key: cord-1009843-ukgdw9nl authors: Ng, D.; Pinharanda, A.; Vogt, M. C.; Litwin-Kumar, A.; Stearns, K. N.; Thopte, U. V.; Cannavo, E.; Enikolopov, A.; Fiederling, F.; Kosmidis, S.; Noro, B.; Rodrigues-Vaz, I.; Shayya, H. J.; Andolfatto, P.; Peterka, D. S.; Tabachnik, T.; D'Armiento, J.; Goldklang, M. P.; Bendesky, A. title: WHotLAMP: A simple, inexpensive, and sensitive molecular test for the detection of SARS-CoV-2 in saliva date: 2021-06-20 journal: nan DOI: 10.1101/2021.06.17.21259050 sha: 199af436478c2c3c962180e4608d99dc8d34da8c doc_id: 1009843 cord_uid: ukgdw9nl Despite the development of effective vaccines against SARS-CoV-2, epidemiological control of the virus is still challenging due to slow vaccine rollouts, incomplete vaccine protection to current and emerging variants, and unwillingness to get vaccinated. Therefore, frequent testing of individuals to identify early SARS-CoV-2 infections, contact-tracing and isolation strategies remain crucial to mitigate viral spread. Here, we describe WHotLAMP, a rapid molecular test to detect SARS-CoV-2 in saliva. WHotLAMP is simple to use, highly sensitive (3.6 viral RNA copies per microliter of saliva) and specific, as well as inexpensive, making it ideal for frequent screening. Moreover, WHotLAMP does not require harsh chemicals or specialized equipment and thus can be performed in point-of-care settings, and may also be adapted for resource-limited environments or home use. While applied here to SARS-CoV-2, WHotLAMP can be easily modified to detect other pathogens, making it adaptable for other diagnostic assays, including for use in future outbreaks. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus with high transmissibility that causes the Coronavirus Disease of 2019 (COVID-19) 1,2 . Unlike SARS-CoV-1, where infectiousness is mostly restricted to the symptomatic phase 3 , ~50% of SARS-CoV-2 transmissions occur 1-2 days before symptom onset or through people who never develop symptoms [4] [5] [6] . Thus, screening for symptoms is simply not enough to stop SARS-CoV-2 transmission 7 . Testing, combined with contact tracing and social isolation, along with physical barriers such as face masks and distancing became staple strategies to reduce community spread 8 . However, in many countries, viral spread has been difficult to contain. This is partly due to insufficient testing infrastructure, which leads to long delays in both access to testing and in obtaining test results. This lag greatly reduces the effectiveness of contact-tracing and isolation strategies 9, 10 . Despite the development of safe and effective vaccines against SARS-CoV-2, the threat of the virus remains high because of the logistical difficulties of global vaccination, limited supply of vaccine doses, and reluctance to get vaccinated 11 . Moreover, the emergence of SARS-CoV-2 variants that lower the protection conferred by natural or vaccine-induced immunity, suggests that testing will remain an important tool to reduce viral transmission [12] [13] [14] . Furthermore, without global vaccination coverage there is potential for future viral outbreaks. Frequent testing using 'rapid' tests has been proposed as an effective strategy to survey the population and identify infectious people 9,10 , permitting a faster and safer reopening of the economy. A frequent testing strategy is effective if a test is: 1) rapid; 2) inexpensive; 3) simple to use (ideally self-administered for convenience and to minimize health-care resources); 4) sensitive enough to identify most infectious people; and 5) highly specific, so that when prevalence is low, most positives tests are true. Initial tests to detect SARS-CoV-2 infection used deep nasopharyngeal swabs followed by RT-qPCR and were conducted by specially trained personnel 15, 16 . To increase testing capacity and reduce time to get a test result, point-of-care (POC) and home-based diagnosis using 'rapid' tests were developed to detect viral antigens from shallow nasal swabs 17 . While these tests provide quick results, even the most sensitive of