [65] . Sinha et al. [66] also critically evaluated the relevance of cytokine storm in COVID-19, showing that IL-6 levels in patients with COVID-19 (over 900 subjects) were above the normal range in many (but not all) cases. Nevertheless, the median values of IL-6 were lower than those typically reported in ARDS (over 1000 subjects). From a therapeutic point of view, it should be considered that cytokines may be both detrimental, when they cause a cytokine storm, and essential when potentiating an antimicrobial response. Thus, blocking cytokine signalling through target therapies should be weighed depending on the risk of secondary infections and cytokine storm development [67, 68] . The complement system plays a central role in immunity and defence against pathogens [69] . Magnified complement activation contributes to the pathogenesis of many inflammatory and immune diseases [70] , also including lung diseases induced by viral infections [71] . Although the complement system represents the first immune response to SARS-CoV-2 infection, there is growing evidence that unrestrained activation of complement induced by the virus plays a major role in acute and chronic inflammation [72] . In particular, the C5a complement factor, a chemoattractant involved in the recruitment of inflammatory cells, plays a key role in initiating and maintaining inflammatory responses by recruiting and activating neutrophils and monocytes, inducing the C5a-mediated neutrophil extracellular traps and the C5a-mediated cytokine storm [71] . Together with an increase in the amounts of plasma C-reactive protein (CRP), IL-6, and the chemokines CCL4 (macrophage inflammatory protein-1β), CCL2 (monocyte chemoattractant protein 1) and CXCL9 (monokine induced by interferon-γ), the levels of soluble C5a were increased according to the severity of COVID-19. In addition, high levels of C5aR1 receptor were found in blood and pulmonary myeloid cells [49] . It has been suggested that factors trig-gering the activation of the complement pathways are upregulated in COVID-19 and may sustain the high levels of C5a detected in patients with severe COVID-19 [49] . Furthermore, the involvement of C5a in the inflammatory process of COVID-19 is supported by identifing in patients with COVID-19, increased monocyte production of inflammatory cytokines, such as IL-6, TNF-α, and CCL2 [49] . Due to both the detection of C5a in the bronchoalveolar lavage fluid of COVID-19 patients with ARDS and pulmonary infiltration of macrophages largely expressing C5aR1, an association between C5a and lung disease caused by SARS-CoV-2 infection has been proposed [49] . Consistent with both such evidence and the high C5a levels described in preclinical models of acute lung diseases due to pathogenic viruses, including SARS-CoV, the C5a-C5aR1 axis has been thought as a target for a potential therapeutic strategy to treat severe COVID-19 [49] . Indeed, a promising therapeutic effect was observed when deteriorating patients were treated with anti-C5a monoclonal antibody [73] . Moreover, complement cascade was shown to be over-activated in lungs of COVID-19 patients, including C3 and C5b-9, deposition in type I and type II alveolar epithelial cells [73] . The complement C5b-9 and MAC deposition on tubules have been described to be involved in the acute renal failure associated with viral infection [74] . The complement system links innate immunity to coagulation [75] . Thus, aberrant activation of complement has been described to be involved in the pathophysiology of COVID-19 by promoting endothelial cell dysfunction, microvascular injury, and thrombotic events [76] and contributes to multiple organ failure [72] . Patients with severe COVID-19 infection often develop fulminant activation of coagulation reflected by thrombocytopenia, prolongation of the prothrombin time, and an elevation of D-dimer has been observed in these subjects [77] . In particular, terminal complement components C5b-9 (membrane attack complex, (MAC)) and C4d have been found in the microvasculature, and a colocalisation of COVID-19 spike glycoproteins with C4d and C5b-9 have been demonstrated in the interalveolar septa and the cutaneous microvasculature [76] . Thus, the complication of COVID-19 by venous thromboembolism occurrence appears to be primarily related to inflammatory-mediated mechanisms in addition to viral endothelium damage. Circulating cytokines, DAMPs, and PAMPs trigger blood monocytes to induce tissue factor (TF) expression. In these conditions, endothelial cells would take up viral particles and produce chemo-attractants that recruit monocytes and upregulate adhesion molecules. TF activates the extrinsic coagulation pathway leading to fibrin deposition and blood clotting [44] . Accordingly, thrombosis is very frequent in COVID-19, and frequent check of coagulation parameters is recommended [14] . Inflammasomes, are macromolecular inflammatory signalling complexes activated by the detection of pathogenic microorganisms and process pro-inflammatory cytokines (i.e., pro-IL-1β and pro-IL-18) to their bioactive forms [78] , have been investigated in COVID-19. Activation of inflammasomes by SARS-CoV-2 infection is linked to COVID-19 disease severity and clinical outcomes [79] . Since activation of the NLRP3 inflammasome, a canonical component of inflammasomes acting as intracellular surveillance molecules [80] , is relevant in different sepsis models [81] , it has been speculated that NLRP3 would be linked to the pathogenesis of COVID-19 [79] , whose pathophysiology is associated to a severe systemic inflammatory syndrome [82] . In particular, in lung tissues from lethal cases of COVID-19, active inflammasomes and CD14+ cells infected by SARS-CoV-2 and expressing NLRP3 were detected. Furthermore, COVID-19 patients were found to contain higher NLRP3 levels compared to control subjects [79] . By evaluating the inflammatory picture in COVID-19, it was reported that several inflammatory markers were correlated. In particular, (i) active/cleaved caspase-1 (Casp1p20) and/or cleaved IL-18, as indices of inflammasome activation, were positively associated with CRP, LDH, and ferritin; (ii) IL-18 levels were found to be positively correlated with IL-6 and CRP levels; (iii) and Casp1p20 positively correlated with IL-6, LDH, and CRP [79] . Moreover, it was found that the levels of IL-18 were higher in patients with body mass index ≥30 [79] , suggesting a link between inflammasomes that activate IL-18 after viral infection and obesity. With respect to the influence of inflammasome activation on the clinical outcome of COVID-19, it was found that (i) IL-18 levels, but not Casp1p20, were higher in patients who required mechanical ventilation; (ii) levels of Casp1p20 but not IL-18 were higher in patients with the severe form of COVID-19, and (iii) levels of IL-18, but not Casp1p20, were higher in lethal cases of COVID-19 when compared with survivors [79] . Thus, COVID-19 stokes inflammasomes and [83] the relevance of NLRP3 inflammasomes as a potential therapeutic target to manage clinical manifestation of COVID-19 have been discussed [84] . The extra-pulmonary effects of SARS-CoV-2 infection [44] , also supported by inflammatory events, are well justified, given that ACE2 receptors are present in tissues different from the respiratory epithelium and lung parenchyma, such as myocardium, endothelium, and intestinal mucosa [85, 86] . As compared to previously identified coronaviruses, SARS-CoV-2 shows a higher invasive capacity because of the higher affinity of its spike protein to ACE2 receptors. [87] . The involvement of neurons in SARS-CoV-2 infection [87] appears confirmed by the neuromuscular manifestations, such as anosmia and hyposmia, symmetric neuropathy, and myositis, which have been described as secondary effects of COVID-19 [88] . Again, these are symptoms supported, in their pathogenic mechanisms, by inflammatory events. If myalgia is part of the acute phase reaction in systemic manifestations of the inflammatory processes, together with fever, and if viral infections can cause typical influenza cases with gastrointestinal symptoms, what appears to be peculiar in COVID-19 is the simultaneous presence of all inflammatory symptoms or the ability of SARS-CoV-2 to damage, and consequently develop inflammatory symptoms, in multiple areas. This broad spectrum of symptoms is most likely due to the widespread distribution of ACE2 receptors. Interestingly, the presence of ACE2 receptors in the brain makes it necessary to pay attention to cerebral microcirculation. Additionally, neuronal inflammation should be checked during the therapeutic management of COVID-19 [89] . An additional feature of COVID-19, which could be implicated in the multiplicity of organ targets and systemic symptoms, concerns a supposed interaction between SARS-CoV-2 virions and plasma albumin reflecting depletion of the endothelial glycocalyx layer [90] . Such alteration modifying endothelium integrity would undoubtedly refer to pathophysiological aspects of the blood circulation that manifest themselves in COVID-19 and complicate the clinical course of the disease. Accordingly, hypoalbuminemia is a relevant factor in sepsis; ARDS, which is associated with sepsis, is systemic and is associated with maintenance of circulation homeostasis. A summary of the complex interrelationship among inflammatory factors in COVID-19 is displayed in Figure 1 . 1 Neutrophils are predominate in pulmonary oedema fluid in acute respiratory distress syndrome (ARDS). These cells adhere to endothelial cells through the interactions of leukocyte integrins and intercellular adhesion molecule (ICAM) located on the endothelial surface, contributing to pulmonary neutrophil sequestration [12] . 2 These cells release toxic oxygen radicals, proteases, cytokines and products of arachidonic acid metabolism, damaging endothelial cells with increased vascular permeability. 