key: cord-0880807-96z48gpg authors: Ruocco, Eleonora; Ruocco, Vincenzo; Tornesello, Maria Lina; Gambardella, Alessio; Wolf, Ronni; Buonaguro, Franco M. title: Kaposi’s sarcoma: Etiology and pathogenesis, inducing factors, causal associations, and treatments: Facts and controversies date: 2013-08-31 journal: Clinics in Dermatology DOI: 10.1016/j.clindermatol.2013.01.008 sha: b7d2d7eab250d3b70621d8aaf119f4690827d63a doc_id: 880807 cord_uid: 96z48gpg Abstract Kaposi's sarcoma (KS), an angioproliferative disorder, has a viral etiology and a multifactorial pathogenesis hinged on an immune dysfunction. The disease is multifocal, with a course ranging from indolent, with only skin manifestations to fulminant, with extensive visceral involvement. In the current view, all forms of KS have a common etiology in human herpesvirus (HHV)-8 infection, and the differences among them are due to the involvement of various cofactors. In fact, HHV-8 infection can be considered a necessary but not sufficient condition for the development of KS, because further factors (genetic, immunologic, and environmental) are required. The role of cofactors can be attributed to their ability to interact with HHV-8, to affect the immune system, or to act as vasoactive agents. In this contribution, a survey of the current state of knowledge on many and various factors involved in KS pathogenesis is carried out, in particular by highlighting the facts and controversies about the role of some drugs (quinine analogues and angiotensin-converting enzyme inhibitors) in the onset of the disease. Based on these assessments, it is possible to hypothesize that the role of cofactors in KS pathogenesis can move toward an effect either favoring or inhibiting the onset of the disease, depending on the presence of other agents modulating the pathogenesis itself, such as genetic predisposition, environmental factors, drug intake, or lymph flow disorders. It is possible that the same agents may act as either stimulating or inhibiting cofactors according to the patient’s genetic background and variable interactions. Treatment guidelines for each form of KS are outlined, because a unique standard therapy for all of them cannot be considered due to KS heterogeneity. In most cases, therapeutic options, both local and systemic, should be tailored to the patient’s peculiar clinical conditions. Kaposi's sarcoma (KS) is an angioproliferative disease, with a viral etiology and a multifactorial pathogenesis hinged on an immune dysfunction. The name is bound to Moritz Kaposi (1837 Kaposi ( -1902 who described three fatal cases of multiple idiopathic pigmented hemangiosarcoma in elderly men at the University of Vienna in 1872. 1 Since then, KS has been defined as a malignant neoplasm of blood or lymph vessels presenting with multiple vascular nodules in the skin or other organs. The disease is multifocal, with a course ranging from indolent, with only skin manifestations, to fulminant, with extensive visceral involvement. Since Kaposi's description of the classic type clinicians have described four distinct types. Although the classic type remains more prevalent among elderly men of Mediterranean origin, it has been diagnosed worldwide and typically follows a benign course. The African endemic form of KS was first described in 1914 and occurs predominantly among young black men aged 25 to 40 years. 2 There is also a lymphadenopathic subvariant of the African form that affects children at a mean age of 3 years. 3 In the 1970s, a third form associated with immunosuppressant treatment was described among recipients of organ transplantation, patients on long-term corticosteroids for various disorders, and patients immunosuppressed as a result of other therapeutic regimens, including chemotherapy (iatrogenic form). 4, 5 Finally, in 1981, an epidemic of KS among young men who had sex with men in the United States served as the harbinger of a new immunodeficiency syndrome, subsequently identified as being associated with HIV infection (epidemic form). 6 As the HIV epidemic progressed, KS was found almost exclusively among homosexual men. 7 Due to epidemiologic data indicating the high incidence of KS among persons at greater risk for sexually transmitted infections, a further independent infectious agent was proposed in the etiology of epidemic KS. 7 Etiology and pathogenesis of KS From the viral etiology hypothesis to the HHV-8 discovery Although the onset of KS ensues from complex and multifactorial events, including immunosuppression, 8 a crucial role of viral agents has been supposed since the 1950s. 2, 3 In the 1970s, a specific role for herpesviruses was proposed. 9 Giraldo and colleagues observed herpes-type viral particles in five of eight tissue culture cell lines from African patients with KS 10 and subsequently cytomegalovirus genetic sequences were identified in those tumors. 