antigen tests can only detect ~20,000 viral RNA copies per microliterL) 18 and may miss up to 30% of people with the high viral loads associated with infectivity [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] . Other molecular 'rapid' tests detect viral RNA using an isothermal enzymatic reaction to exponentially amplify fragments of the genome [29] [30] [31] [32] [33] [34] , and some have been approved for emergency use for POC and at home 35, 36 . While this type of rapid test is sensitive, they are expensive and/or require specialized equipment (i.e. are not simple to use). Saliva offers several advantages over nasal and nasopharyngeal swabs for the early detection of SARS-CoV-2 infections: it 1) has a higher viral load than swabs early in an infection 37, 38 ; 2) is easier than swabs to obtain from children, who are often anxious about the swabbing procedure; 3) requires fewer materials to collect, diminishing waste and reliance on resources that can be scarce. Several protocols to detect SARS-CoV-2 from saliva have been described 28, 39 . However, these approaches require toxic chemicals or specialized equipment (e.g. centrifuges, pipettes, thermocyclers) which make them impractical for POC, home testing, and other resource-limited environments. Given these considerations, a fast, economical, easy to use test that is both sensitive, specific, and safe, is still required. To this end, we devised WHotLAMP, a rapid molecular test to detect SARS-CoV-2 viral RNA directly from saliva without the need for specialized equipment, with results obtained in 30 minutes. This test extracts RNA from saliva and uses an isothermal enzymatic reaction to amplify and colorimetrically detect SARS-CoV-2 RNA. WHotLAMP is inexpensive, highly sensitive and specific, making it ideal for frequent screening and detection of infectious individuals to limit the spread of SARS-CoV-2. To develop a simple procedure to extract SARS-CoV-2 RNA from saliva, we leveraged the nucleic acid binding properties of cellulose paper (e.g. Whatman filter paper 40 ) , and molecular detection of SARS-CoV-2 RNA using Loop-mediated isothermal amplification (LAMP), an enzymatic reaction that exponentially amplifies a target nucleic acid sequence at a constant temperature 41 . Inspired by work from Liu et al. 42 , we sought to develop an inexpensive, sensitive and simplified test that did not require potentially dangerous chemicals, and would be suitable for frequent use at POC and adaptable for home use. We initially tested saliva spiked with naked SARS-CoV-2 control RNA and found that a short exposure of Whatman No. 1 filter paper to saliva, followed by brief washes, could capture sufficient SARS-CoV-2 control RNA to be detected in a LAMP reaction with primers directed against SARS-CoV-2 ( Figure 1A) . Amplification of the target sequence leads to a drop in pH, which is detected with a pHsensitive dye as a color change from pink (negative) to yellow (positive) 32 . We next tested whether we could capture encapsulated SARS-CoV-2 RNA particles that were spiked into saliva, using Whatman paper and an established lysis buffer 40 . This procedure can detect as few as ~4 SARS-CoV-2 particles per μL of saliva ( Figure 1B) . This level of sensitivity is notable, as it has been determined that 90% of COVID-19 patients carry more than 5 copies of SARS-CoV-2 per μL of saliva 28, 38 . These findings suggest that a strategy using Whatman paper is a viable approach for isolating RNA from SARS-CoV-2 virions in saliva. Since the original extraction procedure used guanidine hydrochloride (a toxic protein denaturant), we sought an alternative that avoided toxic chemical components. We developed a saliva extraction procedure using only two components, a non-toxic RNA preservative (RNAlater™), and an endopeptidase, Proteinase K. To minimize handling of Whatman paper, we secured a piece of Whatman paper to the bottom of a 1.7 mL centrifuge tube using a small amount of Kwik-Sil™ silicone adhesive. Notably, Kwik-Sil™ did not interfere with the colorimetric pH indicator