key: cord-1016663-0u7rv0b9 authors: Kandeel, Mahmoud; Kim, Jinsoo; Fayez, Mahmoud; Kitade, Yukio; Kwon, Hyung-Joo title: Antiviral drug discovery by targeting the SARS-CoV-2 polyprotein processing by inhibition of the main protease date: 2022-02-08 journal: PeerJ DOI: 10.7717/peerj.12929 sha: e8f3da484cb1832c590a9024e32753fe317a6e5a doc_id: 1016663 cord_uid: 0u7rv0b9 The spread of SARS-CoV-2, the causative agent for COVID-19, has led to a global and deadly pandemic. To date, few drugs have been approved for treating SARS-CoV-2 infections. In this study, a structure-based approach was adopted using the SARS-CoV-2 main protease (M(pro)) and a carefully selected dataset of 37,060 compounds comprising M(pro) and antiviral protein-specific libraries. The compounds passed two-step docking filtration, starting with standard precision (SP) followed by extra precision (XP) runs. Fourteen compounds with the highest XP docking scores were examined by 20 ns molecular dynamics simulations (MDs). Based on backbone route mean square deviations (RMSD) and molecular mechanics/generalized Born surface area (MM/GBSA) binding energy, four drugs were selected for comprehensive MDs analysis at 100 ns. Results indicated that birinapant, atazanavir, and ritonavir potently bound and stabilized SARS-CoV-2 M(pro) structure. Binding energies higher than −102 kcal/mol, RMSD values <0.22 nm, formation of several hydrogen bonds with M(pro), favourable electrostatic contributions, and low radii of gyration were among the estimated factors contributing to the strength of the binding of these three compounds with M(pro). The top two compounds, atazanavir and birinapant, were tested for their ability to prevent SARS-CoV-2 plaque formation. At 10 µM of birinapant concentration, antiviral tests against SARS-CoV-2 demonstrated a 37% reduction of virus multiplication. Antiviral assays demonstrated that birinapant has high anti-SARS-CoV-2 activity in the low micromolar range, with an IC50 value of 18 ± 3.6 µM. Therefore, birinapant is a candidate for further investigation to determine whether it is a feasible therapy option. The recent outbreak of SARS-CoV-2 has been declared a pandemic by WHO (Cucinotta & Vanelli, 2020) . The disease COVID-19 causes a range of symptoms, from mild respiratory symptoms to severe respiratory distress associated with sepsis, multi-organ dysfunction, and Table 1 The compounds dataset used in this study. Main protease targeted library Life chemicals (Niagara-on-the-Lake ON, Canada) 2,300 Glide by Schrödinger, SP mode was used to search Life chemicals HTS collection, by using the main protease of SARS-CoV-2 in complex with an inhibitor N3. A total of 37,060 compounds dataset was constructed comprising SARS-CoV-2 main protease targeted library, compounds obtained from 2D fingerprint from therapeutically relevant antiviral assays, combined ligand and structure-based approaches of inhibitors of viral proteins (Table 1 ). All compounds were prepared for virtual screening by Ligprep software using OPLS2005 force field (Files S1 and S2). The structure of M pro (PDB ID 6lu7) was downloaded from the Protein Data Bank. The protein structure was processed and optimized using the Maestro software package's protein preparation wizard (Schrodinger LLC, NY, USA). The protein was protonated, the structure was optimized at cellular pH settings, and the structural energy was minimized using the OPLS2005 force field. The prepared structure was used in all docking and molecular dynamics calculations in this study. Docking of all compounds was performed by Schrodinger Glide docking module. Twostep docking runs were carried out. Initially, the compounds were docked by the standard precision docking protocol (SP docking). Compounds with docking scores of −8.00 or lower were retrieved and subjected to extra precision (XP-docking). This score is suggested to be strong binding compounds with shallow or hydrophobic cavities. The co-crystallized ligand served as the core of a 20-size docking box that encircled the bound ligand in the creation of the docking grid. The obtained results were ranked according to the obtained docking scores. The MD simulations were carried out using GROMACS 5. 