3 In the event of alterations in signals regulating inflammatory homeostasis (due to viral cytopathic effect that overwhelms the first line of the innate immune response), and an accumulation of DAMPs and PAMPs occurs [43] , contributing to exacerbation of the inflammatory process [44] . 4 5 6 In severe cytokine storm cases, renal failure, acute liver injury, and cardiomyopathy can develop [53] . 7 8 Hypoalbuminemia occurs in COVID-19 cytokine storm [53] . It is also a consequence of liver injury (reduced hepatic albumin synthesis). [12] .② These cells rel toxic oxygen radicals, proteases, cytokines and products of arachidonic acid metabolism, dama endothelial cells with increased vascular permeability. ③ In the event of alterations in sig regulating inflammatory homeostasis (due to viral cytopathic effect that overwhelms the first of the innate immune response), and an accumulation of DAMPs and PAMPs occurs contributing to exacerbation of the inflammatory process [44] . ④⑤⑥ In severe cytokine s cases, renal failure, acute liver injury, and cardiomyopathy can develop [53] . ⑦ Hypoalbuminemia occurs in COVID-19 cytokine storm [53] . It is also a consequence of liver in (reduced hepatic albumin synthesis). ⑨⑩ The combination of endothelial-cell alteration and ac phase hypoalbuminemia renal dysfunction [90] can lead to anasarca and capillary leak syndrom a rare disorder characterised by a dysfunctional inflammatory response, endothelial dysfunc extravasation of fluid, hypoalbuminemia, and subsequent organ failure [53] . ⑪ Hypoalbumine is a known factor in ARDS [90] , a clinical syndrome of non-cardiogenic pulmonary oedema th the exudative stage is characterised by an increase in vascular permeability and alveolar oed [12] . ⑫ Cardiomyopathy causes hypoxia and hypoxemia. ⑬⑭⑮ Hypoxia activates macroph and neutrophils that contribute to ARDS and pneumonia [32] and stabilise HIF-1α leadin cytokine storm by activation of immune cells [40] . Abbreviations: DAMPs, damage-associ molecular patterns; HIF-1α, hypoxia inducible factor 1α; PAMPs, pathogen-associated molec patterns. Viral infections are sometimes responsible for concomitant intestinal and up respiratory airway pathological manifestations, and cooling and conjunctivitis sympt are also possible [7, 91] . Both coronaviruses causing SARS in humans, SARS-CoV-1 SARS-CoV-2, share the ACE2 cellular receptor interaction with the spike glycoprotei a means of cellular entry and are equally stable and infectious as aerosols [7] . During the pandemic, what is surprising and has put health management in emergency condition are the extent of the symptoms, which can easily progressi worsen and become complicated, and the high contagiousness of SARS-CoV-2. Usually, coronaviruses interact with human biological systems in a transient mild manner. The modality of interactions of SARS-CoV-2 with human cells may rely The combination of endothelial-cell alteration and acute-phase hypoalbuminemia renal dysfunction [90] can lead to anasarca and capillary leak syndrome-a rare disorder characterised by a dysfunctional inflammatory response, endothelial dysfunction, extravasation of fluid, hypoalbuminemia, and subsequent organ failure [53] . [12] .② These cells release xygen radicals, proteases, cytokines and products of arachidonic acid metabolism, damaging elial cells with increased vascular permeability. ③ In the event of alterations in signals ing inflammatory homeostasis (due to viral cytopathic effect that overwhelms the first line innate immune response), and an accumulation of DAMPs and PAMPs occurs [43] , uting to exacerbation of the inflammatory process [44] . ④⑤⑥ In severe cytokine storm renal failure, acute liver injury, and cardiomyopathy can develop [53] . ⑦⑧ lbuminemia occurs in COVID-19 cytokine storm [53] . It is also a consequence of liver injury d hepatic albumin synthesis). ⑨⑩ The combination of endothelial-cell alteration and acuteypoalbuminemia renal dysfunction [90] can lead to anasarca and capillary leak syndromedisorder characterised by a dysfunctional inflammatory response, endothelial dysfunction, sation of fluid, hypoalbuminemia, and subsequent organ failure [53] . ⑪ Hypoalbuminemia wn factor in ARDS [90] , a clinical syndrome of non-cardiogenic pulmonary oedema that in dative stage is characterised by an increase in vascular permeability and alveolar oedema Cardiomyopathy causes hypoxia and hypoxemia. ⑬⑭⑮ Hypoxia activates macrophages utrophils that contribute to ARDS and pneumonia [32] and stabilise HIF-1α leading to e storm by activation of immune cells [40] . Abbreviations: DAMPs, damage-associated lar patterns; HIF-1α, hypoxia inducible factor 1α; PAMPs, pathogen-associated molecular s. ammation and Immune Response-Molecular Cross-Talk iral infections are sometimes responsible for concomitant intestinal and upper tory airway pathological manifestations, and cooling and conjunctivitis symptoms o possible [7, 91] . Both coronaviruses causing SARS in humans, SARS-CoV-1 and CoV-2, share the ACE2 cellular receptor interaction with the spike glycoprotein as ns of cellular entry and are equally stable and infectious as aerosols [7] . uring the pandemic, what is surprising and has put health management in an ency condition are the extent of the symptoms, which can easily progressively n and become complicated, and the high contagiousness of SARS-CoV-2. sually, coronaviruses interact with human biological systems in a transient and Hypoalbuminemia is a known factor in ARDS [90] , a clinical syndrome of non-cardiogenic pulmonary oedema that in the exudative stage is characterised by an increase in vascular permeability and alveolar oedema [12] . [12] .② These cells release toxic oxygen radicals, proteases, cytokines and products of arachidonic acid metabolism, damaging endothelial cells with increased vascular permeability. ③ In the event of alterations in signals regulating inflammatory homeostasis (due to viral cytopathic effect that overwhelms the first line of the innate immune response), and an accumulation of DAMPs and PAMPs occurs [43] , contributing to exacerbation of the inflammatory process [44] . ④⑤⑥ In severe cytokine storm cases, renal failure, acute liver injury, and cardiomyopathy can develop [53] . ⑦⑧ Hypoalbuminemia occurs in COVID-19 cytokine storm [53] . It is also a consequence of liver injury (reduced hepatic albumin synthesis). ⑨⑩ The combination of endothelial-cell alteration and acutephase hypoalbuminemia renal dysfunction [90] can lead to anasarca and capillary leak syndromea rare disorder characterised by a dysfunctional inflammatory response, endothelial dysfunction, extravasation of fluid, hypoalbuminemia, and subsequent organ failure [53] . ⑪ Hypoalbuminemia is a known factor in ARDS [90] , a clinical syndrome of non-cardiogenic pulmonary oedema that in the exudative stage is characterised by an increase in vascular permeability and alveolar oedema [12] . ⑫ Cardiomyopathy causes hypoxia and hypoxemia. ⑬⑭⑮ Hypoxia activates macrophages and neutrophils that contribute to ARDS and pneumonia [32] and stabilise HIF-1α leading to cytokine storm by activation of immune cells [40] . Abbreviations: DAMPs, damage-associated molecular patterns; HIF-1α, hypoxia inducible factor 1α; PAMPs, pathogen-associated molecular patterns. Viral infections are sometimes responsible for concomitant intestinal and upper respiratory airway pathological manifestations, and cooling and conjunctivitis symptoms are also possible [7, 91] . Both coronaviruses causing SARS in humans, SARS-CoV-1 and SARS-CoV-2, share the ACE2 cellular receptor interaction with the spike glycoprotein as a means of cellular entry and are equally stable and infectious as aerosols [7] . During the pandemic, what is surprising and has put health management in an emergency condition are the extent of the symptoms, which can easily progressively worsen and become complicated, and the high contagiousness of SARS-CoV-2. Usually, coronaviruses interact with human biological systems in a transient and mild manner. The modality of interactions of SARS-CoV-2 with human cells may rely on Cardiomyopathy causes hypoxia and hypoxemia. [12] .② These cells release toxic oxygen radicals, proteases, cytokines and products of arachidonic acid metabolism, damaging endothelial cells with increased vascular permeability. ③ In the event of alterations in signals regulating inflammatory homeostasis (due to viral cytopathic effect that overwhelms the first line of the innate immune response), and an accumulation of DAMPs and PAMPs occurs [43] , contributing to exacerbation of the inflammatory process [44] . ④⑤⑥ In severe cytokine storm cases, renal failure, acute liver injury, and cardiomyopathy can develop [53] . ⑦⑧ Hypoalbuminemia occurs in COVID-19 cytokine storm [53] . It is also a consequence of liver injury (reduced hepatic albumin synthesis). ⑨⑩ The combination of endothelial-cell alteration and acutephase hypoalbuminemia renal dysfunction [90] can lead to anasarca and capillary leak syndromea rare disorder characterised by a dysfunctional inflammatory response, endothelial dysfunction, extravasation of fluid, hypoalbuminemia, and subsequent organ failure [53] . ⑪ Hypoalbuminemia is a known factor in ARDS [90] , a clinical syndrome of non-cardiogenic pulmonary oedema that in the exudative stage is characterised by an increase in vascular permeability and alveolar oedema [12] . ⑫ Cardiomyopathy causes hypoxia and hypoxemia. ⑬⑭⑮ Hypoxia activates macrophages and neutrophils that contribute to ARDS and pneumonia [32] and stabilise HIF-1α leading to cytokine storm by activation of immune cells [40] . Abbreviations: DAMPs, damage-associated molecular patterns; HIF-1α, hypoxia inducible factor 1α; PAMPs, pathogen-associated molecular patterns. Viral infections are sometimes responsible for concomitant intestinal and upper respiratory airway pathological