in the LAMP reaction mixture, whereas other adhesives we examined caused a color change in negative-control reactions without RNA ( Table 1) . . CC-BY-NC-ND 4.0 International license It is made available under a is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. Y WHotLAMP can be performed entirely in a single 1.7 mL microfuge tube (Figure 2A) . In this test, viral RNA is preserved using a non-hazardous RNA stabilizing solution and is extracted by a brief Proteinase K digestion. Heating the sample at 95 o C inactivates both Proteinase K and SARS-CoV-2 virions 43 , thereby increasing the biosafety of the sample. It was critical to include a wash step to remove both RNAlater solution and saliva that were soaked up by the filter paper, as well as particulates bound to the filter paper. We designed LAMP primer sets throughout the SARS-CoV-2 genome (see Methods), and focused on the primer set (ZI-1, targeting ORF 1a) with the lowest predicted propensity for primer-dimer formation. To evaluate the specificity of the ZI-1 primers, we tested a panel of 22 inactivated respiratory pathogens, including SARS-CoV-1, MERS, H1N1 influenza, and common respiratory coronaviruses. We detected SARS-CoV-2 RNA in samples containing encapsulated SARS-CoV-2 RNA particles, but not in samples containing only the other respiratory pathogens ( Figure 2B-E) , indicating that the primers were specific to SARS-CoV-2. To determine the consistency of RNA extraction from saliva using WHotLAMP, we designed intronspanning LAMP primers to detect human RAB7A mRNA, a transcript expressed at high levels in multiple tissues 44 . RAB7A LAMP primers led to a yellow color change with saliva from healthy donors, but not when RNase A was added after Proteinase K treatment, indicating the amplification originated from RNA . CC-BY-NC-ND 4.0 International license It is made available under a is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. The copyright holder for this preprint this version posted June 20, 2021. ; https://doi.org/10.1101/2021.06.17.21259050 doi: medRxiv preprint and not genomic DNA (Figure 3A and 3B). In contrast, the reaction control (RPP30) in the CDCrecommended RT-qPCR test panel for SARS-CoV-2 amplifies both genomic DNA as well as cDNA 45 . Further testing of additional saliva samples with RAB7A LAMP led to a yellow color change in 20 of 20 samples, indicating that the RAB7A LAMP primers are an appropriate control for benchmarking successful RNA extractions from saliva. To devise a quantitative colorimetric threshold from which to differentiate between positive and negative LAMP results, we photographed LAMP assays under controlled illumination using a custommade portable photobox ( Figure 4A) . A potential concern regarding testing saliva using pH-sensitive dyes, rests in how the variability of pH of saliva samples could influence the specificity of this test 46 . To examine the colorimetric variability of WHotLAMP, we tested saliva samples from 36 healthy volunteers (nasal swab SARS-CoV-2 qPCR negative) ( Figure 4B ). The range of hues of these healthy salivas did not overlap with the range of SARS-CoV-2 positive samples, indicating unambiguous colorimetric classification of results ( Figure 4C -D). We next performed a series of dilutions of a SARS-CoV-2 positive saliva sample to estimate the limit of detection (LoD). Using a saliva sample from an individual with a positive nasal swab Ct (threshold cycle) value of 21, we could detect SARS-CoV-2 using WHotLAMP in 20/20 (100%) of saliva samples diluted 1:20,000, and 19/20 (95%) of samples diluted 1:40,000, suggesting a LoD of Ct ~36. To better quantify the LoD of our assay, we purified RNA from this saliva and performed RT-qPCR using CDC 2019 nCoV N1 and N2 PCR primers. Through interpolation to a standard curve (R 2 = 0.99) using a dilution series of a standard (IDT N-gene), we determined that the LoD of WHotLAMP with ZI-1 primers corresponds to ~3.6 viral RNA copies/μL saliva. This LoD matches the 4 viral RNA copies/μL of saliva determined using SARS-CoV-2 RNA