key: cord-0911582-mun77koi authors: Duan, Lei; Yang, Xiaohan; Xie, Jia; Zhan, Wenli; Zhang, Changbin; Liu, Hong; Wei, Mengru; Tang, Yuan; Zhao, Hongyu; Luo, Mingyong title: Prevalence of GII.4 Sydney Norovirus Strains and Associated Factors of Acute Gastroenteritis in Children: 2019/2020 Season in Guangzhou, China date: 2021-06-21 journal: Food Environ Virol DOI: 10.1007/s12560-021-09482-0 sha: ab2f4939642bb82ca6d3cab7c2b6e72f8a7dce2d doc_id: 911582 cord_uid: mun77koi Norovirus, the leading cause of non-bacterial acute gastroenteritis (AGE) worldwide, is constantly mutating. Continuous monitoring of the evolution of epidemic genotypes and emergence of novel genotypes is, therefore, necessary. This study determined the prevalence and clinical characteristics of norovirus strains in AGE in Guangzhou, China in 2019/2020 season. This study included children aged 2–60 months diagnosed with AGE in Guangzhou Women and Children Hospital, from August 2019 to January 2020. Norovirus was detected by real-time polymerase chain reaction and clinical data were obtained. Genotyping and phylogenetic analyses were performed with partial gene sequence fragments located within the open reading frames 1 and 2. During the study period, 168 children (61.3% males) were confirmed as norovirus infectious AGE. The main symptoms were diarrhoea and vomiting and 38 patients (22.6%) had seizures. Norovirus was mainly prevalent in October and November, and GII.4 Sydney[P31] was the major genotype circulating in Guangzhou. The phylogenetic tree showed that the Guangzhou strains had high homology with the strains circulating in 2017–2019 worldwide. GII.4 Sydney was the main prevalent norovirus genotype in Guangzhou from August 2019 to January 2020, which had more severe diarrhoea than those of other genotypes. These findings provide a valuable reference for the prevention, control, and treatment of norovirus in the future. Norovirus is the leading cause of non-bacterial acute gastroenteritis (AGE) worldwide, causing approximately 18% of AGE and 212,000 deaths every year (Ahmed et al., 2014; Pires et al., 2015) . Norovirus causes considerable yearly losses to society, and more than half of the expenditure on norovirus is due to childhood infections (Bartsch et al., 2016) . Norovirus is mainly prevalent in winter and often causes severe AGE outbreaks. Norovirus has a strong transmission capacity and is mainly transmitted from person to person and foodborne. The symptoms of patients with norovirus AGE mainly include vomiting, diarrhoea, nausea, etc. Most of these symptoms are mild and self-limiting and generally last for 2-3 days. However, norovirus can cause serious clinical symptoms in some groups, especially children, the elderly and immunocompromised patients (Green, 2014; O'Brien et al., 2016) . Once transmitted, the virus can remain in the patient for weeks or even a year among the immunocompromised (Ludwig et al., 2008) . Due to the lack of specific antiviral drugs and vaccines, supportive care and symptomatic treatment are the main therapeutic methods for norovirus infections. Moreover, norovirus has a strong ability to spread and usually causes AGE outbreaks in semienclosed areas, such as hospitals, schools, kindergartens, Lei Duan, Xiaohan Yang and Jia Xie have contributed equally to this work. cruise ships, nursing homes and prisons (Ahmed et al., 2014; Wang et al. 2016b ). Norovirus is a 7.5-7.7 kb long single-stranded positivesense RNA virus belonging to the family Caliciviridae and its RNA includes three open reading frames (ORFs). Norovirus is divided into 10 genogroups (GI to GX, but only GI, GII and GIV can infect humans) based on the ORF2 gene and further divided into more than 40 genotypes (Chhabra et al., 2019) . Because the recombination of norovirus mainly occurs at the ORF1 and ORF2 junctions, a dual typing based on both the RdRp of ORF1 gene (P type) and the VP1 of ORF2 gene (genotype) of norovirus has been widely used since 2013 . GII.4 has been the most popular genotype worldwide, accounting for more than 90% of all the epidemics (Bull & White, 2011; Chhabra et al., 