manifestations, and cooling and conjunctivitis symptoms are also possible [7, 91] . Both coronaviruses causing SARS in humans, SARS-CoV-1 and SARS-CoV-2, share the ACE2 cellular receptor interaction with the spike glycoprotein as a means of cellular entry and are equally stable and infectious as aerosols [7] . During the pandemic, what is surprising and has put health management in an emergency condition are the extent of the symptoms, which can easily progressively worsen and become complicated, and the high contagiousness of SARS-CoV-2. Usually, coronaviruses interact with human biological systems in a transient and mild manner. The modality of interactions of SARS-CoV-2 with human cells may rely on Hypoxia activates macrophages and neutrophils that contribute to ARDS and pneumonia [32] and stabilise HIF-1α leading to cytokine storm by activation of immune cells [40] . Abbreviations: DAMPs, damage-associated molecular patterns; HIF-1α, hypoxia inducible factor 1α; PAMPs, pathogen-associated molecular patterns. Viral infections are sometimes responsible for concomitant intestinal and upper respiratory airway pathological manifestations, and cooling and conjunctivitis symptoms are also possible [7, 91] . Both coronaviruses causing SARS in humans, SARS-CoV-1 and SARS-CoV-2, share the ACE2 cellular receptor interaction with the spike glycoprotein as a means of cellular entry and are equally stable and infectious as aerosols [7] . During the pandemic, what is surprising and has put health management in an emergency condition are the extent of the symptoms, which can easily progressively worsen and become complicated, and the high contagiousness of SARS-CoV-2. Usually, coronaviruses interact with human biological systems in a transient and mild manner. The modality of interactions of SARS-CoV-2 with human cells may rely on SARS-CoV-2 s ability to evade the immune defences, similar to what neoplastic cells can do, which reduces the activity of the immune response by modifying the interactions and activations of white blood cells. This obstacle for the host's defensive response creates a useful and sufficient window of time within tumour cells multiply easily. Likely, SARS-CoV-2 viral particles might behave similarly. Beyond this limited time window, the interaction between host and etiological agent advances, and the immune defensive response requires more complex B and T cell mechanisms to be efficient. Accordingly, a reduction in both T cells and natural killer (NK) cells is a relevant feature of COVID-19 and is linked to the disease severity [92] [93] [94] [95] . The therapeutic advantages resulting from the use of antibodies capable of hindering the infection leads us to think about B cells' prevailing role compared to cytotoxic immune mechanisms. In addition, it has been discussed the stability of the immunological memory raised by SARS-CoV-2. It has been hypothesised that a betterpreserved immunological memory, and acquired after common cold coronavirus infection, could represent the factor highly responsible for a better prognosis, or even absence of relevant clinical symptoms, in children and young people as compared to older. Compatibly, acute SARS-CoV-2 infection leaves activated T cells and specific antibody responses [96] . Is this the first time that a coronavirus causes different symptoms in subjects of different ages? The clinical experiences accumulated during the pandemic period indicate that the negative influence of age on the effectiveness of inflammatory and immune processes should not be underestimated, in the same way that the incidence of neoplasms increases with age due to defects and slowdown of cell repair processes. A further item to be considered is immunosenescence, which represents age-related variation of immune responses [97] . In particular, in older people, a decrease in naïve T cells in favour of an increase in terminally differentiated T cells is observed. Furthermore, the ratio between pro-inflammatory Th-17, in which its role appears to be relevant in COVID-19 pathophysiology as reported above, and the anti-inflammatory regulatory T cells, is disturbed during ageing [98] . As an outcome, the susceptibility to infections could be increased [99] . It is worth noting that the observation of symptoms with different entity has been made for SARS-CoV infection, and studies on mice revealed one of the possible molecular mechanisms, which is the increase in the activity of anti-inflammatory factors: phospholipase A 2 group IID (PLA 2 G2D) in the lungs of older subjects [100] . In the inflammatory response during COVID-19 [101] , inflammaging could be invoked as a link between increased susceptibility to COVID-19 and advancing age. Inflammaging appears to be the result of over-stimulation of inflammation due to the accumulation of alarms due to degenerative events [102] . Therefore, if, on the one hand, the proinflammatory phenotype of senescent cells helps the protection from infectious diseases, at the same time, this reduced threshold of activation of inflammation facilitates the achievement of cytokine storm [103] . The defence mechanisms represented by inflammation and the activity of immune cells, even when involved in hindering a virus that is the causative agent of colds, become part of precision medicine, where prevention, diagnosis, prognosis, and treatment are focused on the target subject. Precision medicine is a part of healthcare that considers individual variability and represents an ever-developing medical approach [104, 105] . In this matter, the ABO blood group system has been reported to be relevant in defining susceptibility to COVID-19 [106] . Such a relationship between red blood cell antigen profiles and susceptibility to infections could be linked to the cross-talk between erythrocytes and the immune system. The role of red blood cells in co-stimulating the T cell proliferation [107] and enhancing B cell responses to antigens [108] have been reported. In addition, the function of erythrocytes in modulating the role of dendritic cells in inflammatory processes has also been described [109, 110] . The fact that serum therapy could be clinically advantageous and decisive in the initial stages of COVID-19 confirms that the late stages of the disease are not supported by the infection and action of SARS-CoV-2 but that, almost prevalently, they are due to the deregulation of the inflammatory process. Such short-circuit of the inflammatory mechanisms involves a self-sustaining and self-aggravation of inflammation, similar to chronic inflammatory events or, more properly regarding COVID-19, to shock conditions. From the beginning of the spread of SARS-CoV-2 infection, it was clear that people responded to the infection in different ways, from asymptomatic condition to severe multiple organ symptoms. From the very beginning, the presence of comorbidities was recognised as giving an increased risk of developing severe COVID-19, particularly for cardiovascular diseases, diabetes, and obesity [111] [112] [113] [114] . Many reviews have been published on COVID-19 and comorbidities. Hypertension is one of the most frequent comorbidities present in COVID-19 patients [115] . The renin-angiotensin system (RAS) has a pivotal role in both the pathophysiology of hypertension and the SARS-CoV-2 infection since the ACE2 receptor is the virus's main access mechanism to enter human cells [116] . Therefore, a strict relationship between virus infection and hypertension was predictable. Furthermore, hypertension has been demonstrated to be associated with immune system activation, as shown by high IgG serum levels and increased CD8 T cells able to produce IFN-γ, TNF-α and Th17 cells [117] . All these conditions favour severe COVID-19 symptoms. Regarding diabetes, susceptibility to SARS-CoV-2 infection seems equal to the general population [118] , but diabetic patients, once infected, have a higher risk of developing severe symptoms. Mechanisms involved in this negative progression are mainly: (a) higher expression of ACE2 in the lung, increasing the likelihood of spreading of the virus [119] ; (b) unbalanced ACE2/ACE ratios with consequent increased inflammatory and oxidative stress responses [120] ; (c) high glucose concentrations in the fluid lining the lungs favouring viral replication [121] ; (d) endothelial dysfunction with higher pro-thrombotic risk [122] ; (e) higher predisposition of developing respiratory infections [123] . Obesity has been reported as highly prevalent in COVID-19 patients, and mechanisms under evaluation are: (a) an imbalance in the RAS; (b) low grade of systemic inflammation present in obese patients, which could favour the development of a cytokine storm; (c) frequent association of obesity with hypertension and diabetes; (d) higher viral shedding in obese patients already reported for the influenza virus; (e) higher leptin and lower adiponectin levels leading to unbalance between anti-and pro-inflammatory mechanisms; (f) altered pulmonary functions in obese patients, which can favour the progression of COVID-19 and severe symptoms [124] . Increased age is certainly a risk factor due to the frailty of old people and to the presence of these comorbidities. However, young people with a severe form of COVID-19 and older asymptomatic subjects have been reported. In preliminary studies from China, in a small number of subjects, asymptomatic patients were younger, more frequently women, and with a BMI < 25 [125] . Blood cells, cytokine levels and T lymphocytes have been reported as significant predictors for asymptomatic infected people [126] . It has been reported that blood groups could influence susceptibility to the virus [127] . Zhao et al. analysed 2173 COVID-19 patients and a huge amount of non-COVID-19 subjects in the Wuhan region of China.They found a significantly high risk for COVID-19 in blood group A subjects and