spiked into saliva (Figure 1B) , making it >50x more sensitive than other recent saliva LAMP assays 47 . To evaluate the clinical sensitivity of WHotLAMP, we tested saliva from patients who at the same time tested positive for SARS-CoV-2 with a nasal swab qPCR. WHotLAMP with ZI-1 primers detected 36/38 (94.7%) positives with a Ct value up to 34 ( Figure 5A ). In contrast, CUFC1 primers 31 detected only 25/32 (78.1%) positives, amongst the same cohort of SARS-CoV-2 saliva samples ( Figure 5B ). Previous reports indicate low success in culturing SARS-CoV-2 from patients with a positive nasal swab at a Ct value >34 22, 48 , suggesting that the WHotLAMP assay with ZI-1 primers can detect nearly all individuals that carry viral loads considered to be contagious. Furthermore, while the most accurate antigen tests have a false negative rate of ~20% for samples with a Ct <30 26 , WHotLAMP with ZI-1 primers detected 21/21 samples that had Ct <31 in nasal swab RT-qPCR. To evaluate the specificity of WHotLAMP, we tested saliva from asymptomatic individuals who had a negative qPCR result from a nasal swab taken within 24 hours of the saliva collection. Notably, we found no false positives among 40 samples (false-positive rate <1/40; CI=0-0.091) using ZI-1 primers, indicating . CC-BY-NC-ND 4.0 International license It is made available under a is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. The copyright holder for this preprint this version posted June 20, 2021. ; https://doi.org/10.1101/2021.06.17.21259050 doi: medRxiv preprint this primer set offers high specificity (Figure 5C ), whereas CUFC1 primers detected 2 false positives out of 37 samples (a subset of the 40 tested with ZI-1; false-positive rate 0.054; CI=0.0097-0.18) (Figure 5D ). We describe WHotLAMP, a simple, inexpensive molecular test (~$3.00 for consumables per reaction at retail prices) that does not require specialized laboratory equipment, to detect SARS-CoV-2 virus in saliva. We show that WHotLAMP can detect low levels of SARS-CoV-2 virus in saliva in 30 minutes. Its low false-positive rate allows for deployment under conditions of low prevalence, where a high test specificity is particularly important to achieve high positive predictive values. The current assay design is already applicable to test at POC settings. Moreover, its single-tube format that requires no centrifugation, is conducive to scaling to 96-well formats, but can also be adapted for home use for frequent self-administered monitoring. While here we focused on a test for SARS-CoV-2, this technology could be used to detect other pathogens that are present in saliva by substituting primers 49 , making WHotLAMP a broadly useful diagnostic assay. . CC-BY-NC-ND 4.0 International license It is made available under a is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. The copyright holder for this preprint this version posted June 20, 2021. ; https://doi.org/10.1101/2021.06.17.21259050 doi: medRxiv preprint For saliva RNA spike-in tests, a 1.7 mL tube with 100 μL of saliva was combined with 100 μL lysis buffer (0.8 M guanidine hydrochloride (G3272, Sigma), 2% Tween-20 (BP337, Fisher Biotech)), mixed, and incubated at room temperature for 5 min. Approximately 1x10 5 copies of SARS-CoV-2 RNA (MT007544.1, TWIST Bioscience) were added to the saliva lysate and mixed. A 2x3 mm piece of Whatman No. 1 filter paper (Cat. 1001-929, GE Healthcare) was added to the lysate and incubated at room temperature for 1 min. The lysate was removed and the filter paper was washed twice. For each wash, 1 mL of wash buffer (1 mM Tris-Cl pH 8.0, 0.1 mM EDTA pH 8.0, 0.1% Tween-20) was added, inverted 20x, incubated for 1 minute at room temperature, and then removed. The filter paper was then transferred to a PCR tube containing 40 μL of 1x LAMP reaction mixture (see below). For saliva encapsulated SARS-CoV-2 RNA spike-in tests, the extraction was performed as described for the RNA spike-in assay, except that encapsulated RNA controls (either AccuPlex SARS-CoV-2 or human RNaseP, 0505-0168, LGC Sera