2019) . GII.4 can be further classified into eight strains due to its continuous variations and the novel GII.4 epidemic strains usually emerge every 2-3 years (Cannon et al., 2017; Wang et al. 2019b) . In China, norovirus is also a major cause of non-bacterial AGE and causes more than 20% AGE nationwide and affects about 800,000 people yearly (Zhou et al., 2017) . In recent years, some studies have shown that non-GII.4 (such as GII.17 and GII.2) have gradually replaced GII.4 to become the predominant genotypes (Ao et al., 2018; Jin et al., 2020) . Continuous monitoring of the evolution of epidemic genotypes and the emergence of novel genotypes is necessary to effectively control norovirus transmission. In this study, we aimed to analyse the epidemiological and clinical characteristics of norovirus infection in children in Guangzhou in the 2019/2020 season. Furthermore, we performed a phylogenetic analysis of the epidemic strains prevalent in Guangzhou to understand any trends of norovirus. A total of 417 children (age range: 2-60 months) with clinical diagnoses of AGE at Guangdong Women and Children Hospital, from August 2019 to January 2020, were included in our study. All norovirus infection diagnoses were confirmed with molecular detection (described below) at the clinical laboratory. AGE was defined as defaecation ≥ 3 times within 24 h with trait changes (diluted watery stools) and/or vomiting ≥ 2 times within 24 h (Liao et al., 2016) . Demographic characteristics and clinical symptoms were collected from the participants' medical records. Laboratory examinations, mainly including hematological and biochemical parameters, were also collected. The severity of AGE was assessed by the Modified Vesikari Score (MVS) System (Wang et al. 2016a) , and it was defined as 0-8, mild; 9-10, moderate; ≥ 11, severe. This study did not record any data about the patient's personal identity information since the collection process started and all patient names and other relative information were replaced with identifying numbers. Therefore, the informed consent was not needed. The study was approved by the Ethics Committee of Guangdong Women and Children Hospital (ref.202001189 ). Norovirus RNA was extracted from stool and vomit samples using an RNA Extraction Kit (Tianlong, Xi'an, China) based on magnetic beads, according to the manufacturer's instructions. Norovirus RNA was detected using Diagnostic Kit for Norovirus RNA (PCR Fluorescence Probing) (Land medical, Wuhan, China) on the ABI 7500 Fast Real-Time polymerase chain reaction (PCR) platform (Applied Biosystems, Foster, USA), and positive samples were further sequenced and typed. Reverse transcription was performed using PrimeScript™ RT reagent Kit with gDNA Eraser (Takara, Beijing, China) to obtain norovirus cDNA. Norovirus belonging to genotypes GI and GII were amplified using primers MON432 and GISKF, MON431 and GIISKR, respectively (Cannon et al., 2017) . The length of the PCR-amplified products was expected to be 543 bp for GI and 557 bp for GII, including the partial RdRp gene located in ORF1 as well as the partial VP1 gene located in ORF2 (ORF1-2 junction) . The amplified products were sent to Sangon Biotech (Sangon Biotech, Shanghai, China) for sequencing. To confirm the genotype of norovirus and to analyse the norovirus sequences at the ORF1-2 junction, we used the online Norovirus Typing Tool Version 2.0 (http:// www. rivm. nl/ mpf/ norov irus/ typin gtool). The sequences were uploaded to GenBank (accession numbers: MT856488-MT856646). Multiple sequence alignment was performed using ClustalW in MEGA X (Kumar et al., 2018) , and the phylogenetic tree (based on the partial sequences of ORF1 and 2) was constructed using the neighbour-joining method, with a bootstrap value of 1000 repetitions. All reference sequences were downloaded from GenBank. The data of patient's clinical information were collated, imported and analysed with IBM SPSS Statistics for Windows, version 26.0 (IBM Corp., Armonk, N.Y., USA). Qualitative data were expressed as frequency (percentage), and the chi-square test was used for analysis. Quantitative