key: cord-0888778-63cip99n authors: Kiba, Yuka; Oyama, Rio; Misawa, Sae; Tanikawa, Takashi; Kitamura, Masashi; Suzuki, Ryuichiro title: Screening for inhibitory effects of crude drugs on furin-like enzymatic activities date: 2021-04-30 journal: J Nat Med DOI: 10.1007/s11418-021-01519-9 sha: c4bc2c182ea8d0ea3401eeb80b8bc999c950ab7e doc_id: 888778 cord_uid: 63cip99n The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains a cleavage motif R-X-X-R for furin-like enzymes at the boundary of the S1/S2 subunits. The cleavage of the site by cellular proteases is essential for S protein activation and virus entry. We screened the inhibitory effects of crude drugs on in vitro furin-like enzymatic activities using a fluorogenic substrate with whole-cell lysates. Of the 124 crude drugs listed in the Japanese Pharmacopeia, aqueous ethanolic extract of Cnidii Monnieris Fructus, which is the dried fruit of Cnidium monnieri Cussion, significantly inhibited the furin-like enzymatic activities. We further fractionated the plant extract and isolated the two active compounds with the inhibitory activity, namely, imperatorin and osthole, whose IC(50) values were 1.45 mM and 9.45 µM, respectively. Our results indicated that Cnidii Monnieris Fructus might exert inhibitory effects on furin-like enzymatic activities, and that imperatorin and osthole of the crude drug could be potential inhibitors of the motif cleavage. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11418-021-01519-9. In December 2019, a novel virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), belonging to the human coronavirus family, was identified in Hubei Province, China [1] . It causes coronavirus disease 2019 (COVID-19), a severe respiratory disease associated with a high mortality rate. According to the World Health Organization 2019 situation report of February 16, 2021, more than 100,000,000 patients have been diagnosed with COVID-19 and 2,300,000 have died worldwide. The entry of coronavirus into host cells is mediated by the spike (S) protein [2] . Processing of the S protein by cellular proteases, such as transmembrane protease serine 2 (TMPRSS2), cathepsin, and furin is necessary for protein activation and virus entry [3] . The S protein of SARS-CoV-2 consists of the NH 2 -terminal S1 domain and COOH-terminal S2 domain [2, 3] . The S1 domain has a receptor-binding domain (RBD) that binds to the host angiotensin-converting enzyme 2 (ACE2) receptor and the S2 domain has an fusion peptide (FP) domain that mediates membrane fusion. The S protein cleavage at the S1/S2 boundary by host cell protease plays a key role in binding the ACE2 receptor to the S1 domain. The S protein of SARS-CoV2 has a cleavage motif R-X-X-R for furin-like enzymes at the S1/S2 boundary, matching the consensus amino acid motif of the substrate for furin and related proprotein convertases (PCs) [2, 3] . Furin/PC inhibitors block SARS-CoV-2 S protein cleavage to suppress viral entry [2] [3] [4] [5] . In addition, SARS-CoV-2 pseudoviruses, which have a mutated S protein at the cleavage site, showed substantially decreased efficiency of entry into host cells [2] [3] [4] . Therefore, cleavage inhibitors of the motif site are expected to be therapeutic reagents for SARS-CoV-2 infection [6] [7] [8] . Furin, a member of the proprotein convertase family, is ubiquitously expressed in mammalian cells and activates various proprotein substrates [9] [10] [11] . Furin regulates not only pathogenic pathways but also several physiological pathways, involving hormones, growth factors, adhesion molecules, and cell surface receptors [12] . Furin is involved in calcium-dependent proteolytic cleavage at the C-terminus of a consensus amino acid motif R-X-X-R↓ (the arrow indicates the cleavage position) [9] . Peptide-based small molecules, such as hexa-D-arginine (D-6R) and chloromethylketone (CMK) have been reported to be inhibitors of furin and other PCs [13] [14] [15] [16] [17] [18] . However, furin/PC-targeting therapeutic reagents for clinical application have not been identified to date. Numerous studies have evaluated furin-like (furin and other PCs) enzymatic activities using a fluorogenic substrate with whole cell lysates and tissue homogenates [19] [20] [21] [22] [23] [24] . In this study, the inhibitory effects of crude drugs were evaluated using the furin-like protease assay with a fluorescent peptide substrate. We selected 124 crude drugs listed in the Japanese Pharmacopeia, 17th Edition, and purchased them from several distributors (Supplementary Material, Table S1 ) [25] . Crude drugs (10 g) were refluxed with 300 mL of 70% EtOH for 1 h, and the resultant extracts were dried by evaporation. The samples were dissolved in dimethyl sulfoxide (DMSO) to a concentration of 10 mg/mL and stored at 4 °C until use. Imperatorin and osthole were obtained from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan) and FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan), respectively. A549 cells, human lung carcinoma epithelial cells, were obtained from RIKEN BioResource Center (Tsukuba, Japan) and cultured in Dulbecco's modified Eagle's medium containing 10% fetal bovine serum, 100 µg/mL streptomycin, and 100 units/mL penicillin. A549 cells were seeded in 100-mm-diameter dishes (1.0 × 10 6 cells/plate) and cultured for 24 h at 37 °C with 5% CO 2 . After 24 h, the cells were washed twice with Dulbecco's phosphate-buffered saline (D-PBS). The washed cells were collected in a 1.5-mL tube by scraping and centrifuging at 2000 × g for 2 min. The cells were counted and treated with 1 mL of 2 × lysis buffer (20 mM HEPES-KOH [pH 7.4], 0.5% Triton X-100, 1 mM CaCl 2 ) per 1.0 × 10 6 cells. The cell lysates were vortexed for 5 min and centrifuged at 13,000 × g for 10 min at 4 °C. The supernatants were transferred to 1.5-mL tubes and stored at − 80 °C until use. Supernatants (10 µL), crude drug extracts (10 µL), and H 2 O (70 µL) were added to a 96-well black microplate and incubated at 37 °C for 30 min. Drug extracts were diluted and adjusted to a final concentration of 20 µg/ mL for screening. To the mixture, 10 µL of 1 mM Pyr-Arg-Thr-Lys-Arg-methyl-coumaryl-7-amide (pyr-RTKR-MCA) was added (PEPTIDE INSTITUTE, Inc., Osaka, Japan). The mixture was incubated at 37 °C for 30 min, and fluorescence intensity of the sample was measured with excitation at 380 nm and emission at 460 nm using SpectraMax M2 (Molecular Devices, LLC, CA, USA). The 124 samples were subjected to screening using the furin-like enzyme assay, and the results are presented as mean ± standard deviation of at least three independent experiments. Ethylenediaminetetraacetic acid (EDTA, final conc. 50 mM) was used as the control in the assay. Half-maximal inhibitory concentration (IC 50 ) was obtained by logistic regression analysis using the drc package for R [26] . The dried fruits of Cnidii monnieri (100 g) were extracted three times with 70% aqueous EtOH (1 h, each) under reflux, and the solvent was evaporated in vacuo to obtain the corresponding extract (55 g). The extract was suspended in water and fractionated with ethyl acetate three times to obtain an ethyl acetate layer. The water-soluble portion was partitioned with n-BuOH three times. The yield of ethyl acetate soluble extract and n-BuOH soluble extract were 4.7 and 1. Compounds 1 and 2 were identified as imperatorin and osthole, respectively. Their structures were confirmed by comparing their spectroscopic data, such as NMR and MS, with those of authentic compounds. We screened 124 crude drug extracts for inhibitory effects on furin-like activities. The furin-like activity was evaluated using pyr-RTKR-MCA as a fluorogenic substrate and cell lysates as whole proteolytic enzyme. Of the 124 crude drug extracts, three extracts, Cnidii Monnieris Fructus (dried fruits of C. monnieri), Hydrangeae Dulcis Folium [dried leaves