Care) were added to the saliva lysate mixture instead of naked RNA. For the no extraction control, encapsulated SARS-CoV-2 RNA control was added directly to saliva without treatment with lysis buffer. For WHotLAMP assays, a 1.7 mL tube with a piece of Whatman No.1 filter paper (approximately 6 mm 2 surface area) affixed at the bottom using Kwik-Sil™ silicone (see below) was used to carry out the entire assay. For each sample, 100 μL of saliva was loaded into the tube, followed by 50 μL of RNAlater (R0901, Sigma) and 25 μL of Proteinase K (10 mg/mL) (PB0451, BioBasic; or 25530-049, Ambion), and mixed. The tube was incubated at 26 o C for 5 min, then at 95 o C for 5 min, and then returned to room temperature. The saliva mixture was removed and the filter paper was washed twice. For the first wash, 1 mL of wash buffer (1 mM Tris-Cl pH 8.0, 0.1 mM EDTA pH 8.0, 0.1% Tween-20) was added, inverted 20x, incubated for 1 min at room temperature, and then removed. For the second wash, 1 mL of wash buffer was added and the tube was incubated for 1 min at room temperature. The wash buffer was then removed, and 50 μL of 1x LAMP reaction mixture was added (see below). ZI-1, CUFC1 and N2+E1 LAMP primers were used in 25 μL colorimetric RT-LAMP reactions conducted in PCR tubes. 1x10 5 DNA copies of SARS-CoV-1 and MERS, or RNA purified from positive SARS-CoV-2 saliva were added. Reactions were carried out at 65 o C for 45 min. To test whether ZI-1 primers had crossreactivity with other respiratory pathogens, the WHotLAMP assay was followed, except that the 100 μL of saliva was substituted with 100 μL of respiratory pathogen mixture (20 μL of a respiratory control panel (NATRPP-1, ZeptoMetrix) or SARS-CoV-2 control (NATSARS(COV2)-ERC, ZeptoMetrix) with 80 μL water). . CC-BY-NC-ND 4.0 International license It is made available under a is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. The copyright holder for this preprint this version posted June 20, 2021. ; https://doi.org/10.1101/2021.06.17.21259050 doi: medRxiv preprint With informed consent (Columbia University IRB AAAT1974), patients were provided sterile cotton tipped swabs and conical tubes for sample collection. First, patients underwent separate nose and throat swabs for COVID-19 PCR analysis. For nose swabs, patients were instructed to swab 10 circles per nostril at ~1-2 cm from the nasal opening. For throat samples, patients self-swabbed. Swabs were then placed into 500 μL RLT buffer (RNeasy Mini kit, 74106, Qiagen) with 10 μL beta-mercaptoethanol per 1 mL RLT buffer. Participants were instructed, if able, to swish and swallow a small amount of water to clean the mouth. Participants were then asked to produce saliva that naturally pools in their mouth (not expectorated) into a 50 mL Falcon sterile tube. All specimens were assayed within 2 hrs or stored at 4 °C for up to 48 hrs for further analysis. For RNA isolation and real-time qPCR analysis, RNA was purified using the RNeasy Mini Kit (Qiagen) with minor modifications to the standard protocol: Both the nose and throat lysates were combined on a single column for RNA isolation. In addition, only 1 RPE buffer spin was performed, followed by an 80% ethanol spin. The membrane was dried at full speed centrifugation for 5 min. RNA was eluted with two separate 20 μL RNase-free water 5 min incubations and 1 min full speed spins. RNA was transcribed into cDNA utilizing the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems) with the following thermocycler settings: 25 °C for 10 min, 37 °C for 60 min, 85 °C for 5 min, then 4 °C until used. Real-time qPCR was performed on cDNA according to standard protocols utilizing TaqPath qPCR Master Mix, ThermoScientific Microamp 96-well reaction plates, and the QuantStudio 3 Real Time PCR system. COVID-19 N1 and N2 FAM primers (2019-nCoV_N1-P, FAM-ACC CCG CAT TAC GTT TGG TGG ACC-BHQ1; 2019-nCoV_N2-P, FAM-ACA ATT TGC CCC CAG CGC TTC AG-BHQ1) were analyzed out to 40 cycles as compared to 18S rRNA VIC loading control. A 20 μL reaction was performed with 10 μL master mix, 1 μL