a significantly low risk of infection in blood group O subjects [127] . The same distribution of the risk was confirmed in deceased patients. The cause of reduced susceptibility in group O subjects could be the presence, in these subjects, of natural antibodies to group A which can inhibit the adhesion of the virus to the ACE2 receptor as demonstrated in vitro for SARS-CoV in cell lines expressing ACE2R [128] . These data were subsequently confirmed by the study of Zietz et al. [129] in COVID-19 patients with different levels of severity; whether ABO groups could have a role in asymptomatic COVID-19 remains to be elucidated. Using pedigree and population strategies, an insertion destroying the transcription of the gene for dipeptidyl-peptidase 7 (DPP7), an innate immunity response enzyme, was found in two asymptomatic subjects [130] . Furthermore, the missense variant rs12329760 in the TMPRSS2 gene, which is involved in the activation of SARS-CoV and SARS-CoV-2 proteins, was found to be less frequent in severe patients [130] . Between severe and less severe patients, the involvement of class I rather than class II of HLA genes was identified. An increase in frequencies of HLA-A*11:01, B*51:01, and C*14:02 alleles was found in severe patients compared to mild-moderate, while HLA-B*46:01 linked to SARS-CoV infection was not found to be associated with disease severity in COVID-19 patients [130] . Urbach et al., from the results of an online symptom-tracking survey administered to 3654 subjects, found that statin use was associated with a lower risk of developing symptomatic COVID-19 [131] when symptoms and/or RT-PCR were used to select patients. Other studies had previously reported the association between statins and low or absent COVID-19 symptoms [132, 133] or decreased mortality [134] . Different hypotheses on the relationship between statin intake and mild COVID-19 symptoms have been proposed. Inhibition of the main protease of the virus (Mpro) has been demonstrated in silico by some statins suggesting a possible reduction in virus spreading in subjects taking these drugs [135] . Another hypothesis could be independent of COVID-19 infection but more related to the already reported alleviation of flu-like symptoms and pneumonia by statins [136, 137] . In another study, COVID-19 patients, both asymptomatic and severely ill, aged 30-60 years, were prospectively followed for six weeks and blood biomarkers evaluated. Serum vitamin D levels were significantly higher in the asymptomatic group, and the prevalence of vitamin D deficiency (<20 ng/mL) significantly higher in subjects with severe symptoms [138] . Although the study was carried out in India, where Vitamin D deficiency is not unusual, and other possible confounding factors were not taken into account, considering the numerous effects of Vitamin D on the immune system [139] , its relationship with COVID-19 symptoms should be better analysed. Virus infections, SARS-CoV-2 included, generate increased pro-oxidant processes, partly triggered by TNF-α production. This rise can be expressed by serum ferritin increase, thrombocytopenia, lymphopenia, haemolysis with an increase in serum LDH levels. The production of reactive oxygen species (ROS) is part of the natural response to infections and is self-limited by anti-oxidant processes with a pivotal role for nitric oxide (NO) and glutathione (GSH). Production of these compounds is dependent on nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) produced principally by glucose-6-phosphate dehydrogenase (G6PD) [140] . Among the several hypotheses regarding predisposition to develop severe symptoms during COVID-19, G6PD deficit has been considered. Italy and Spain, two of the European countries mostly involved during the first spread of SARS-Cov-2, had a high frequency of inherited G6PD deficits. However, preliminary studies did not confirm an association between COVID-19 and this deficit [130] or differences between asymptomatic and symptomatic infected patients [141] , even if a G6PD deficit was present in more than 30% of infected subjects. G6PD deficits can be acquired particularly in patients with metabolic syndrome [142] . Therefore, Buinitskaya et al. [140] hypothesised that a G6PD deficit caused by metabolic syndrome could be responsible for decreased NO and GSH reducing the capacity to counteract SARS-CoV-2 and increasing multi-organ damage by reactive oxygen species (ROS). The type and intensity of the immune response have been considered in order to understand differences between asymptomatic and symptomatic subjects in COVID-19. A genome-wide association study (GWAS) found an association between the severity of the disease and a multi-gene cluster on chromosome 3. Among different genes, chemokine receptors of the C-C and CXC families are located in this cluster (e.g., CXCR6 and CCR9) and are involved in the migration of T cells during cell activation [143] . Family studies have allowed the identification of a polymorphism in the coding region of Toll-like receptor 7 (TLR7) gene determining a loss of function associated with a reduced IFN I and II response after viral infection [144] . This polymorphism could be associated with an inability to inactivate the SARS-CoV-2 virus and switch towards a more dangerous and pronounced immune response [95] . Furthermore, the TLR7 gene, together with other genes suspected to be involved in COVID-19, is located in the X chromosome, partly justifying the increased susceptibility of the disease in male found in some studies [143] . Considering the pivotal role of type I IFNs in antiviral response, a decrease in the activity of these factors could be due to the presence of autoantibodies against IFNs, as demonstrated by Bastrad et al. [145] and Hadjadj et al. [146] . They found that around 10% of patients with life-threatening COVID-19 (94% males) had neutralising autoantibodies against IFN-ω and IFN-α or both, associated with low or undetectable amount of these IFNs in their blood during the acute phase of the disease. These autoantibodies, already present before SARS-CoV2 infection and almost absent in asymptomatic patients and in uninfected controls, neutralised in vitro the ability of IFN-I to block SARS-CoV2 [145] . These data support the hypothesis that inborn errors of immunity could be at the basis of at least a part of severe COVID-19. Differences in limiting virus spread inside the body could be highlighted by differences in the viral load. In a study conducted in northern Nevada during the first SARS-Cov-2 wave, patients with more severe disease, including fatal cases, had a significantly higher viral load [147] . In another study, a progressive increase in viral load measured through cycle threshold correlated with disease severity [148] . Opposite results were obtained in a study performed in a limited number of subjects by Hasanoglu et al. [149] , who found a significantly higher viral load in asymptomatic subjects with a negative correlation between viral load and age. Differences could be due to the time elapsed between the start of the viral infection and PCR tests, which is quite difficult to standardise. Furthermore, it has been reported that men had a longer duration of viral shedding which increases with age [150] , suggesting that more data are needed to clarify the association between viral load and COVID-19 symptoms. A summary of differences between patients according to the severity of COVID-19 is displayed in Figure 2 . Once SARS-CoV-2 infection has begun, the humoral immune response is induced, and specific IgM and IgG are generally produced within two weeks. The production of antibodies might also differ between asymptomatic and symptomatic patients. In a study by Lei et al. [151] , a huge amount of subjects was screened with both PCR analysis and serological evaluations among epidemiologically suspected individuals. Antibodies against SARS-CoV-2 can be directed to different proteins of the virus, and only some of these antibodies have the capability to neutralise the interaction between the virus and ACE2 receptors. The authors found that asymptomatic subjects mostly produced antibodies to proteins S1, part of the virus spikes, and N, part of the virus nucleocapsid [151] . Antibodies to nucleocapsid (N) protein seem to persist and be continuously produced while IgM to S1 protein peaked after 17-25 days of infection, and then in two months disappeared. More than one-third of asymptomatic patients did not produce neutralising antibodies, and when produced, they rapidly disappeared [151] . Other studies confirmed the lower production of antibodies, particularly the neutralising ones in asymptomatic subjects with a correlation between antibody titles and viral load [148] . Mild patients who did not need hospitalisation had a higher ratio of antibodies to the receptor-binding domain (RBD), or to the S1 domain, of spike than to the N protein, suggesting a higher capability to block virus invasion after infection [148] . Actually, we do not know whether the loss of specific antibody production a few months after a previous infection exposes people to re-infection as T cell immunity could anyway protect from the infection and memory T cells are mainly involved in long-term immune protection against microorganisms. Sekine et al. [152] demonstrated that after the acute phase of COVID-19, in which cytotoxic specific T cells were found, a pool of memory T cells was produced with a stem-cell-like phenotype. In this study, asymptomatic subjects and seronegative relatives of positive patients presented with SARS-CoV-2-specific T cells, even in the absence of serum specific antibodies, suggesting the ability of these subjects to elicit a functional T cell response against the virus [152] . The presence of memory T cells years after infection was previously reported also for Middle East Respiratory Syndrome (MERS) and