data were expressed as the median and interquartile range (IQR), and t-test or one-way analysis of variance (ANOVA) was used to analyse data that conformed to the normal distribution, while the non-parametric rank-sum test was used for data that did not conform. Differences were defined as statistically significant when p < 0.05. From August 2019 to January 2020 in Guangzhou, China, a total of 168 (40.29%) children were diagnosed with norovirus infection in this study (Fig. 1a ). Among these patients, 159 were successfully genotyped, while 9 failed due to their low viral load unable to be sequenced. According to the RdRp gene on ORF1 and the VP1 gene on ORF2 (ORF 1-2 junctions), the majority of the norovirus genotypes were GII. The demographic characteristics and clinical manifestations of the 168 children with norovirus infection in this study are shown in Table 1 . Among these children, 103 (61.3%) were male and 45 (38.7%) were female. The median age was 19.0 (IQR 13.0-28.8) months, and 148 (88.1%) patients were under 3 years of age. A total of 80 (47.6%) children were hospitalised for a median of 5.0 (IQR 3.0-7.5) days. There were 56 (33.3%) children with fever, and the median body temperature during infection was 37.0 °C (IQR 37.0-37.9 °C). Eighty-two (48.8%) patients had anorexia and 38 (22.6%) had seizures. Clinical data showed that the main symptoms shown by the patients with norovirus infection were diarrhoea (79%) and vomiting (83.9%), and no significant differences were found between the genotype groups. However, compared with "Others" group, the clinical symptoms of "GII.4" group were more severe. "GII.4" group had a longer diarrhoea duration and a greater maximum number of diarrhoeal stools per day than those with "Others" group (both p < 0.05). Besides, the median MVS was higher among GII.4 infected children (10.0; IQR 8.0-13.0) compared with cases from "Others" group (8.0; IQR: 6.3-10.0); p < 0.05. Laboratory examinations showed that the white blood cell (WBC), red blood cell (RBC), aspartate aminotransferase (AST), hydroxybutyrate dehydrogenase (HBDH) and creatine kinase isoenzyme (CK-MB) levels in the blood of patients with norovirus infection increased, but no significant differences were found between the genotype groups ( Table 2 ). The levels of sodium (Na + ) and chloride (Cl − ) in the blood of patients infected with GII.4 were significantly lower than those in the "Others" (both p < 0.05). Phylogenetic analysis based on the partial gene fragment (ORF1/2 junction) showed the norovirus strains prevalent in Guangzhou in 2019/2020 season had high homology with the strains mainly circulated in China, Russia and the USA in recent years. The sequences alignment showed that 131 strains GII.4 Sydney[P31] shared 94.9-100.0% of the nucleotide identity level, as well as 97.7-99.5% nucleotide identities respect to the GII.4 Sydney[P31] prototype strain (GenBank accession no. JX459908). The closest relatives of these strains were several strains isolated in China, the USA and Thailand (MH842243, MH842243, and MK928499) with nucleotide identities of 97.0-99.8% (Fig. 2) To analyse the phylogenetic characteristics of the recombinant strains GII.4 Sydney[P16], phylogenetic trees based on the partial RdRp sequence (228 bp) and the partial VP1 sequence (237 bp) were also constructed, respectively. As shown in Fig. 3a (Fig. 3b ). In this study, we reported the detailed clinical and epidemiological characteristics of young children with norovirus AGE in Guangzhou City in the 2019/2020 season. Our results revealed that norovirus was prevalent mainly in October and November during our study period, and GII. (Ao et al., 2018) . The main epidemic strains were GII.4 Sydney[P31] (78.0%) and GII.4 Sydney[P16] (11.9%) in this study, which was different from previous years in Guangzhou (Wang et al. 2019a) . This suggests that the norovirus epidemic trend may have changed in Guangzhou in the 2019/2020 season, but further studies are needed to verify it. According to the norovirus surveillance network in China, more than 80% of norovirus outbreaks occurred during the winter season (November to March) from 2006 to 2018 (Jin et al., 2020; Qin et al., 2017; Wang et al. 2019a ). However, our data revealed that the majority (75.60%) of norovirus cases presented from October and November in Guangzhou in 2019/2020 season, which was slightly earlier than the previous data of Guangzhou (Wang et al. 2019a ). 