11 In 1994, a major breakthrough in the etiology of KS was reported. Chang and co-workers identified a new human herpesvirus, HHV-8, by representational difference analysis and detected this virus in more than 90% of KS lesions, including those unrelated to HIV. 12 Subsequently, HHV-8 has been documented in more than 95% of KS patients of all four types of KS. 13 HHV-8, found in saliva and semen, may spread through contact with saliva and kissing, as well as sexual activity, similarly to what occurs with other herpesviruses. 14 The prevalence of HHV-8 antibodies increases with age and shows wide fluctuations geographically. Low rates (b 5%) of HHV-8 seroprevalence are reported in North Europe and the Americas, 15 high rates (35%) in Sicily,, 16 and very high (87%) in Botswana. 17 The rates are usually related to the prevalence of KS. 18 Nevertheless, there are countries, such as Brazil, Gambia, Ivory Coast, and Thailand, with high HHV-8 seroprevalence and low incidence of KS. 19 Phylogenetic studies performed on the well-conserved open reading frame (ORF) 26 (minor capsid gene) allowed the identification of eight distinctive subtypes designated as A/C, J, K/M, D/E, B, Q, R, or N groups, which are diversely distributed in different geographical regions. In particular, four subtypes (B, N, Q, and R) have been found almost exclusively among Sub-Saharan African samples, one (D/E) has been found only within indigenous South Asian and Polynesian (Pacific Rim) populations, and three (A/C, J, and K) have been identified almost exclusively in Eurasian subjects (European, United States, North Asian, and Middle Eastern). 20 Sequence analysis of the highly variable ORF K1 region has allowed the identification of seven major HHV-8 subtypes (A, B, C, D, E, F, and Z), comprising each several sub-clades, whose distribution in the world parallels that of ORF 26 variants: HHV-8 subtype B predominates in Africa and F has been identified in Ugandan Bantu tribe, subtype D is present in the Pacific islands; subtype E clusters in ancient populations, like Brazilian Amerindians, whereas A and C predominate in Europe and the United States. [21] [22] [23] [24] [25] It is still unclear whether different genotypes may have different pathogenic and tumorigenic properties associated with inverse rates of disease progression. [26] [27] [28] [29] The role of co-factors in KS pathogenesis Pathogen-related diseases do not have the same clinical outcome in all infected patients with a subset developing chronic infections and a smaller subset progressing to cancer, suggesting that cofactors are needed for the different evolution, including genetic and environmental determinants. In the current view, all forms of KS have a common etiology in HHV-8 infection and their differences are due to the involved cofactors. 30 HHV-8 infection, in fact, can be considered a necessary but not sufficient condition for the development of KS because further factors (genetic, immunologic, and environmental) are required. It is well known today that HHV-8 is a necessary cause for the development of KS, but given the heterogeneous distribution of the virus, the incidence of KS in different populations, and the datum that only a small percentage of HHV-8 seropositive patients develop KS, other genetic or environmental cofactors are clearly necessary for the development of this tumor. [31] [32] [33] [34] HHV-8, similar to other DNA oncogenic viruses, expresses viral genes that directly or indirectly perturb p53 protein functions and thereby mediate viral oncogenesis. 35 The p53 protein plays a central role in cell cycle control for its ability to induce cell cycle arrest and DNA repair, or senescence and apoptosis in response to a variety of stimuli such as stress signals, genotoxic agents, hypoxia and oncogene activation. 36 The key function of p53 in oncogenesis as tumor suppressor protein is supported by the fact that TP53 is the most frequently mutated gene in a variety of human cancer of diverse histologic type. 37 HHV-8 virus interferes with p53 pathway at several levels: (1) the latency-associated nuclear antigen, encoded by ORF 73 of the HHV-8 genome, suppresses p53 transcription and transactivation activity, and interacts directly with the p53 protein inhibiting the ability of p53 to induce cell death 35,38 ; (2) the viral interferon (IFN) regulatory factor 4 (vIRF4), encoded by ORFK10/K10.1 of HHV-8, specifically interacts with and stabilizes murine double minute 2 (MDM2) human homologue, a well-known negative regulator of p53 via proteasome-mediated degradation, leading to the consequent reduction of p53 levels and thereby concurring to the suppression of p53-mediated apoptosis. 