SARS-CoV-1 infections [153, 154] . [132] [133] [134] 138, 140, 145] ) that are suggested to be involved in COVID-19 severity are summarised. Abbreviations: G6PD, glucose-6-phosphate dehydrogenase. The figure was created with Biorender.com. Taking together these considerations, we can conclude that many factors could be responsible for the different patterns of response to SARS-CoV-2 infection, from asymptomatic to severe symptoms with death. Published studied highlighted only a few of these possibilities, and many others are under evaluation. In the frame of the dramatic global scenario of SARS-CoV-2 infection, in 2020, there was considerable growing evidence pertaining to factors that may contribute to the different degree of disease severity. The most severe consequences from COVID-19 and influenza stem from a degraded/ dysfunctional immune system and the exploitation of the degraded immune system by the virus. In a healthy immune system, the virus would be unable to overcome its strong defences and would be neutralised; on the other hand, some people have an intrinsically dysfunctional immune system due to genetic/hereditary/congenital factors [155] . However, other factors may play a much stronger role in determining a successful immune response. Currently, the adverse impacts of several factors, such as toxic lifestyle, iatrogenic, biotoxic, environmental/occupational, and psychosocial/socioeconomic factors, on the health of the immune system directly or indirectly have been underlined in recent reviews [156, 157] . Many of these factors that contribute to a degraded/dysfunctional immune system are pervasive; they contribute to myriad (especially chronic) diseases/noncommunicable diseases (NCDs) [158, 159] . Thus, people with an immune system degraded by the above contributing factors also have an increased likelihood of having significant comorbidities, such as those that make people the most vulnerable to succumbing to COVID-19. With respect to environmental factors, a growing number of recent studies supports that ambient air pollution, characterised by a high population attributable fraction, plays a key role in increasing the likelihood of spread of SARS-CoV-2 and severe clinical outcomes in COVID-19 [157, [160] [161] [162] [163] [164] [165] [166] . The impact of ambient air pollution on excess morbidity and mortality has been well established over the last several decades [167] [168] [169] , and numerous epidemiological studies have shown the effects of air pollution on respiratory and cardiovascular systems in particular. In addition, air pollution has also been associated with multiple negative effects on the nervous system [170] . Both short-term and long-term studies on air pollution effects have given estimates of damage due to increasing noxious exposures, by using attributable population fractions or excess fractions as the metric of effects [171] . In particular, major ubiquitous ambient air pollutants, including fine particulate matter (PM) in size fraction PM 2.5 , nitrogen dioxide (NO 2 ), and ozone (O 3 ), have both a direct and an indirect systemic impact on the human body by enhancing oxidative stress, inflammation, and respiratory infection risk, eventually leading to dysfunction and deterioration on the respiratory, cardiovascular and immune systems [172] [173] [174] [175] [176] , which are definitely involved in COVID-19. Actually, the COVID-19 pandemic has dramatically shown that infectious diseases and NCDs are highly interconnected. For the latter, risk factors, including chemical toxicants, air pollution, climate change and socio-economic determinants, strongly also contribute to the severity of the former [157, 177] . It follows that the study of the interaction between viral infections and environmental factors of chronic diseases is fundamental for established efficient preventive health measures to develop better treatments adapted to co-and multi-morbidities, as well as doing so cost-efficiently. Although the epidemiologic evidence is still limited, previous findings on the outbreak of SARS revealed a crude positive correlation between air pollution and SARS case-fatality rate in the Chinese population without adjustment for confounders [178] . Nevertheless, this was the first observation showing that air pollution is associated with the increased fatality of SARS patients in the Chinese population (Chinese SARS epidemic in 2003), and thereafter it was also utilised for comparison USA data in a recent epidemiological analysis [162] to evaluate the degree to which air pollution influences COVID-19 mortality. Epidemiological analysis of the first SARS-CoV-1 outcomes in 2003 [178] , and the investigations of those for SARS-CoV-2 since 2019, provide evidence that the incidence and severity are related to ambient air pollution [162] . Several recent studies have analysed whether the different areas of the world with a high and rapid increase in COVID-19 s contagion were correlated to a greater level of air pollution, such as (i) high levels of air pollution over the last years, which made the population more sensitive to COVID-19 (long-term exposure); (ii) sensitivity to the virus, which was linked to the high level of air pollution in the period when the virus appeared (short-term exposure). For example, a recent analysis of 213 cities in China demonstrated that temporal increases in COVID-19 cases were associated with short-term variations in ambient air pollution [179] . Another study confirmed a statistically significant relationship between short-term exposure to higher air pollutants, namely PM 2.5 , PM 10 , carbon monoxide, NO 2 , and O 3 , and an increased risk of COVID-19 infection in 120 cities in China between 23 January 2020 and 9 February 2020 [179] . This evidence was confirmed by different studies analysing the air quality in Italy and China in the period of maximum COVID-19 virulence [180, 181] . With respect to the well-known contribution of the chronic exposure to atmospheric PM to increased hospitalisations and mortality, primarily affecting cardiovascular and respiratory systems and causing premature deaths estimated to be over two million per year worldwide, a recent review highlighted the potential role of PM in the spread of COVID-19 in particular. The study focused on Italian cities (e.g., Bergamo, Brescia, and Milano) where a high and rapid increase in COVID-19 s contagion occurred from March 2020 and where PM daily concentrations were found to be higher than the annual average allowed during the months preceding the epidemic [165] . Concerning the long-term exposure, statistically significant positive correlations were found between COVID-19 infections and high levels of air pollution in several countries such as China, Iran, Italy, Spain, France, Germany, the United Kingdom, and the USA. In Italy, the correspondence between poor air quality and COVID-19 appearance and its induced mortality was the starkest [182] . The positive correlations between SARS-CoV-2 infections and air quality variables in China, Italy and the USA indicated that higher mortality was correlated with high PM 2.5 , carbon monoxide, and NO 2 values [183] . In Northern Italy, particularly affected by COVID-19, the population had been constantly exposed to a chronic high level of air pollution [184, 185] . The conclusive data of these papers indicated that long-term air-quality significantly correlated with cases of COVID-19 in up to 71 Italian provinces, providing further evidence that long-term exposure to air pollution may represent a favourable context for the spread of the virus. A study by Wu et al. [186] proved a positive correlation between COVID-19 mortality rates and long-term PM 2.5 exposure using county-level data from the United States, showing that an increase of 1 µg/m 3 in PM 2.5 was associated with an 8% increase in the COVID-19 mortality rate. Recent studies evaluating the correlation of NO 2 and mortality rates in northern Italy [187, 188] and regions of England [189] also demonstrated a direct relationship. A cross-sectional, nationwide study in the United States estimated the association between long-term (2010-2016) county-level exposures to NO 2 , PM 2.5 , and O 3 and countylevel COVID-19 case-fatality and mortality rates in the USA, and indicated that long-term exposure to NO 2 , which largely arises from urban combustion sources such as traffic, may enhance the susceptibility to severe COVID-19 outcomes, independent of long-term PM 2.5 and O 3 exposure [160] . On the other hand, the impact of four ambient air pollutants on the COVID-19 mortality rate in the United States, examined by regression analysis, showed that ground-level O 3 and NO 2 concentrations might also contribute to a greater COVID-19 mortality rate [161] . Positive correlations between PM 2.5 levels and the incidence, mortality rate, and case fatality rate of COVID-19 were also found in an Italian study evaluating 110 provinces during a period from 20 February to 31 March 2020. The results not only confirm the supposed link between air pollution and the rate and outcome of SARS-CoV-2 infection but even support the hypothesis that pollution-induced over-expression of ACE2 on human airways may favour SARS-CoV-2 infectivity [163] . Air pollution and fine particulate matter (PM 2.5 ), as its main component, resulted as the most important predictors of SARS-CoV-2 effects in another Italian study with the help of artificial intelligence. The study indicated that the emissions from industries, farms, and road traffic-in order of importance-were the most air pollution sectors linked to an increase in mortality rates of the 20 Italian regions. Moreover, the road traffic resulted in the most important variable related to SARS-CoV-2 positivity. Given the major contribution played by air pollution (much more important than other health and socio-economic factors), the