1.2 (0.5-9.5) WBC (3.5-9.5 × 109/L) 9.6 (7.0-12.8) 9.67 (6.9-13.4) 10.2 (7.5-12.1) 12.38 (8.1-20.1) 7.4 (6.8-9.3) NEUT (1.8-6.3 × 10 9 /L) 5.1 (2.64-9.21) 4.9 (2.6-9.3) 5.4 (2.8-8.1) 9.7 (4.0-17.9) 4.0 (1.2-6.7) LYMPH (1.1-3.2 × 10 9 /L) 3.0 (1.9-4.5) 2.9 (1.9-4.6) 3.9 (2.9-4.3) 2.5 (0.9-5.6) 2.1 (1.4-4.2) RBC (4.0-4.5 × 10 9 /L) 4.7 (4.5-4.9) 4.7 (4.5-4.9) 4.6 (4.4-4.9) 5.1 (4.8-5.2) 4.65 (4.6-4.9) PLT (125-350 × 10 9 /L) 325 ( (MT856488-MT856646) and reference sequence retrieved from GenBank were constructed using the neighbour-joining method with bootstrap analysis of 1000 replicates using MEGA X. The nucleotide sequence is presented as GenBank accession number/country/year of isolation/genotype, and the sequences obtained in this study are indicated as bold italics Fig. 3 Phylogenetic analysis based on a the partial RdRp genes(228 bp) and b the partial VP1 genes (237 bp). The norovirus strains detected in this study (MT856488-MT856646) and reference sequence retrieved from GenBank were constructed using the neighbour-joining method with bootstrap analysis of 1000 replicates using MEGA X. The nucleotide sequence is presented as GenBank accession number/country/year of isolation/genotype, and the sequences obtained in this study are indicated as bold italics Food and Environmental Virology able to play a role in the seasonal pattern of norovirus epidemics (Marshall & Bruggink, 2011) . Based on the data from the Guangdong Meteorological Service, we found that from October 16 to December 31, 2019, the precipitation in Guangzhou was 20.2 mm, 79% less than the same period in history (94.4 mm). Lack of rainfall and drought might be one of factors influenced the seasonal pattern of norovirus in Guangzhou in 2019. However, comprehensive studies from epidemiology, virology and meteorology are required to further understand the prevalence of norovirus. In this study, male patients were more among the infected than females (103:65), which is consistent with previous studies (Ao et al., 2017; Wang et al. 2019a) . That the innate and acquired immunity in females are inherently stronger than in males may be the reason (Jaillon et al., 2019) . Children with norovirus infection are more likely to develop AGE, especially children under 5 years. In our study, more than 88% of the patients were aged < 36 months, with a median age of 19 (IQR 13-28.75) months. Fifty percent of infected patients were aged 12 to 23 months, which is consistent with previous reports (Mathew et al., 2019; Shioda et al., 2015; Zhirakovskaia et al., 2015) . These results suggest that children under 3 years of age are more susceptible to norovirus infection. Therefore, in the prevention and control of norovirus, more attention should be paid to children in this age group. Compared with non-GII.4, the clinical feature of GII.4associated AGE is more severe, especially in diarrhoea and abdominal pain (Desai et al., 2012; Leshem et al., 2013) . Our data indicated that "GII.4" group had a longer diarrhoea duration and a greater maximum number of diarrhoeal stools per day than those with "Others" group (both p < 0.05), which was consistent with previous studies (Haddadin et al., 2020; Wang et al. 2019a) . The MVS has been used in several studies of norovirus infections to evaluate the severity of AGE (Bhavanam et al., 2020; Wang et al. 2016a) . In this study, the MVS of "GII.4" group was statistically higher than "Others" group (10 vs. 8, p < 0.05), and this result was similar to a recent study (Bhavanam et al., 2020) . In addition, the laboratory examination results showed that the levels of Na + and Cl − in the blood of patients with GII.4 infection were lower than those with other genotypes. All these features indicate that the GII.4 was more serious, and effective