39, 40 The relevance of the vIRF4 interference with MDM2 protein is strongly supported by its relevance in cell cycle control. A number of studies have shown that MDM2 is overexpressed in several human cancers. The higher expression levels of MDM2 are mutually exclusive in respect to p53 mutations suggesting that they may substitute for mutational inactivation of p53. 41, 42 A naturally occurring G to T sequence variation (single-nucleotide polymorphism 309 [SNP309]) in the second promoter-enhancer region of MDM2 gene has been shown to increase the binding affinity of the transcriptional activator Sp1 resulting in high levels of MDM2 protein, formation of transcriptionally inactive p53-MDM2 complexes and alteration of the p53 pathway. 43, 44 These observations are consistent with an oncogenic function for the variant SNP309. The MDM2 SNP309 polymorphism may be associated with earlier onset of breast cancer in Li-Fraumeni patients 43, 45, 46 and with earlier onset of soft tissue sarcoma, diffuse large B-cell lymphoma, colorectal cancer, and non-small cell lung cancer particularly in women. [47] [48] [49] In a recent study, a significant increase of the heterozygous MDM2 SNP309 T/G genotype among white classic KS cases was reported. 50 The homozygous MDM2 SNP309 G/G genotype in classic KS, on the other hand, was lower (9.1%) than observed in controls (15.6%). The decreased frequency of MDM2 SNP309 G/G genotype in cutaneous KS patients could have several explanations including that G/G carriers with HHV-8 infection could be at increased risk for developing visceral KS, or highly aggressive HHV-8 related lymphoproliferative disorders such as primary effusion lymphoma (PEL) or multicentric Castleman's disease. 51 The analysis of seven PEL cell lines for mutations and SNPs in 10 genes involved in apoptosis and cell cycle regulation, including SNP309 in MDM2 and codon 31 in CDKN1A genes has been demonstrated. 52 Interestingly, three (42.8%) Epstein-Barr virus (EBV)-negative cell lines, namely BC3, BCBL-1 and BCP, were homozygous for SNP309 G, suggesting a major role of this polymorphic allele in cell transformation, particularly in the absence of EBV coinfection. Future researches, however, are needed to accurately address this hypothesis. Immune deficit and risk for KS Systemic immunodeficiency. KS prevalence is tremendously higher in post-transplant and AIDS patients, being 500 times and 20,000 times, respectively, greater than in the general population. 30 The incidence of KS has changed markedly during AIDS epidemic, particularly across the African continent. Before the HIV epidemic KS was a disease primarily affecting men, with extreme incidence variation among specific populations in different geographical regions. In Uganda, from 1954 to 1960 and 1968 to 1970, KS represented 6.4% to 6.6% of all male cancer patients, respectively, with rare female cases 53, 54 ; however, from 1989 to 1991, KS prevalence in male cancer patients rose to 48.6% (incidence of 30.1/100,000), becoming the most frequently reported cancer in men, whereas prevalence in female cancer patients climbed to 17.9% (incidence of 11/ 100,000). 55 Since the HIV epidemic, KS has become as common in women as in men and has been prevalent also in many African countries where it was almost unknown, but where HHV-8 has been shown to be prevalent. 56 These observations point to a role for other factors in the etiology of KS, including the possibility that different HHV-8 variants might spread during HIV/AIDS epidemic. Local immunodeficiency. Concerning immunity disorders, systemic immunodeficiency should be considered as well as conditions of local immune destabilization, such as lymphedema, caused by several agents, often environmental factors. 57 In endemic KS, there is a relationship between KS and podoconiosis (non-filarial elephantiasis) and an increased prevalence of KS among rural peasants and cultivators toiling up highland soils containing volcanic clay minerals. 58 Walking barefoot on volcanic soils exposes pores and sweat glands in bare feet permits abrasions and allows aluminosilicates and possibly iron oxides to be taken up by lymphatics. The silicates can cause an obstacle to lymph flow, inflammation of regional lymph nodes, and disruption of the immune control in the feet and legs. As a result, these sites become an immunocompromised district, namely, a body region where chronic lymph stasis leads to an immune stasis, responsible for the local outbreak of opportunistic infections (parasitic, bacterial, fungal) or tumors, as paradigmatically KS is. The link between the impairment of lymph circulation and regional immune dysfunction in classical KS was first proven in 1984. 