study also forecasted that, with an increase of 5-10% in air pollution, similar future pathogens may inflate the epidemic toll of Italy by 21-32% additional cases, whose 19-28% more positives on pathogen and 4-14% more deaths. The findings, demonstrating that fine-particulate (PM 2.5 ) pollutant level is the most important factor to predict SARS-CoV-2 effects that would worsen even with a slight decrease in air quality [164] . In a study conducted in a small area of Catalonia, Spain, from 25 February to 16 May 2020, on the association between long-term exposure to air pollutants and increased risk of incidence and death from COVID-19, the authors showed that the long-term exposure to NO 2 and to a lesser extent PM 10 were independent predictors of the spatial spread of COVID-19. For every 1 µm/m 3 above the mean the risk of a positive test case increased by 2.7% for NO 2 and 3.0% for PM 10 . Regions with levels of NO 2 exposure in the third and fourth quartile had 28.8% and 35.7% greater risk of a death, respectively, than regions located in the first two quartiles. Although the data support the existing of biological mechanisms that may partially explain the association between long-term exposure to air pollutants and COVID-19, the authors also hypothesise that the spatial spread of COVID-19 in Catalonia may be attributed to the different ease with which some people, the hosts of the virus, have infected others [166] . The degree to which air pollution, fine particulates specifically, influences COVID-19 mortality was also recently derived from epidemiological data in the USA and China. The study estimated that particulate air pollution contributed to 15% of COVID-19 mortality worldwide, 27% in East Asia, 19% in Europe, and 17% in North America. Globally, 50-60% of the attributable anthropogenic fraction was related to fossil fuel use, up to 70-80% in Europe, West Asia, and North America. These results add to evidence that air pollution is an important cofactor increasing the risk of mortality from COVID-19 and provide motivation for combining ambitious policies to reduce air pollution with measures to control the transmission of COVID-19 [162] . Table 1 summarises the main reported findings underling the relationship between high levels of air pollutants and increased risk/fatality of SARS-CoV-2 infection. Notably, some authors also hypothesised that an atmosphere rich in air pollutants, together with certain climate conditions, may have promoted a longer permanence of the viral particles in the air, thus favouring an "indirect" diffusion [180, 181] , which thus may have played an important role in increasing the contagion [190] . In fact, the anomalous anticyclonic system over the western Mediterranean basin (centred between Spain and Italy during February 2020) and lower pressures over Northern Europe may have produced dry conditions over southwestern Europe, thus providing optimal meteorological conditions for virus propagation, both indoors and outdoors, in addition to the direct and indirect contact and short-range droplets. ROS production induced as a consequence of the interaction with environmental air pollutants is pointed out as a critical mechanism that may predispose mainly elderly populations but does not exclude young subjects [185] , even those presenting previous chronic conditions of lung inflammation or neuroinflammation, to the most serious consequences of COVID-19 [191] . It is well known that pollution impairs the first line of defence of the upper airways, namely the cilia functions of epithelial cells [192] ; thus, a subject living in an area with high levels of pollution is more prone to develop chronic respiratory conditions and is more vulnerable to any infective agent. Another important point to consider in this scenario is that the airborne particles, which constitute the main threat to human health, including the nanosized particle (1-100 nm) fraction. This latter is highly abundant in the urban atmosphere and has the ability to penetrate virtually all organs, and possesses high bioreactivity. These nanosized particles (NPs) have the potential of carrying toxic metals, spores, viruses, and bacteria. They have also been linked to respiratory viral infections such as the SARS-CoV-2 virus and influenza, as well as other respiratory and cardiovascular diseases. In recent years, science has found augmenting evidence that NPs generated by transport (e.g., fuel combustion, tire wear, and brake wear) cause not only adverse health effects to the respiratory and cardiovascular systems but also promote neurodevelopmental and cognitive impairment. Recent works have also underlined that exposure to NPs could predispose exposed populations to contracting viral infections in general and, more specifically, to contracting COVID-19associated immune pathologies [193, 194] . The SARS-CoV-2 virus induces neurological complications, and the possible long-term impact for neurological and especially neurodegenerative diseases can only be anticipated [195] . In a worst-case scenario, the common olfactory route of SARS-CoV-2 and NPs may exacerbate the adverse health effects also on the central nervous system. This evidence has been raised in a recent study on Metropolitan Mexico City, a city where the development of Alzheimer diseases starts in childhood, underlining the necessity to deeply investigate why the residents chronically exposed to air pollution are likely to be more susceptible to the systemic and brain effects of SARS-CoV-2 [194] . Essentially this paper describes very important social and clinical challenges related to behavioural, cognitive, and neurological manifestations in healthy as well as susceptible young people, and longterm exposure to NPs and SARS-CoV-2 infection. In particular, remarkable questions to be explored are how SARS-CoV-2 manage to enter the brain at ease, how NPs contribute to the process, what could be the entity of neuronal damage (e.g., is it synergistic?), and how may this influence the neurodegenerative process. Altogether, these data underline, in countries like, for example, India, China, Italy and the USA, a positive correlation between the existing levels of higher air pollutants and severity/death rate under SARS-CoV-2 infection. Environmental factors may partly explain the behaviour and fate of COVID-19 [196] . For instance, air pollution acts as the causative agent for diseases such as bronchitis, asthma and many other respiratory diseases. The SARS-CoV-2 uses respiratory tracts as its primary attacking sites because of the predominant expression of ACE2 in their epithelial cells. The protein ACE2 acts as the receptor for the attachment of the SARS-CoV-2 spike protein S and hence increases the chance of infection as well as the severity of the disease in humans. The COVID-19 is known for its fatal activity by causing respiratory choke and, therefore, causes mainly respiratory disorders and common cold associated symptoms. Therefore, these observations indicate that COVID-19 and air pollution have intricate relations with each other. On the one hand, polluted air can create many breathing issues in humans leading to easy ways for the virus to enter and infect, and, on the other hand, NO 2 and PMs, especially PM 2.5 , can be responsible for the over-expression of ACE2 in human respiratory cells increasing the risk of getting attachment of the virus through its interface spike protein S into the host epithelial cells along the respiratory tracts. As a result, the virulence of the virus in terms of efficient infection could be increased in areas where air pollution is high. This could increase the risk of infection as well as the facilitation of greater severity and death of COVID-19 patients. In fact, Paital and Agrawal [196] demonstrated a link between NO 2 emissions, PM 2.5 levels, high ACE2 expression and COVID-19 infection severity. In summary, the mechanism may be attributed to air pollution-mediated co-morbidities, aerosol-induced respiratory disorders, and NO 2 -induced higher expression of ACE2 receptor that acts as a binding ligand for SARS-CoV-2 in respiratory cells in humans. Specific areas in India, China, Italy, Russia, Chile, and Qatar that experience heavy air pollution have also shown higher rates of COVID-19 infection and severity. Furthermore, a "double-hit" hypothesis of the SARS-CoV-2 infection mechanisms and severe lung disease induced by the combined effect of PM 2.5 and NO 2 has been proposed by Frontera et al. [197] . In particular, ACE2 plays a bifunctional role as a sort of "double-edged sword"; it turns off the RAS and leads to beneficial effects but also mediates unique susceptibility to lung and cardiovascular disease in COVID-19 patients by serving as the SARS-CoV-2 receptor. Air pollutants (such as PM 2 . 