of Hydrangea macrophylla (Thunb.) Ser. var. thunbergii (Siebold) Makino)], and Forsythiae Fructus [dried fruit of Forsythia suspensa (Thunb.) Vahl] suppressed furinlike activities by more than 40% (activity: 6.2% ± 0.3%, 56.5% ± 1.8%, and 42.9% ± 2.3%, respectively) ( Table 1) . We then evaluated the IC 50 of the three samples and Cnidii Rhizome (the dried rhizome of C. officinale) as the control. The IC 50 values of Cnidii Monnieris Fructus, Hydrangeae Dulcis Folium, and Forsythiae Fructus were 1.10, 7.12, and 6.52 µg/mL, respectively (Table 2) . Cnidii Monnieris Fructus showed stronger inhibitory effects on furin-like activity than Cnidii rhizome (IC 50 > 50 µg/mL). Cnidii Monnieri Fructus (Jashoshi in Japanese) has been traditionally used to treat osteoporosis, sexual dysfunction, asthma, and skin ailments [27] . Cnidium monnieri Cusson contains several compounds, such as bergapten, imperatorin, osthole, and xanthotoxin [28] . Here, we fractionated and isolated bioactive compounds from Cnidii Monnieris Fructus contributing to the inhibitory effects on furin-like enzymatic activity. We isolated and identified two coumarin compounds, imperatorin and osthole, with inhibitory activity (Fig. 1) . Osthole (IC 50 = 9.45 µM) showed significant inhibitory effects on furin-like enzymatic activity when compared with imperatorin (IC 50 = 1.45 mM). The autofluorescence of two coumarins (imperatorin and osthole) did not occur because reaction mixture (compounds and substrates) without cell lysates did not show fluorescence signal. These results indicate that Cnidii Monnieris Fructus might inhibit furin-like enzymatic activities, and that imperatorin and osthole of the crude drug could be candidates for inhibitors of motif cleavage. In the present study, we screened the anti-furin-like activity of crude drugs using an in vitro furin-like assay with a fluorogenic substrate. Since furin is a Ca + -dependent serine protease, EDTA, a popular chelating agent was used as positive control in this screening. However, a high concentration (IC 50 50 mM) was required to exert its inhibitory activities. Although polyphenols, such as tannin is known to show chelating activities, our medicinal plant extracts containing polyphenols did not show inhibitory effects on furin-like activities. It is considered that the concentration of polyphenols in our medicinal extracts was not sufficient to exhibit inhibitory activity. Of the 124 crude drugs, Cnidii Monnieris Fructus showed strong inhibitory effects on furin-like activity, and two coumarin compounds (imperatorin and osthole) exerted inhibitory activity. Further studies are required to understand if Cnidii Monnieris Fructus and its bioactive compounds block S protein processing. For example, the inhibitory effect on S protein processing could be proven if the S protein expressed in Escherichia coli is used as a cleavage substrate instead of pyr-RTKR-MCA [29] . When the S protein gene was transfected into mammalian cells, the S protein was processed by furin/PC, and syncytial phenotype was observed [5, 30] . Evaluation of S protein processing by western blotting and syncytial formation by microscopy would provide direct evidence that the samples affect S protein processing and virus entry. Osthole is a multifunctional compound with antioxidative, antiproliferative, anti-inflammatory, and antiallergic properties [31] . A recent study indicated that osthole suppressed TGF-β1-induced epithelial-mesenchymal transition (EMT) in lung cancer A549 cells [32] . Because TGF-β1 activates furin expression in several cell lines [33, 34] , and Ethanol extracts of crude drugs (20 µg/mL) were pre-incubated with cell lysates and added to fluorogenic substrates (pyr-RTKR-MCA). The data are presented as mean ± standard deviation of at least three independent experiments proteolytic processing of the TGF-β1 precursor by furin is an essential step in the formation of biologically