of COVID-19 N1 or N2 primer sequence, 1 μL of 18s rRNA endogenous control, 4 μL nuclease-free water, and 4 μL RNA were added to each well. All assays were run in duplicate. Each plate was run with a COVID-19 positive control (Integrated DNA Technologies, 2019-nCoV_N_Positive Control, #10006625), and water as a negative control. Samples were deemed negative if by qPCR there was no amplification for N1 or N2. The average Ct of the duplicates was used. Saliva samples and WHotLAMP assays were handled and processed under BSL-2 containment. To test the sensitivity of WHotLAMP, patient saliva samples and negative control samples were tested under blind conditions. Saliva samples from healthy volunteers used to assess saliva variability were collected without prior food or beverage restrictions. Samples were tested using the WHotLAMP assay with 1.7 mL tubes. RNA was purified from saliva samples using RNeasy Mini columns (Qiagen). 250 μL of saliva was mixed with 250 μL of RLT buffer and 500 μL of 70% ethanol. 500 μL of the mixture was loaded onto a column and centrifuged at 14,000g for 30 s. A second 500 μL volume was loaded onto the same column and centrifuged. The column was washed with 500 μL of RPE, centrifuged, transferred to a new tube, and . CC-BY-NC-ND 4.0 International license It is made available under a is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. The copyright holder for this preprint this version posted June 20, 2021. ; https://doi.org/10.1101/2021.06.17.21259050 doi: medRxiv preprint spun to dry. The column was transferred to a fresh tube and eluted in 20 μL of water. Two additional elutions using 20 μL of water were performed, and all eluates were pooled into one tube. For cDNA synthesis, total RNA purified from saliva was reverse transcribed using random primers and recombinant M-MuLV reverse transcriptase (E6300S, NEB) according to manufacturer's instructions. Briefly, 50 ng of total RNA was mixed with random primers and denatured for 5 min at 70 °C, spun briefly, and placed on ice. M-MuLV reaction mix and M-MuLV enzyme were added to the mixture and incubated at 25 °C for 5 min, then incubated at 42 °C for 1 hr and heat inactivated at 80 °C for 5 min. The cDNA was then stored at -20 °C until further use. Primers (desalted, Integrated DNA Technologies and Eurofins Genomics) used for LAMP reactions were prepared in water as 10x stocks (16 µM FIP/BIP, 2 µM F3/B3, 4 µM LF/LB) (see Table 1 ). ZI LAMP primer sets were identified using the NEB Primer Design Tool (https://lamp.neb.com/#!/) and a ~800 bp sliding window across the SARS-CoV-2 genomic sequence (MN908947.3). Primer sets with low primer ΔG values (e.g. <-2.2) were selected for further analysis. One primer set, ZI-1, was selected because it was highly sensitive when tested using positive SARS-CoV-2 saliva. All LAMP reactions consisted of 1x colorimetric RT-LAMP mixture (NEB M1800S), 40 mM guanidine hydrochloride (G3272, Sigma, freshly made) and LAMP primers (1.6 µM FIP/BIP, 0.2 µM F3/B3, 0.4 µM LF/LB). Reactions were carried out at 65 o C for 20 minutes (for 1.7 mL tubes) in a heat block or 45 minutes (for PCR tubes) in a thermocycler. Tubes were cooled afterwards to enhance color contrast between positive and negative colorimetric LAMP results. . CC-BY-NC-ND 4.0 International license It is made available under a is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. The copyright holder for this preprint this version posted June 20, 2021. ; https://doi.org/10.1101/2021.06.17.21259050 doi: medRxiv preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. The copyright holder for this preprint this version posted June 20, 2021. SARS-CoV-2 positive saliva was initially heat-inactivated at 65 o C for 30 min prior to diluting using negative control saliva. An initial series using 10-fold dilutions was tested using WHotLAMP with ZI-1 primers. A second series using 2-fold dilutions was tested and repeated 20 times to estimate the consistency at the LoD. Saliva from the same SARS-CoV-2 positive sample was used to extract RNA for RT-qPCR analysis. Adhesives that could be used to affix Whatman No. 1 filter paper to the bottom of a tube were tested to determine if they were compatible with the LAMP colorimetric assay. A small quantity of liquid adhesives (~2 μL) was spotted at the bottom of a tube and allowed to cure for at least 24 hrs. For solid materials, ~1-2 mm 2 pieces were used. Tubes containing different adhesives were incubating in 1x LAMP reaction mixture at 65 o C for 20 min (for 1. 