59 KS appeared on a lymphedematous leg of a patient with altered lymph drainage and lack of cell immune response confined to the lymphedematous limb. Intradermal skin tests to common antigens performed on the four limbs (forearms and legs) revealed no immune responses on the affected limb versus normal or even strong responses on the three unaffected limbs. 59 Five years later, the same patient presented with lymphedema and new KS lesions on the other leg. On this occasion, skin tests were negative on both legs, whereas normal responses were still observed on the forearms. 60 Two years later, KS lesions also appeared on both the forearms: At this time, skin tests were negative on all four limbs. 60 A lymphologic and immunologic investigation performed in patients with classical KS sensitized with dinitrochlorobenzene proved that the affected limbs presented concomitant alteration of the lymph drainage and of the immune response. 61 The role of chronic lymphedema in facilitating the onset of KS was stressed in an unusual localization (penis) of the classical form 62 and even in the epidemic AIDS-related type. 63 Although rarely emphasized in HIV-related KS, a variable degree of lymphedema (overt or subtle, a sort of microlymphedema) of the KS-involved areas is somewhat common in homosexual men and has a wide anatomic distribution, often without notable lymphadenopathy. 64, 65 Also a localized trauma may be responsible for facilitating the onset of KS lesions selectively on the traumatized area. 66, 67 Environmental cofactors and risk for KS In cancer pathogenesis, the possibility exists that following an initial stable, genetic damage (initiation event), a transient post-initiation insult (promotion event), nonsufficient by itself to induce a cancer, could contribute to increase cancer incidence. 68 Viruses, like chemicals, can act both as initiators as well as promoters, depending on their prevalent effects either mutagenic (eg, herpesviruses) or epigenetic (eg, papillomaviruses). [69] [70] [71] Viruses can interact with several co-carcinogens, which may act simultaneously or sequentially, continuously, repeatedly, or occasionally. These co-carcinogens may act directly on the potential cancer cell or indirectly by affecting other tissues of the host. KS can represent a good model of interaction between different oncogenic factors, useful to identify their role and their mechanisms. 8, 72 The role of cofactors can be attributed to their ability to interact with HHV-8, to affect the immune system, or to act as vasoactive agents (Table 1) . 57 In AIDS-related KS, for instance, the use of large quantities of nitrite inhalants among gay men with AIDS was strongly associated with KS onset. Several plausible biologic mechanisms of action have been proposed for nitrites and their metabolites, such as cholesteryl nitrite and nitrosamines to be carcinogenic. Nitrite inhalant use might also contribute to the development of KS through immune suppression or affecting small blood vessels. 73, 74 Drugs as environmental cofactors for risk for KS: Facts and controversies. Some drugs proved to be associated with KS pathogenesis due to their immunomodulatory and proangiogenic effects. Quinine and its analogues, 4-aminoquinolines, are drugs used for many years in malaria treatment. The link between these drugs and KS is based on a series of clues that take into account the geographical distribution and incidence of KS in patients taking these drugs. In fact, HHV-8 seropositivity and KS have a high prevalence in areas such as sub-Saharan Africa, Italy, and Greece and low in northern Europe and Asia, which reflects the same pattern of distribution of malaria. 75, 76 There are regions of the world, such as Brazil, Gambia, Ivory Coast, and Thailand, with high HHV-8 seroprevalence where KS and malaria are rare and the use of quinine derivatives is low, thus confirming the possible association of these drugs with KS development. In several regions of sub-Saharan Africa, despite the widespread resistance of Plasmodium to quinolines and the availability of more efficacious antimalarial drugs, quinine and its analogues continue to be widely used in the treatment of malaria. In fact, since 2009, 31 African countries have recommended quinine as secondline treatment for uncomplicated malaria, 38 as first-line treatment of severe malaria, and 32 for treatment of malaria in the first trimester of pregnancy. 77 In most of Africa, quinine is still used as monotherapy, contrary to recommendations by the World Health Organization (WHO). 77 Quinine continues to play a significant role in the management of malaria in sub-Saharan Africa and other malaria endemic areas, and its use in routine practice may not be restricted to the stated WHO recommendations. In Cameroon, quinine has continued to be used as first-line therapy, with 45% of adults receiving oral quinine for uncomplicated malaria. 