5 and NO 2 ) plus SARS-CoV-2 give a "double-hit" to the lungs leading to acute lung injury by attenuating tissue remodelling and influencing local inflammatory responses. Thus, chronic exposure to PM 2.5 causes alveolar ACE2 receptor overexpression. This may increase viral load in patients exposed to pollutants, in turn depleting ACE2 receptors and impairing host defences. High atmospheric NO 2 may provide a second hit causing a severe form of SARS-CoV-2 in ACE2 depleted lungs resulting in a worse outcome. In summary, short-term, reactive virology-based measures (e.g., quarantines, repurposed drugs, etc.) are required to contain the present SARS-CoV-2 outbreak. However, the long-term, proactive toxicology-based measures required to intrinsically strengthen the immune system and prevent such future outbreaks need to be addressed [156] . Exposure to air pollution could increase vulnerability and have detrimental effects on the prognosis of patients affected by COVID-19. However, the relative weight of air pollution, compared to other confounders, is still to be determined by experimental and epidemiological studies, which are urgently needed for evaluating the role of atmospheric pollution in certain populations. Notably, the identification of vulnerable populations and continuous effort to lower air pollution ought to be critical steps. -There was a correlation between air pollution and the rate and outcome of SARS-CoV-2 infection. -Support the hypothesis that pollution-induced over-expression of ACE2 on human airways may favour SARS-CoV-2 infectivity Borro et al., [163] Association was found between long-term exposure to air pollutants and an increased risk of incidence and death from COVID-19: exposure to NO 2 and, to a lesser extent PM 10 were independent predictors of the spatial spread of COVID-19 Saez et al., 2020 [166] Mexico Metropolitan Mexico city. Pediatric and young adult onset of Alzheimer's diseases Nanoparticles (NPs) In a worst-case scenario, SARS-CoV-2 and NPs may exacerbate the adverse health effects also on the central nervous system Calderon-Garciduenas et al., 2020 [194] * This study has been included as the first and high cited observation showing air pollution association and increased fatality of SARS patients in a Chinese population. Abbreviations: ICU, Intensive Care Unit. A lesson from a substantial number of surveys and reviews on the environmental perspective of the COVID-19 pandemic is that the quest for effective policies to reduce anthropogenic emissions, which cause both air pollution and climate change, needs to be accelerated. The pandemic spread of the SARS-CoV2 ends with the vaccination of the population or with herd immunity through extensive infection of the population. However, since there are no vaccines against poor air quality and climate change, the remedy is to mitigate emissions. The transition to a green economy with clean, renewable energy sources will further both environmental and public health locally through improved air quality and globally by limiting climate change [162] . The comprehension of the mechanisms leading to the late stage of COVID-19 is imperative to manage the syndrome and to avoid/reduce the dangerous respiratory failure and the worst prognostic event. An imbalance between the protective and detrimental responses of the immune system drives severe symptoms and deterioration of patient conditions. The presence of chronic diseases characterised by high inflammatory mediator levels such as cardiovascular diseases, hypertension, diabetes, and obesity are pivotal factors for the development of severe COVID-19. Data from several places document an enhanced rate of both infection and severity in COVID-19 patients in polluted areas. Long-term exposure to air pollution increases the danger associated with four of the biggest COVID-19 mortality risks: diabetes, hypertension, coronary artery disease, and asthma. It also can make the immune system overreact, exaggerating the inflammatory response to common pathogens. Other differences between asymptomatic and moderate/severe patients are under evaluation, and some of them are related to genetic and metabolic factors. Thus, COVID-19 represents an emerging pathological condition that has led researchers to re-evaluate the interactions of inflammatory and immune processes. Author Contributions: Conceptualization, C.S.; Writing-original draft preparation, C.S., P.P. and T.C.;Writing-review and editing C.S., P.P. and T.C. All authors have read and agreed to the published version of the manuscript. Funding: This research received no external funding. The authors declare no conflict of interest. Clinical features of patients infected with 2019 novel coronavirus in Covid-19: Four fifths of cases are asymptomatic, China figures indicate Covid-19 in Immune-Mediated Inflammatory Diseases-Case Series from New York The four horsemen of a viral Apocalypse: The pathogenesis of SARS-CoV-2 infection (COVID-19) Clinical criteria for COVID-19-associated hyperinflammatory syndrome: A cohort study Clinical characteristics of 113 deceased patients with coronavirus disease 2019: Retrospective study SARS-CoV-2: From Structure to Pathology, Host Immune Response and Therapeutic Management SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study Inflammation and the acute respiratory distress syndrome Acute Respiratory Distress Syndrome COVID-19 pneumonia: ARDS or not? ACE2 at the centre of COVID-19 from paucisymptomatic infections to severe pneumonia Antibody responses against SARS coronavirus are correlated with disease outcome of infected individuals An interferon-gamma-related cytokine storm in SARS patients Can Beta-2-Adrenergic Pathway Be a New Target to Combat SARS-CoV-2 Hyperinflammatory Syndrome?-Lessons Learned From Cancer. Front Autoinflammatory and autoimmune conditions at the crossroad of COVID-19 COVID-19 infection and rheumatoid arthritis: Faraway, so close! 14-3-3 Modulation of the Inflammatory Response Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open label non-randomized clinical trial Puerta de Hierro COVID-19 Study Group. Sarilumab versus standard of care for the early treatment of COVID-19 pneumonia in hospitalized patients: SARTRE: A structured summary of a study protocol for a randomised controlled trial Subcutaneous Sarilumab in hospitalised patients with moderate-severe COVID-19 infection compared to the standard of care (SARCOVID): A structured summary of a study protocol for a randomised controlled trial Dexamethasone in Hospitalized Patients with Covid-19-Preliminary Report COVID-19 pathophysiology: A review Inflammatory mechanisms: The molecular basis of inflammation and disease Inflammatory responses and inflammationassociated diseases in organs Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome HIF-1α, and COVID-19: From pathogenic factors to potential therapeutic targets Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target HIF transcription factors, inflammation, and immunity Management of refractory hypoxemia Physiology and pathophysiology of renal erythropoietin-producing cells Hypoxia and inflammation are two sides of the same coin Hypoxia and inflammation COVID-19): A Review of Clinical Features, Diagnosis, and Treatment Hypoxia: A key feature of COVID-19 launching activation of HIF-1 and cytokine storm Mucus production stimulated by IFN-AhR signaling triggers hypoxia of COVID-19 Prothrombotic Factors, and Venous Thromboembolism The trinity of COVID-19: Immunity, inflammation and intervention Extrapulmonary Manifestations of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Infection Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology Neutrophil extracellular traps: Double-edged swords of innate immunity Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses Association of COVID-19 inflammation with activation of the C5a-C5aR1 axis Neutrophil-to-lymphocyte ratio predicts critical illness patients with 2019 coronavirus disease in the early stage Cytokine storm of graft-versus-host disease: A critical effector role for interleukin-1 Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2 Cytokine storm and sepsis disease pathogenesis High dose folic acid is a potential treatment for pulmonary hypertension, including when associated with COVID-19 pneumonia An unexpected recovery of patients with pulmonary arterial hypertension and SARS-CoV-2 pneumonia: A case series A Novel Case of Severe Respiratory Symptoms and Persistent Pulmonary Hypertension in a Saudi Neonate With SARS-CoV-2 Infection Pulmonary vascular endothelial injury and acute pulmonary hypertension caused by COVID-19: The fundamental cause of refractory hypoxemia? Cardiovasc Clinical value of immune-inflammatory parameters to assess the severity of coronavirus disease 2019 An inflammatory cytokine signature predicts COVID-19 severity and survival COVID-19: Immunopathology and its implications for therapy Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib Cytokine elevation in severe and critical COVID-19: A rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes Is a "Cytokine Storm" Relevant to COVID-19? CORIMUNO-19 Collaborative Group. Effect of Tocilizumab vs Usual Care in Adults Hospitalized with COVID-19 and Moderate or Severe Pneumonia: A Randomized Clinical Trial Efficacy of Tocilizumab in Patients Hospitalized with Covid-19 The role of complement in inflammatory diseases from behind the scenes into the spotlight Role of C5a in inflammatory responses The role of C5a in acute lung injury induced by highly pathogenic viral infections The case of complement activation in COVID-19 multiorgan impact Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement overactivation Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection Examining coagulation-complement crosstalk: Complement activation and thrombosis Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia Inflammasomes: Mechanism of assembly, regulation and signalling Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients The NLRP3 inflammasome: Molecular activation and regulation to therapeutics The NLRP3 Inflammasome and Its Role in Sepsis Development Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts COVID-19 stokes inflammasomes Emerging role of IL-6 and NLRP3 inflammasome as potential therapeutic targets to combat COVID-19: Role of lncRNAs in cytokine storm modulation Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: Implications for pathogenesis and virus transmission pathways Does SARS-Cov-2 invade the brain? Translational lessons from animal models Neuromuscular presentations in patients with COVID-19 Impact of COVID-19 on the cerebrovascular system and the prevention of RBC lysis Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method Lymphopenia predicts disease severity of COVID-19: A descriptive and predictive study Dysregulation of Immune Response in Patients with Coronavirus Effect of blood analysis and immune function on the prognosis of patients with COVID-19 Acute