7 and placed on ice to slow the polymerization process. Tear-shaped Whatman filter paper pieces were prepared using a hole-punch. The tapered end of the paper was dipped slightly in Kwik-Sil™ and placed, taper side facing up, at the bottom of the 1.7 mL tube using fine-tipped forceps, and air dried for at least 24 hrs. To quantify colorimetric ranges under uniform conditions we embedded an enclosed white box with: 1) a Raspberry Pi 3 (model B+), 2) camera unit (camera v2.1), and 3) white LED lights (DC12V LED strip). The raspistill command line tool was run to capture still images (raspistill --raw -o png). A color chart (Digital Kolor Kard) inside the box was used as reference to calibrate the white balance of images. Images were then used to extract hues to interpret WHotLAMP positive and negative colorimetric results. We developed a proof-of-concept image analysis pipeline that identified sample results. Images of an array of samples were acquired and thresholded based on color saturation to identify regions of interest (ROIs) corresponding to samples. Areas of high or low brightness as well as areas near the image border were excluded from potential ROIs. We found that this method successfully identified correct ROIs and that the average hue within each ROI formed a bimodal distribution that could be used to successfully categorize samples into positives and negatives. . CC-BY-NC-ND 4.0 International license It is made available under a is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. The copyright holder for this preprint this version posted June 20, 2021. ; https://doi.org/10.1101/2021.06.17.21259050 doi: medRxiv preprint Figure 1 : Loop-mediated isothermal amplification (LAMP) detection of SARS-CoV-2 RNA captured from saliva using Whatman no. 1 filter. A) Detection of naked SARS-CoV-2 RNA in saliva. Saliva with spike-in SARS-CoV-2 RNA (tubes 1-3), saliva without RNA spike-in (tubes 4-6), SARS-CoV-2 RNA added directly to LAMP reaction (tube 7), no template control (tube 8). B) Detection of encapsulated SARS-CoV-2 RNA particles in saliva (tubes 1-4); saliva with spike-in encapsulated RNase P RNA particles (tube 5); saliva with spike-in encapsulated SARS-CoV-2 RNA particles with no extraction treatment (tube 6), saliva alone with no spike-in (tube 7), and no saliva (tube 8). LAMP reactions used N2+E1 primers for detection of SARS-CoV-2 RNA. Concentrations are in copies per microliter of saliva. , and no template control (tube 8). C) and D), same as B) but with CUFC1 or N2+E1 LAMP primers, respectively. E) Triplicate LAMP reactions with ZI-1 LAMP primers using WHotLAMP detecting different respiratory pathogens (pools 1-5), no respiratory pathogens (-Ctrl), and with inactivated SARS-CoV-2 virions (+CoV-2 Ctrl). Supplementary material 1: Python script for LAMP colorimetric result analysis Supplementary material 2: WHotLAMP protocol . CC-BY-NC-ND 4.0 International license It is made available under a is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review) The copyright holder for this preprint this version posted June 20, 2021. ; https://doi.org/10.1101/2021.06.17.21259050 doi: medRxiv preprint ALK Supervision: DN, AB, JD'A Visualization: DN, AB Writing -original draft: DN, AB, MG, ALK Writing -review & editing Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics COVID-19 in early 2021: current status and looking forward Viral shedding patterns of coronavirus in patients with probable severe acute respiratory syndrome SARS-CoV-2 Transmission From People Without COVID-19 Symptoms Pre-symptomatic transmission of SARS-CoV-2 infection: a secondary analysis using published data SARS-CoV-2 detection, viral load and infectivity over the course of an infection Assessment of SARS-CoV-2 Screening Strategies to Permit the Safe Reopening of College Campuses in the United States Role of masks, testing and contact tracing in preventing COVID-19 resurgences: a case study from New South Wales Test sensitivity is secondary to frequency and turnaround time for COVID-19 surveillance Clarifying the evidence on SARS-CoV-2 antigen rapid tests in public health responses to COVID-19 Challenges in ensuring global access to COVID-19 vaccines: production, affordability, allocation, and deployment Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccineelicited human sera Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants How to perform a nasopharyngeal swab in adults and children in the COVID-19 era US Food and Drug Administration EUA FDA letter to Quidel Corporation -Sofia SARS Antigen FIA Comparison of seven commercial SARS-CoV-2 rapid point-of-care antigen tests: a single-centre laboratory evaluation study Evaluation of rapid antigen test for detection of SARS-CoV-2 virus Comparison of Rapid Antigen Tests for COVID-19 Low performance of rapid antigen detection test as frontline testing for COVID-19 diagnosis SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis Quantifying the relationship between SARS-CoV-2 viral load and infectiousness Transmission of COVID-19 in 282 clusters in Catalonia, Spain: a cohort study Duration of infectiousness and correlation with RT-PCR cycle threshold values in cases of COVID-19 Performance characteristics of five antigen-detecting rapid diagnostic test (Ag-RDT) for SARS-CoV-2 asymptomatic infection: a head-to-head benchmark comparison Real World Performance of SARS-CoV-2 Antigen Rapid Diagnostic Tests in Various Clinical Settings Saliva or Nasopharyngeal Swab Specimens for Detection of SARS-CoV-2 SARS-CoV-2 detection using isothermal amplification and a rapid, inexpensive protocol for sample inactivation and purification Shotgun Transcriptome and Isothermal Profiling of SARS-CoV-2 Infection Reveals Unique Host Responses, Viral Diversification, and Drug Interactions Direct diagnostic testing of SARS-CoV-2 without the need for prior RNA extraction Rapid molecular detection of SARS-CoV-2 (COVID-19) virus RNA using colorimetric Detection of SARS-CoV-2 with SHERLOCK One-Pot Testing Direct on-the-spot detection of SARS-CoV-2 in patients EUA FDA Letter to LumiraDx UK Ltd -LumiraDx SARS-CoV-2 RNA STAR EUA FDA Letter to Lucira Health, Inc. -Lucira COVID-19 All-In-One Test Kit Saliva is more sensitive than nasopharyngeal or nasal swabs for diagnosis of asymptomatic and mild COVID-19 infection SARS-CoV-2 is detectable using sensitive RNA saliva testing days before viral load reaches detection range of low-sensitivity nasal swab tests. medRxiv US Food and Drug Administration. EUA FDA letter to Infinity BiologiX LLC -Infinity BiologiX TaqPath SARS-CoV-2 Assay Nucleic acid purification from plants, animals and microbes in under 30 seconds Loop-mediated isothermal amplification of DNA An isothermal amplification reactor with an integrated isolation membrane for point-of-care detection of infectious diseases Heat inactivation of the severe acute respiratory syndrome coronavirus 2 Human housekeeping genes, revisited Overhauling a faulty control in the CDC-recommended SARS-CoV-2 RT-PCR test Diurnal variation of intraoral pH and temperature Saliva TwoStep for rapid detection of asymptomatic SARS-CoV-2 carriers Viral RNA load as determined by cell culture as a management tool for discharge of SARS-CoV-2 patients from infectious disease wards A flexible format LAMP assay for rapid detection of Ebola virus Natalie Steineman, Marjorie Xie, and Aniruddah Das provided organizational support. The Zuckerman Institute Scientific Platforms provided resources. We thank Rui Costa and the Zuckerman Institute for unwavering support. This study was funded by Friends of the Zuckerman Institute and Columbia University and NIH grant GM112758 to PA.