78 Recent surveillance data from sentinel sites in Uganda showed that quinine was prescribed for up to 90% of children younger than age 5 years with uncomplicated malaria. 79 Furthermore, this drug and its analogs are widely distributed to healthy children as preventive treatment (prophylaxis campaigns). The still widespread use of antimalarials might contribute to the high incidence of KS in the geographic areas where both KS and malaria are endemic. In fact, KS and its causative agent, HHV-8, have distinctive geographic distributions that are largely unexplained. For this reason, it has been put forward an "oncoweed hypothesis," which suggests that environmental cofactors (such as some plants and natural products deriving from them) present in KS endemic regions may cause frequent reactivation of HHV-8 in infected subjects, thus leading to increased viral shedding and transmission. 33, 80 Conversely, it has been hypothesized that quinine and its derivatives might better explain the epidemiology of KS than oncoweeds. This oncodrug hypothesis, specifically hints at quinine and its derivatives. 81 In fact, it is worth noting that quinine, chloroquine, and hydroxychloroquine may affect the effectiveness of the immune response, being immunosuppressive drugs. It is well known that chloroquine and hydroxychloroquine are extensively used in the treatment of autoimmune diseases such as lupus erythematosus and rheumatoid arthritis. 82 The immune-suppressive properties of these drugs may produce deleterious effects in the presence of viral infections or immunizations. For example, a randomized controlled trial to evaluate the antibody response of freshman veterinary students to intradermal human diploid-cell rabies vaccine administered concurrently with chloroquine have demonstrated that this drug taken in the dose recommended for malaria prophylaxis can reduce the antibody response to primary immunization with rabies vaccine. 83 Incidentally, one could reasonably think that the unusually severe course run by the Spanish flu pandemic of 1918-1919 could have been facilitated by the documented large administration of quinine in flu patients, because at the time, quinine was considered the "specific" remedy for fever attacks. 84 Quinine is also used to "cut" heroin, which contributes to the widespread use of the drug among heroin addicts. In AIDS-related KS, drug addicts represent one of the main populations at risk; in these individuals, the use of quinine combined with heroin can pave the way for the onset of KS due to the interrelated anti-inflammatory and immunosuppressive effects of the two drugs. 85 Another category of drugs, angiotensin-converting enzyme (ACE) inhibitors, have been widely associated with classic and iatrogenic KS onset. Several cases reported in the literature would indicate that ACE inhibitors might act as a trigger for the development of KS. 86, 87 In fact, ACE inhibitors have immmunomodulatory effects. The immunomodulatory action of ACE inhibitors has been attributed to several mechanisms, including: (1) inhibition of the production of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6, and IL-12 produced by activated monocytes and dendritic cells, (b) antiproliferative activity, (c) inhibition of free radicals, (d) inhibition of metalloproteases and, (e) elevation of immunomodulatory prostaglandins. 88 Suppression of ACE itself may explain immune alteration (possible immunosuppression) because ACE has been shown to be involved in immune function and to be up-regulated in inflammatory conditions. Furthermore, ACE inhibition enhances angiogenesis through the activation of the B2-receptor pathway. This proangiogenic effect may be associated with the upregulation of endothelial nitric oxide synthase (eNOS) expression, but would be independent by the vascular endothelial growth factor (VEGF) pathway. 89 Other studies, however, have confirmed that the same eNOS up-regulation would be able to stimulate the VEGF pathway, 90 or to stimulate angiogenesis through the production of proinflammatory cytokines or activation of cyclooxygenase-2. 91 Evaluating the role of cofactors in the outbreak of KS is not an easy task. For example, some contradictory data make it difficult to assess the relationship existing between antimalarial drugs and KS (Table 2) . Chloroquine and hydroxychloroquine, quinine analogs, have recently being considered potential anticancer agents as well as chemosensitizer when used in combination with anticancer drugs, such as 5-fluorouracil in colon cancer cells or topotecan in lung cancer cells, possibly by inhibiting autophagy-dependent resistance to chemotherapy. 