1.4. (Abraham et al., 2015; Van Der Spoel et al., 2005) . The parameters and optimization of the simulation system were as previously reported (Al-Hizab & Kandeel, 2021) . Briefly, protein and ligands were handled by AMBERFF14SB and AMBER force field (GAFF). The complexes were dissolved in a single point charge water model in a cubic box of 1.0 nm. For 5000 steps, the solvated M pro -ligand complexes were minimized. At 300K, the entire system was equilibrated in two phases: NVT ensemble of 50 ps, followed by NPT ensemble for 1 ns. For all compounds, the production stages were extended to 20 ns. The simulations of the top four compounds were then extended to 100 ns. The pressure and temperature contrls were by Parrinello-Rahman algorithm and V-rescale thermostat algorithm, respectiely. For long-range electrostatics, the Particle Mesh Ewald (PME) technique was utilized (12 Å direct space cut-off). A two fs was chosen as the time step. The output data were collected every 10 ps. In the trajectory analysis, GROMACS MD simulation toolkits were used. The root mean square deviation (RMSD) and per-residue root mean square fluctuation (RMSF) of protein residues were calculated using the g rms and g rmsf functions, respectively. The binding energy was calculated using the g mmpbsa tool (Kumari et al., 2014) . African green monkey kidney Vero E6 cells were purchased from the Korean Cell Line Bank (Seoul, Korea). The incubation and handling of cells was as previously described (Kandeel et al., 2021) . The Korean Cell Line Bank authenticated Vero E6 cells with tests for morphology, growth pattern, histopathology, DNA fingerprinting, and mycoplasma contamination. We also checked the mycoplasma contamination using mycoplasma PCR detection kit (Myco-sniff TM mycoplasma PCR detection kit; MP Biomedicals, Irvine, CA, USA). We prepared stocks for the cell line at early passages, and the cell line was maintained until passage 20 (within 2 months) and then discarded. SARS-CoV-2 S clade (hCoV-19/South Korea/KCDC03/2020, EPI_ISL_407193) was provided by the National Culture Collection for Pathogens (Osong, Korea). Vero E6 cells (5 × 10 4 cells/well 6-well plates) were cultured overnight. The cells were infected with SARS-CoV-2 in PBS (0.1 MOI) for 1 h in a CO 2 incubator at 37 • C, then 2 ml of DMEM containing 2% FBS was added. After 3 h incubation in a CO 2 incubator at 37 • C, the cells were treated with DMSO (0.1%), birinapant (10 µM) or atazanavir (10 µM) and incubated for 48 h. The virus replication was evaluated using the plaque formation assay. SARS-CoV-2 experiments were approved by the Institutional Biosafety Committee of Hallym University (Permit no. Hallym2020-12) and The amplification of SARS-CoV-2 and the experimental techniques were carried out under a biosafety level 3 (BSL-3) environment. Correlation statistics were carried out by GraphPad Prism software. Pearson's correlation coefficient was used to conclude the significance of the results. Recently, we used molecular modeling, virtual screening, and MD) simulation in characterization of the biological aspects of microbial agents, characterization of diseases, and drug discovery (Altaher & Kandeel, 2016; Altaher, Nakanishi & Kandeel, 2015; Sheikh et al., 2020) . This study used an antiviral and M pro -specific dataset. Virtual screening and docking comprised a two-step process. First, an initial standard-precision (SP) docking protocol was performed, with compounds having a docking score of −8.00 or higher (453 compounds) selected for extra-precision (XP) evaluation. File S1 contains the docked compounds ordered by docking score. After SP-docking, the selected compounds were exported in SDF format and redocked using the XP-docking module, the results of which are provided in File S2. The top 14 compounds with the highest docking scores were used in MD simulations, taking lopinavir as a reference inhibitor ( Table 2 ). All of the top compounds showed favourable profiles and negative scores for Hbond, hydrophobic interactions, vdw, and coulombic interactions. Likewise, the calculated binding energy scores (MM-GBSA) were favourable and indicated strong binding profiles, with values ranging from −56.67 to −106.64 kcal/mol (Table 1) . Statistical analysis comprised determining the correlation between the obtained docking score and ligand