SARS-CoV-2 Infection Impairs Dendritic Cell and T Cell Responses Immunological imprint of COVID-19 on human peripheral blood leukocyte populations Age related human T cell subset evolution and senescence The Th17/Treg balance is disturbed during aging Accumulation of memory T cells from childhood to old age: Central and effector memory cells in CD4(+) versus effector memory and terminally differentiated memory cells in CD8(+) compartment Critical role of phospholipase A2 group IID in age-related susceptibility to severe acute respiratory syndrome-CoV infection Targeting potential drivers of COVID-19: Neutrophil extracellular traps Handbook of Immunosenescence Inflammaging and Anti-Inflammaging: The Role of Cytokines in Extreme Longevity Precision Medicine, AI, and the Future of Personalized Health Care A Precision Medicine Approach to SARS-CoV-2 Pandemic Management The potential use of ABO blood group system for risk stratification of COVID-19 Red blood cells promote survival and cell cycle progression of human peripheral blood T cells independently of CD58/LFA-3 and heme compounds The interaction of CD2 with its LFA-3 ligand expressed by autologous erythrocytes results in enhancement of B cell responses Human 6-sulfo LacNAc-expressing dendritic cells are principal producers of early interleukin-12 and are controlled by erythrocytes Crosstalk between red blood cells and the immune system and its impact on atherosclerosis COVID-19 and Cardiovascular Disease COVID-19 and cardiovascular disease: From basic mechanisms to clinical perspectives Pathophysiology of SARS-CoV-2 in Lung of Diabetic Patients The relationship between obesity, hemoglobin A1c and the severity of COVID-19 at an urban tertiary care center Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study Covid-19 and the cardiovascular system Immune mechanisms of hypertension COVID-19 in people with diabetes: Understanding the reasons for worse outcomes Exploring diseases/traits and blood proteins causally related to expression of ACE2, the putative receptor of SARS-CoV-2: A mendelian randomization analysis highlights tentative relevance of diabetes related traits The ACE-2 in COVID-19: Foe or friend? Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1a/Glycolysis-Dependent Axis Impaired microvascular function in obesity: Implications for obesityassociated microangiopathy, hypertension, and insulin resistance SGLT1 activity in lung alveolar cells of diabetic rats modulates airway surface liquid glucose concentration and bacterial proliferation Clinical management of patients with genetic obesity during COVID-19 pandemic: Position paper of the ESE Growth & Genetic Obesity COVID-19 Study Group and Rare Endo-ERN main thematic group on Growth and Obesity Clinical Characteristics of 33 Asymptomatic COVID-19 Infections in Wuhan Clinical characteristics of asymptomatic carriers of novel coronavirus disease 2019: A multi-center study in Jiangsu Province Relationship between the ABO Blood Group and the COVID-19 Susceptibility Inhibition of the interaction between the SARS-CoV spike protein and its cellular receptor by anti-histo-blood group antibodies Associations between blood type and COVID-19 infection, intubation, and death Initial whole-genome sequencing and analysis of the host genetic contribution to COVID-19 severity and susceptibility Associations of Medications with Lower Odds of Typical COVID-19 Symptoms: Cross-Sectional Symptom Surveillance Study The effects of ARBs, ACEis, and statins on clinical outcomes of COVID-19 infection among nursing home residents Statin use is associated with lower disease severity in COVID-19 infection In-hospital use of statins is associated with a reduced risk of mortality among individuals with COVID-19 Statins and the COVID-19 main protease: Evidence on direct interaction Treating influenza with statins and other immunomodulatory agents Population-based study of statins, angiotensin II receptor blockers, and angiotensin-converting enzyme inhibitors on pneumonia-related outcomes Analysis of vitamin D level among asymptomatic and critically ill COVID-19 patients and its correlation with inflammatory markers Vitamin D: Modulator of the immune system Centrality of G6PD in COVID-19: The Biochemical Rationale and Clinical Implications Clinical characteristics of asymptomatic and symptomatic COVID-19 patients in the Eastern Province of Saudi Arabia Subclinical reduced G6PD activity in rheumatoid arthritis and Sjögren's Syndrome patients: Relation to clinical characteristics, disease activity and metabolic syndrome Human genetic factors associated with susceptibility to SARS-CoV-2 infection and COVID-19 disease severity. Hum Presence of genetic variants among young men with severe COVID-19 Autoantibodies against type I IFNs in patients with life-threatening COVID-19 Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients Characteristics of viral specimens collected from asymptomatic and fatal cases of COVID-19 Defining the features and duration of antibody responses to SARS-CoV-2 infection associated with disease severity and outcome Higher viral loads in asymptomatic COVID-19 patients might be the invisible part of the iceberg Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province Antibody dynamics to SARS-CoV-2 in asymptomatic COVID-19 infections Robust T Cell Immunity in Convalescent Individuals with Asymptomatic or Mild COVID-19 Immune Responses to Middle East Respiratory Syndrome Coronavirus During the Acute and Convalescent Phases of Human Infection Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: A six-year follow-up study COVID-19 in Northern Italy: An integrative overview of factors possibly influencing the sharp increase of the outbreak (Review) The under-reported role of toxic substance exposures in the COVID-19 pandemic The COVID-19 pandemic and global environmental change: Emerging research needs Pervasive Causes of Disease Prevention and Reversal of Chronic Disease: Lessons Learned Urban Air Pollution May Enhance COVID-19 Case-Fatality and Mortality Rates in the United States Ambient air pollutants and their effect on COVID-19 mortality in the United States of America Regional and global contributions of air pollution to risk of death from COVID-19 Evidence-Based Considerations Exploring Relations between SARS-CoV-2 Pandemic and Air Pollution: Involvement of PM2.5-Mediated Up-Regulation of the Viral Receptor ACE-2 Machine learning reveals that prolonged exposure to air pollution is associated with SARS-CoV-2 mortality and infectivity in Italy Air Pollution and Covid-19: The Role of Particulate Matter in the Spread and Increase of Covid-19 s Morbidity and Mortality Effects of long-term exposure to air pollutants on the spatial spread of COVID-19 in Catalonia Ambient particulate air pollution and daily mortality in 652 cities Estimates of the global burden of ambient PM 2.5, ozone, and NO2 on asthma incidence and emergency room visits Ambient air pollution and emergency department visits for asthma: A multi-city assessment of effect modification by age Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders Attributable Risk to Assess the Health Impact of Air Pollution: Advances, Controversies, State of the Art and Future Needs Air pollution and respiratory viral infection Effects of nitrogen dioxide on the expression of intercellular adhesion molecule-1, neutrophil adhesion, and cytotoxicity: Studies in human bronchial epithelial cells Use of high-resolution metabolomics for the identification of metabolic signals associated with traffic-related air pollution Perturbations of the arginine metabolome following exposures to traffic-related air pollution in a panel of commuters with and without asthma Acute pulmonary and inflammatory response in young adults following a scripted car commute Does Air Pollution Influence COVID-19 Outbreaks? Atmosphere 2020 Air pollution and case fatality of SARS in the People's Republic of China: An ecologic study Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China Regional air pollution persistence links to COVID-19 infection zoning Air Pollution and the Novel COVID-19 Disease: A Putative Disease Risk Factor. SN Compr Higher Virulence of COVID-19 in the Air-Polluted Regions of Eight Severely Affected Countries. medRxiv 2020 Initial evidence of higher morbidity and mortality due to SARS-CoV-2 in regions with lower air quality Role of the chronic air pollution levels in the COVID-19 outbreak risk in Italy Can Atmospheric Pollution Be Considered a Co-Factor in Extremely High Level of SARS-CoV-2 Lethality in Northern Italy? Exposure to air pollution and COVID-19 mortality in the United States: A nationwide cross-sectional study Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality Associations between mortality from COVID-19 in two Italian regions and outdoor air pollution as assessed through tropospheric nitrogen dioxide Links between air pollution and COVID-19 in England Did anomalous atmospheric circulation favor the spread of COVID-19 in Europe? Same pollution sources for climate change might be hyperactivating the NLRP3 inflammasome and exacerbating neuroinflammation and SARS mortality Environmental pollutants damage airway epithelial cell cilia: Implications for the prevention of obstructive lung diseases Effects of Airborne Nanoparticles on the Nervous System: Amyloid Protein Aggregation, Neurodegeneration and Neurodegenerative Diseases Environmental Nanoparticles, SARS-CoV-2 Brain Involvement, and Potential Acceleration of Alzheimer's and Parkinson's Diseases in Young Urbanites Exposed to Air Pollution Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the central nervous system Air pollution by NO2 and PM2.5 explains COVID-19 infection severity by overexpression of angiotensinconverting enzyme 2 in respiratory cells: A review Severe air pollution links to higher mortality in COVID-19 patients: The "double-hit" hypothesis