92, 93 Autophagy is an evolutionarily conserved cell survival pathway that has been implicated as a potential mechanism of resistance to anticancer agents. In fact, it can promote cell survival in the face of stress induced by chemotherapeutic agents by breaking down cellular components to generate alternative sources of energy. Disruption of autophagy with chloroquine induces the accumulation of ubiquitin-conjugated proteins, stimulating apoptosis in several cancer cells. 94 Chloroquine and hydroxychloroquine also inhibit angiogenesis and production of proinflammatory cytokines such as IL-1β, IL-6, IL-18, VEGF, fibroblast growth factors (FGF)-2, TNF-α, transforming growth factor-β and IFN-β. Most cytokines are involved in the reactivation of the HHV-8 lytic cycle and induction of the microenvironment necessary for lesion formation, which is characterized by a triad of inflammation, angiogenesis, and production of cytokines and chemokines. Thus, these drugs can counteract the molecular targets by which HHV-8 is able to cause the disease and indirectly they can inhibit the action of the virus. 95, 96 Even more complex is the evaluation of the direct effects exerted by antimalarial drugs on HHV-8. In fact, chloroquine and hydroxychloroquine are lysosomotropic amines, substances that are selectively taken up into lysosomes; owing to their accumulation, these drugs are able to increase the intracellular pH and inhibit pH-dependent steps of duplication of several bacteria (Enterobacterium agglomerans, Staphylococcus aureus) and replication of viruses including members of the flaviviruses, retroviruses, coronaviruses and herpesviruses through blockade of bacterial and viral entry via inhibition of endosomal acidification. [97] [98] [99] [100] Several studies have shown that the same HHV-8 entry is blocked by inhibition of acidification of endosomes. 101 Also problematic is the role of TNF-α; in fact, this factor seems to play a key role for lytic cycle reactivation of the virus (HHV-8 itself stimulates TNF-α production) and to create the ideal environment for the genesis of the disease. 102 Antimalarial drugs seem able to exert a protective effect by inhibiting the production of TNF-α through inhibition of toll-like receptors; however, some studies have shown the outbreak of KS in patients taking TNF-α blockers such as infliximab; these cases have questioned the role of this factor in the genesis of the disease, especially regarding the role of its production or inhibition in the reactivation of HHV-8 lytic cycle and, in general, in KS pathogenesis. 103 Concerning ACE inhibitors, some studies have suggested a protective role played by these drugs as a result of the improvement or regression of KS lesions in patients who were administered ACE inhibitors. 104 The matter is controversial because opposite mechanisms of action, protective or inducing, have been alleged (Table 2) . [105] [106] [107] Based on these assessments, it is possible to hypothesize that the role of cofactors in KS pathogenesis can move toward an effect either favoring or inhibiting the onset of the disease depending on the presence of other agents modulating the pathogenesis itself, such as genetic predisposition, environmental factors, drug intake, or lymphatic system disorders. It is possible that the same agents may act as either stimulating or inhibiting cofactors based on the patient's genetic background and their variable interactions. Due to the KS heterogeneity, there are no standard therapeutic guidelines and several different therapeutic options are available for KS treatment. Treatment decisions must take into consideration the extent and the rate of tumor growth, patient's symptoms, immune system conditions, and concurrent HIV-related complications. The best therapeutic results are obtained in the classic KS with only local treatment. Iatrogenic KS usually regresses after withdrawal of the "culprit" drug(s). Endemic KS may require a systemic therapy with cytostatic agents, which results in a variable outcome depending on the extent and severity of the disease. Epidemic KS prevalence has decreased dramatically since the introduction of highly active anti-retroviral therapy (HAART). Therapeutic options can be distinguished in two groups: local and systemic therapy. Local therapy allows for a safe, cost-effectiveness approach and is reserved for patients with minimal cutaneous disease or for nonresponders to systemic therapy who have rapidly progressive disease, as palliative therapy. Intralesional vinblastine, oral etoposide, cryotherapy with liquid nitrogen, and excisional surgery may be feasible options. Alitretinoid gel 0.1% (9-cis-retinoic acid) may be applied two to four times daily in the affected areas. The overall response rates (ORRs) range between 35% and 50% with cutaneous reactions. Electrochemotherapy (ECT) is an emerging treatment for cutaneous lesions of different tumor types. The combination of chemotherapy and electroporation enhances drug uptake 108 Radiotherapy is effective and often represents the best local treatment for palliation of pain, bleeding or edema, with response and complete remission rates of more than 90% and 70%, respectively. For patients with far advanced disease a single dose of 8 Gy is preferable. 