efficiency, lipo, Hbond, vdw, coulombic, Glide energy, and binding energy scores (Table 3) . A strong negative correlation was observed between docking score and lipophilic interactions (r = −0.60, p > 0.05), and a positive correlation with columbic interactions (r = 0.74, p > 0.05). This implies a predominance of electrostatic interactions in compounds binding with SARS-CoV-2 M pro . The determined binding features for each compound with M pro are provided in Fig. 1 . The binding site is mostly composed of hydrophobic residues (THR24, THR25, LEU27, VAL42, MET49, PRO52, TYR54, PHE140, LEU141, MET165, LEU167, and THR190); also present are few positively charged residues (ARG188), negatively charged residues (GLU166 and ASP187), and neutral residues (CYS44, SER144, GLN189, and GLN192). A potent drug discovery tool is the combination of docking and MD modelling. Drugs can be graded based on their binding affinity and precise interaction with ligand-receptor intermediates using these methods. MD simulation and post-dynamic binding energy analysis were performed on the top-ranked compounds from XP-docking. Two stages of compound filtering were used. The RMSD, RMSF, and binding energy values of all 14 compounds were calculated after they were simulated in MD for 20 ns. The top four compounds were studied in a more extensive 100 ns simulation in the second stage. The structural changes in M pro backbone residues were compared (Fig. 2) . All treatment complexes, with the exception of Apo M pro and M pro combined with cobicistat and glycitin, showed high stability. The MM-GBSA binding energies of the 14 compounds ranged from −42.627 kcal/mol to −42.627 kcal/mol. The top six compounds showed MM-GBSA binding energies ranging from −102.564 to −139.154, indicating a likely substantial binding affinity. Furthermore, all of the investigated compounds had low structural RMSD throughout the 20 ns simulations, with RMSD values as low as 0.21 nm (Table 4 ). To gain a better understanding of the strongest-binding drugs, the four drugs with binding energies greater than −100 kcal/mol (alpha-mangostin, atazanavir, birinapant, and lopinavir) were subjected to 100 ns MD simulations, followed by analyses of RMSD, RMSF, hbond length, and Rg and binding energy. All four had promising binding free energy values (Table 4) After 100 ns MDs, average RMSD values of 0.23, 0.20, 0.21, and 0.18 nm were obtained for alpha-mangostin, atazanavir, birinapant, and lopinavir, respectively. Relative to experimental RMSD ranges, these values indicate marked stability of all four drugs when complexed with M pro . Such complexes can be ranked in terms of stability as follows: lopinavir>atazanavir>birinapant>alpha-mangostin. The low ranking of alpha-mangostin can be explained by the abrupt drift in its RMSD value at 22 nm, observable in Fig. 3 . The energy value obtained for alpha-mangostin likewise indicates a lower affinity to M pro . Meanwhile, the per-residue RMSF (Fig. 4) shows conserved RMSF features in M pro complexes with lopinavir, birinapant, and atazanavir. Surprisingly, alpha-mangostin showed several protein fragments with very high RMSD values of 0.4 nm. Nonetheless, based on observations of binding energy, RMSD, and RMSF values, we can exclude alpha-mangostin from being repurposed on the basis of interaction with SARS-CoV-2 M pro . The radius of gyration can be used to determine the compactness of a system, with lower Rg values indicating more stable structures and higher Rg values indicating less compactness or more unfolded protein. All four top drugs had an average Rg value of 2.21 nm; these similar Rg values indicate the stability of the examined drugs when complexed with M pro . Figure 5 shows the variation in Rg obtained during 100 ns MD simulations. Birinapant and ritonavir showed almost similar profiles with less-variable Rg, while alpha-mangostin and atazanavir showed biphasic profiles of alternating higher and lower Rg. Nonetheless, the overall average Rg values were similar for the four drugs. Hydrogen bond length Figure 6 shows the average hydrogen bond length obtained using GLU166 over a 100 ns simulation. Birinapant, with an average length of 0.25 nm, demonstrated the only stable binding with GLU166. The primary interactions