measures, such as rehydration, are needed to prevent more serious complications. Based on the RdRp gene, the GII.4 Sydney strain in this study can be divided into GII.4 Sydney[p31] (78.0%) and GII.4 Sydney[p16] (11.9%). The RdRp gene encodes a non-structural protein that participates in the transcription of norovirus, which can influence viral transmission (Arias et al., 2016; Ruis et al., 2017) . However, our results showed no significant differences in epidemic and clinical characteristics were found between patients with GII.4 Sydney[P31] and GII.4 Sydney[P16] infection, which illustrated that recombination associated with RdRp in this study has few influences on the norovirus epidemic, but further studies are needed. Our research showed nausea, abdominal pain and dehydration as the complications of norovirus infection. In addition, we recorded that 38 patients had seizures, accounting for 22.6% of the 168 norovirus-infected children in this study. The result was consistent with previous studies (Chen et al., 2009 Ma et al., 2019) , which also showed that norovirus infection has a significantly higher incidence of seizures than rotavirus infection. Seizures, in this study, were similar to benign convulsions associated with mild gastroenteritis reported previously by Chen et al. (2018) . The mechanism of norovirus-induced seizures in children is still unclear, and may be associated with the children's immature immune system . Recently, some studies found that norovirus infection can cause encephalitis/ encephalopathy Sánchez-Fauquier et al., 2015) . However, no case of encephalitis/encephalopathy was found in our study. In addition, the Laboratory examination data showed that the levels of cardiac biomarkers, such as HBDH and CK, were elevated in most children. This suggests the need for clinical attention to myocardial damage in patients with norovirus infection. There were several limitations to our study. For example, only 6 months of norovirus epidemic data were collected during the 2019/2020 season, not a year-round study. The SARS-CoV-2 pandemic occurred in early 2020, and strict prevention and control policies were adopted in our country. The increase in people's hygiene awareness has led to a sharp drop in the number of norovirus infections, even after January there were no patients for a long time. In addition, we only analysed the epidemiological data of patients who visited the hospital, and patients who did not seek for medical advice at the hospital were not included in this study. In conclusion, this study reported the epidemiological characteristics of norovirus from August 2019 to January 2020 in Guangzhou. The main genotypes of norovirus were GII.4 Sydney[P31] and GII.4 Sydney[P16]. Most of their strains had high homology with the epidemic strains of 2017-2019. We determined the clinical information of infected patients. Vomiting and diarrhoea were the main symptoms. These findings help us to understand the prevalence of norovirus strains in Guangzhou and provide a valuable reference for the prevention, control and treatment of norovirus in the future. preparation: LD, JX; writing-review and editing: ML. All authors have read and agreed to the published version of the manuscript. Funding This research was funded by the Guangzhou Science, Technology and Innovation Commission, Grant number 201904010452. The funders had no role in the study design, data collection, data analysis, data interpretation, writing of the report, or decision to submit for publication. The datasets generated and/or analysed during the current study are available in the GenBank repository under accession numbers MT856488-MT856646 (www. ncbi. nlm. nih. gov/ sites/ myncbi/ 1x7zk dP4af G5ea/ colle ctions/ 60686 265/ public/). Code Availability IBM SPSS Statistics for Windows, version 26.0 (IBM Corp., Armonk, N.Y., USA). The authors have no relevant financial or non-financial interests to disclose. The study protocol was approved by the Ethics Committee of Guangdong Women and Children Hospital, Guangzhou, China (Ref. 202001189) . This study did not record any data about the patient's personal identity information since the collection process started and all patient names and other relative information were replaced with identifying numbers; therefore, the informed consent was not needed. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. Global prevalence of norovirus in cases of gastroenteritis: A systematic review and meta-analysis. The Lancet Infectious Diseases Genetic analysis of reemerging GII.P16-GII.2 noroviruses in 2016-2017 in China Emerging infectious diseases Norovirus polymerase fidelity contributes to viral transmission. mSphere Global economic burden of norovirus gastroenteritis & On Behalf Of The Alberta Provincial Pediatric Enteric Infection Team, A. (2020). Differences in illness severity among circulating norovirus genotypes in a large pediatric cohort with acute gastroenteritis Emergence of new recombinant noroviruses GII.p16-GII.4 and GII.p16-GII Mechanisms of GII.4 norovirus evolution Genetic and epidemiologic trends of norovirus outbreaks in the United States from 2013 to 2016 demonstrated emergence of novel GII.4 recombinant viruses Clinical outcome of recurrent afebrile seizures in children with benign convulsions associated with mild gastroenteritis Norovirus infection as a cause of diarrheaassociated benign infantile seizures Molecular epidemiology and clinical characteristics of norovirus gastroenteritis with seizures in children in Taiwan Updated classification of norovirus genogroups and genotypes Severe outcomes are associated with genogroup 2 genotype 4 norovirus outbreaks: A systematic literature review Norovirus infection in immunocompromised hosts Characteristics of GII.4 norovirus versus other genotypes in sporadic pediatric infections in Davidso county Sexual dimorphism in innate immunity Norovirus outbreak surveillance, China Proposal for a unified norovirus nomenclature and genotyping Mega X: Molecular evolutionary genetics analysis across computing platforms Effects and clinical significance of GII Emerging infectious diseases Guidelines on outbreak investigation Quantitative detection of norovirus excretion in pediatric patients with cancer and prolonged gastroenteritis and shedding of norovirus Recombinant GII.P16/GII.4 Sydney 2012 was the dominant norovirus identified in Australia and New Zealand in 2017 Clinical characteristics and follow-up of benign convulsions with mild gastroenteritis among children The dynamics of norovirus outbreak epidemics: Recent insights Epidemiological, molecular, and clinical features of norovirus infections among pediatric patients in Qatar Age-specific incidence rates for norovirus in the community and presenting to primary healthcare facilities in the United Kingdom Aetiology-specific estimates of the global and regional incidence and mortality of diarrhoeal diseases commonly transmitted through food Genotypic and epidemiological trends of acute gastroenteritis associated with noroviruses in China from The emerging GII.P16-GII.4 Sydney 2012 norovirus lineage is circulating worldwide, arose by late-2014 and contains polymerase changes that may increase virus transmission Norovirus-associated encephalitis in a previously healthy 2-year-old girl. The Pediatric infectious disease journal Global age distribution of pediatric norovirus cases Indications for worldwide increased norovirus activity associ Epidemiologic characteristics of outbreaks of three norovirus genotypes (GII.2, GII17 and GII4 Sydney Complicated norovirus infection and assessment of severity by a modified Vesikari disease score system in hospitalized children Norovirus activity and genotypes in sporadic acute diarrhea in children in Shanghai during An outbreak of multiple norovirus strains on a cruise ship in China The resurgence of the norovirus GII.4 variant associated with sporadic gastroenteritis in the post-GII.17 period Molecular epidemiology of noroviruses associated with sporadic gastroenteritis in children in Burden of acute gastroenteritis caused by norovirus in China: A systematic review Acknowledgements We sincerely thank Editage (www. edita ge. cn) for English language editing.