109 Systemic therapy HAART HAART is indispensable in the treatment of epidemic KS in all patients, alone or in combination with systemic chemotherapy and local therapy. Some antiretroviral drugs such as foscarnet, ganciclovir, cidofovir, and adefovir are alleged to have anti-HHV-8 activity. In patients with limited cutaneous lesions (T0 early-stage disease and/or slowly proliferating disease) an effective HAART regimen may represent the first step of therapy for KS, with an ORR of 66% to 86% and a complete remission rate of 35%. KS lesions typically start to decrease and disappear completely within a few weeks or months. Frequently, KS may flare dramatically following the initiation of HAART, which seems to be a manifestation of the immune reconstitution inflammatory syndrome (IRIS), that occurs in HIV-positive patients with initial low CD4 counts and an incontrollable viral load. At present, HAART alone may represent the firstline therapy for T0 and T1 slowly progressive disease. HAART with concomitant chemotherapy is indicated for visceral and/or rapidly progressive disease, whereas HAART after systemic chemotherapy may be effective as anti-KS therapy after debunking chemotherapy (ORR 91%). 110, 111 Systemic chemotherapy Systemic chemotherapy is reserved for patients who do not respond to HAART and/or have widespread, symptomatic, rapidly progressive, life-threatening disease with visceral involvement or an IRIS-associated flare. Several single-agent therapies have been reported to be active in AIDS-related KS (vincristine, vinblastine, vinorelbine, etoposide, teniposide, adriamycin, epirubicine, bleomycin, docetaxel, and paclitaxel), with ORRS ranging between 30% and 70%, although most were partial responses. Liposomal anthracyclines (doxorubicin or daunorubicin) are now considered as first-line therapy for patients with advanced AIDS-KS. 112 Paclitaxel, a cytotoxic agent that exerts its antitumor activity by polymerizing microtubules and inhibiting cell division, is reserved for patients with recurrent or refractory AIDS-related KS after first-line chemotherapy. Intravenous paclitaxel (100 mg/m 2 given every 2 weeks as a 3-hour infusion) is associated with a response rate of 59% and duration of sustained response of 10 months. High-dose IFN-α allows obtaining complete and partial response rates between 20% and 40%, if the CD4 + count is greater than 200/mm 3 . Current understanding of KS as a convergence of immune evasion, oncogenesis, inflammation, and angiogenesis has prompted investigators to develop a target therapy based on antiangiogenic agents, metalloproteinase, and inhibitors of cytokine signaling. This therapy may be an effective strategy for patients with epidemic KS that progressed despite chemotherapy and/or HAART. Irinotecan (CPT-11), a semisynthetic camptothecin derivative converted by decarboxylation into a biologically active form SN-38 (7-ethyl-10hydroxycamptothecin), belongs to a recently established class of anticancer agents with a cytotoxic mechanism targeting the cellular enzyme DNA topoisomerase I. The model of fibroblast growth factor-β-induced angiogenesis in mouse cornea suggests that irinotecan may be active also in KS. Data from a GICAT (Gruppo Italiano Cooperativo AIDS e Tumori) Phase II study show that intravenous CPT-11 (150 mg/m 2 day 1; 10 mg/m 2 every 21 days) plus HAART including protease inhibitors is active and well tolerated in HIV-infected patients with KS relapse or progression during HAART. 113 Matrix metalloproteinases (MMPs), constitutively overexpressed in KS cells, are a family of zinc-dependent endopeptidases involved in the degradation of collagen IV, the major component of basement membranes, that facilitate tumor invasion and metastases. Phase II trial data have shown that 50 mg COL-3, an MMP inhibitor that blocks in vitro activated neutrophil gelatinase and the expression of MMPs in human colon and breast cancer cell lines in a dosedependent manner, administered orally once daily, produces a significant decline in MMPs levels. The ORR is 41%, with median duration of response of 52 weeks. 114 Thalidomide (100 mg/day for 12 months) has been shown to block TNF-α production and to inhibit basement membrane formation and intercellular adhesion molecules. The inhibition of vascular endothelial cell proliferation induced by thalidomide occurs in association with a marked decrease in the activity of the transcription factor SP1, which is involved in the extracellular matrix gene expression and moderate inhibition of nuclear factor-κB activation in nuclear extracts. 