during drug recognition by M pro were studied using post-dynamic energy decomposition analysis (Table 5 ). The findings revealed that vdw and electrostatic interactions were the most critical forces for all four drugs. More specifically, vdw was the major force for alpha-mangostin, atazanavir, and lopinavir, while electrostatic forces were the major contributor for birinapant binding, with a lesser contribution from vdw. Plaques inhibition assays in Vero E6 cells were used to explore the drug inhibitory properties against SARS-CoV-2 infection. At a concentration of 10 µM, atazanavir had no antiviral effects. Birinapant, on the other hand, reduced the production of SARS-CoV-2 plaques by 37% (Fig. 7) . Treatment with birinapant significantly inhibited the SARS-CoV-2 plaque formation in a dose-dependent manner. The estimated IC 50 values for birinapant was 18 ±3.6 µM. With the emergence of SARS-CoV-2 in December 2019 and its rapid worldwide spread, drug repurposing has been one tool available to combat the disease. Many drugs with proven efficiency and safety have been repurposed for other clinical applications. Sildenafil is one such drug; it was initially produced to treat angina and later used for male erectile dysfunction (Goldstein et al., 1998) ; zidovudine was repurposed earlier from an anticancer drug to an anti-HIV agent (Ashburn & Thor, 2004) , and the antidepressant dapoxetine has been effective in managing premature ejaculation (Fu, Peng & Hu, 2019) . The SARS-CoV-2 M pro has been an attractive target in many drug discovery studies. The M pro was targeted by a number of compound libraries, including those containing drugs approved by the Food and Drug Administration (Kandeel & Al-Nazawi, 2020) , flavonoids and natural compounds (Joshi et al., 2020; Vijayakumar et al., 2020) , tetracycline (Bharadwaj et al., 2020) and microbial natural products (Sayed et al., 2020) . In this study, a large library of virus protein-specific compounds was selected. Initial docking showed interesting docking scores and favourable profiles of structure stability and binding energy. The four drugs selected for the final comprehensive 100 ns MD) simulations were alpha-mangostin, atazanavir, birinapant and lopinavir. Lopinavir is a well-known protease inhibitor with high efficiency against the HIV-1 protease (Cvetkovic & Goa, 2003) . In addition, the drug was effective against SARS-CoV and MERS-CoV (Chan et al., 2015) and improved the health markers in SARS-CoV-2infected patients (Ye et al., 2020) . Atazanavir is another HIV-1 protease inhibitor with the advantage of oral administration in combination with other antiretroviral drugs (Goldsmith & Perry, 2003) . Birinapant is an apoptosis inhibitor, and it has approved efficiency in controlling viral hepatitis in combination with other antiviral drugs (Testoni, Durantel & Zoulim, 2017) . Previous in silico research showed that birinapant could bind to the main protease of the SARS-CoV-2 virus (Lokhande et al., 2021) . In our study, in comparison with lopinavir, both atazanavir and birinapant showed an improved XP-docking score, higher binding energy and a lower structural root-mean-square deviation (RMSD) during 100 ns MD simulations. Therefore, based on the clinical efficiency of lopinavir against SARS-CoV-2, the drugs atazanavir and birinapant are expected to perform with similar or improved efficacy comparable to that of ritonavir. Interestingly, it was recently shown that atazanavir can inhibit M pro activity while simultaneously suppressing SARS-CoV-2 replication (Fintelman-Rodrigues et al., 2020) . The strong binding profiles of atazanavir and birinapant are supported with hydrophobic interactions. In addition, atazanavir formed two hydrogen bonds with ASN142 and GLU166, and birinapant formed four hydrogen bonds with THR25, GLU166, and GLN192 and a tridentate bond with GLY143, SER144 and CYS145 (Figs. 1E and 1F ). In the second rank, following atazanavir and birinapant, alpha-mangostin and cobicistat showed quite high binding energy but had less structural stability owing to higher RMSD values. Cobicistat is a cytochrome enzyme inhibitor used to increase the systemic availability of other antiviral drugs, such as atazanavir (Xu et al., 2010) . After screening investigations, the