active TGF-β1 [35] , osthole might suppress TGF-β1-induced autocrine effects by blocking furin-like activities. In conclusion, we screened the inhibitory effects of 124 crude drugs listed in the Japanese pharmacopoeia on in vitro furin-like enzymatic activities. Of these drugs, Cnidii Monnieris Fructus, which is the dried fruit of C. monnieri (Japanese name Jashoshi), strongly inhibited furin-like activity. We further isolated and identified two bioactive coumarins, imperatorin and osthole, from Cnidii Monnieris Fructus. (2) A pneumonia outbreak associated with a new coronavirus of probable bat origin Cell entry mechanisms of SARS-CoV-2 A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells Böttcher-Friebertshäuser E (2020) TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells Furin inhibitors block SARS-CoV-2 spike protein cleavage to suppress virus production and cytopathic effects Furin: a potential therapeutic target for COVID-19 A multicenter consensus: a role of furin in the endothelial tropism in obese patients with COVID-19 infection The potential role of osteopontin and furin in worsening disease outcomes in COVID-19 patients with pre-existing diabetes Purification and characterization of furin, a Kex2-like processing endoprotease, produced in Chinese hamster ovary cells A second mutant allele of furin in the processing-incompetent cell line, LoVo. Evidence for involvement of the homo B domain in autocatalytic activation Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen Characterization of proprotein convertases and their involvement in virus propagation. Activation of viruses by host proteases Polyarginines are potent furin inhibitors Furin inhibitor D6R suppresses epithelial-mesenchymal transition in SW1990 and PaTu8988 cells via the Hippo-YAP signaling pathway Therapeutic potential of furin inhibitors for the chronic infection of hepatitis B virus The prosegments of furin and PC7 as potent inhibitors of proprotein convertases. In vitro and ex vivo assessment of their efficacy and selectivity alpha1-Antitrypsin Portland, a bioengineered serpin highly selective for furin: application as an antipathogenic agent Therapeutic uses of furin and its inhibitors: a patent review Development and characterisation of an assay for furin activity Human micro-RNA-24 modulates highly pathogenic avian-origin H5N1 influenza A virus infection in A549 cells by targeting secretory pathway furin Analysis of cathepsin and furin proteolytic enzymes involved in viral fusion protein activation in cells of the bat reservoir host Processing of immunosuppressive pro-TGF-beta 1,2 by human glioblastoma cells involves cytoplasmic and secreted furin-like proteases Role for furin in tumor necrosis factor alpha-induced activation of the matrix metalloproteinase/sphingolipid mitogenic pathway Co-elevation of brain natriuretic peptide and proprotein-processing endoprotease furin after myocardial infarction in rats The Japanese pharmacopoeia. 17th edn (English version). The Ministry of Health Dose-response analysis using R Chromones from Cnidium Monnieri Preparative isolation and purification of coumarins from Cnidium Monnieri (L.) cusson by high-speed counter-current chromatography The sequence at Spike S1/S2 site enables cleavage by furin and phospho-regulation in SARS-CoV2 but not in SARS-CoV1 or Syncytia formation by SARS-CoV-2-infected cells Phytochemistry, ethnopharmacology, pharmacokinetics and toxicology of Cnidium monnieri (L.) Cusson Osthole inhibited TGF β-induced epithelial-mesenchymal transition (EMT) by suppressing NF-κB mediated Snail activation in lung cancer A549 cells In well-differentiated primary human bronchial epithelial cells, TGF-β1 and TGF-β2 induce expression of furin Regulation of matrix metalloproteinase MT1-MMP/MMP-2 in cardiac fibroblasts by TGF-beta1 involves furinconvertase Evidence that furin is an authentic transforming growth factor-beta1-converting enzyme