top two compounds were used in antiviral assays. Atazanavir had no antiviral effects. Atazanavir has been shown to have anti-SARS-CoV-2 action in previous studies (Fintelman-Rodrigues et al., 2020) . The lack of antiviral effectiveness of atazanavir found in our investigation might indicate that slight differences in the type of virus utilised could alter atazanavir efficacy. In contrast, birinapant has antiviral properties at low micromolar concentrations. The measured EC50 value of birinapant (18 µM) coincides with the measured value for other known antiviral drugs such as remdesivir and lopinavir, which yielded EC50 values against SARS-CoV-2 replication at 23.15 and 26.63 µM, respectively (Choy et al., 2020) . Birinapant's anti-SARS-CoV-2 activity supports further investigation into its usage as an anti-COVID-19 medication. Combining birinapant with other antivirals may result in considerable SARS-CoV-2 virus particle elimination. After a comprehensive study involving virtual screening, docking, and MD simulations of a unique set of antiviral agents, two highly potent M pro -binding drugs, birinapant and atazanavir, showed promise. These drugs had improved energetic and structural stability profiles that were comparable to or higher than those produced by the classic antiviral protease inhibitor ritonavir. Birinapant was found to inhibit SARS-CoV-2 replication with promising inhibition in the low micromolar range. in vitro study Computational insights into tetracyclines as inhibitors against SARS-CoV-2 M(pro) via combinatorial molecular simulation calculations Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset Therapeutically effective covalent spike protein inhibitors in treatment of SARS-CoV-2 Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro WHO declares COVID-19 a pandemic Repurposing known drugs as covalent and non-covalent inhibitors of the SARS-CoV-2 papain-like protease Screening of clinically approved and investigation drugs as potential inhibitors of SARS-CoV-2: a combined in silico and in vitro study Atazanavir, alone or in combination with ritonavir, inhibits SARS-CoV-2 replication and proinflammatory cytokine production Effect of premature ejaculation desensitisation therapy combined with dapoxetine hydrochloride on the treatment of primary premature ejaculation Potential therapeutic and pharmacological strategies for SARS-CoV2 indole chalcones against essential proteins of SARS-CoV-2 Cobicistat (GS-9350): a potent and selective inhibitor of human CYP3A as a novel pharmacoenhancer Clinical efficacy of lopinavir/ritonavir in the treatment of Coronavirus disease 2019 COVID-19 and multi-organ response Epidemiology and clinical characteristics of human coronaviruses OC43, 229E, NL63, and HKU1: a study of hospitalized children with acute respiratory tract infection in Guangzhou, China 2020. α-Ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: structurebased design, synthesis, and activity assessment Coronaviruses-drug discovery and therapeutic options The authors acknowledge King Faisal University for providing facilities and labs. This project is funded by the Ministry of Health, Saudi Arabia, Project number (495) and date 11/9/1441H. Mahmoud Kandeel received financial support from the Ministry of Health, Saudi Arabia for searching for new binding drugs with SARS-CoV-2 main protease. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors declare there are no competing interests. • Mahmoud Kandeel conceived and designed the experiments, performed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the paper, and approved the final draft.• Jinsoo Kim performed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the paper, and approved the final draft.• Mahmoud Fayez and Yukio Kitade analyzed the data, authored or reviewed drafts of the paper, and approved the final draft.• Hyung-Joo Kwon conceived and designed the experiments, analyzed the data, authored or reviewed drafts of the paper, and approved the final draft. The following information was supplied regarding data availability:The screening results and PDB files are available in the Supplementary Files. Supplemental information for this article can be found online at http://dx.doi.org/10.7717/ peerj.12929#supplemental-information.