115 IL-12, a cytochine that enhances type 1 immunity, can down-regulate a constitutively active G protei-coupled receptor that is encoded by HHV-8. According to the preliminary results from a Phase I study on the combination of IL-12 plus liposomal doxorubicin and HAART, remission was obtained in a substantial percentage of patients with advanced KS. 116 Oral imatinib mesylate (300 mg twice daily) inhibited activation of the platelet-derived growth factor and c-kit receptors, important targets in mediating the growth of AIDS-related KS. 117 In the latest decades, the pathogenesis of KS has been greatly elucidated and new etiologic factors have been described, which has facilitated the development of more effective therapeutic approaches. Many aspects of KS still remain unsolved, and further studies are needed on the matter. Idiopathisches multiples Pigmentsarkom der Haut Geographical and racial differences in the frequency of Kaposi's sarcoma as evidence of environmental or genetic causes Kaposi's sarcoma in renal allograft recipients Association of Kaposi's sarcoma with second primary malignancies: possible etiopathogenic implications Kaposi's sarcoma in homosexual men-a report of eight cases Kaposi's sarcoma among persons with AIDS: a sexually transmitted infection? Kaposi's sarcoma: a natural model of interrelationships between viruses, immunologic responses, genetics, and oncogenesis Kaposi's sarcoma: a new model in the search for viruses associated with human malignancies Herpes-type virus particles in tissue culture of Kaposi's sarcoma from different geographic regions Kaposi's sarcoma and its relationship to cytomegalovirus (CMV). III. CMV DNA and CMV early antigens in Kaposi's sarcoma Identification of herpesviruslike DNA sequences in AIDS-associated Kaposi's sarcoma Herpesviruslike DNA sequences detected in endemic, classic, iatrogenic and epidemic Kaposi's sarcoma (KS) biopsies HIV serodiscordant sex partners and the prevalence of human herpesvirus 8 infection among HIV negative men who have sex with men: baseline data from the EXPLORE Study Human herpesvirus 8 epidemiology: what we do and do not know Human herpesvirus 8 seroprevalence in blood donors and lymphoma patients from different regions of Italy Latent class analysis of human herpesvirus 8 assay performance and infection prevalence in sub-saharan Africa and Malta Geographic variation in the prevalence of Kaposi sarcoma-associated herpesvirus and risk factors for transmission Kaposi's sarcoma revisited Evaluation of global clustering patterns and strain variation over an extended ORF26 gene locus from Kaposi's sarcoma herpesvirus High-level variability in the ORF-K1 membrane protein gene at the left end of the Kaposi's sarcoma-associated herpesvirus genome defines four major virus subtypes and multiple variants or clades in different human populations Comparison of genetic variability at multiple loci across the genomes of the major subtypes of Kaposi's sarcoma-associated herpesvirus reveals evidence for recombination and for two distinct types of open reading frame K15 alleles at the right-hand end Human herpesvirus 8 in Brazilian Amerindians: a hyperendemic population with a new subtype Sequence analyses of human herpesvirus-8 strains from both African human immunodeficiency virus-negative and -positive childhood endemic Kaposi's sarcoma show a close relationship with strains identified in febrile children and high variation in the K1 glycoprotein Ugandan Kaposi's sarcoma-associated herpesvirus phylogeny: evidence for cross-ethnic transmission of viral subtypes HHV8 a subtype is associated with rapidly evolving classic Kaposi's sarcoma Genotypic characterization of Kaposi's sarcoma-associated herpesvirus in asymptomatic infected subjects from isolated populations Human herpesvirus type 8 variants circulating in Europe, Africa and North America in classic, endemic and epidemic Kaposi's sarcoma lesions during pre-AIDS and AIDS era Molecular epidemiology of human herpesvirus 8 variants in Kaposi's sarcoma from Iranian patients Kaposi's sarcoma: an update Kaposi's sarcoma risk among transplant recipients in the United States (1993-2003) Geographic heterogeneity of prevalence of the human herpesvirus 8 in sub-Saharan Africa: clues about etiology Risk of classic Kaposi sarcoma with exposures to plants and soils in Sicily A common genetic variant in FCGR3A-V158F and risk of Kaposi sarcoma herpesvirus infection and classic Kaposi sarcoma Kaposi's sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen induces chromosomal instability through inhibition of p53 function The p53 functional circuit TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes p53 inhibition by the LANA protein of KSHV protects against cell death Kaposi's sarcoma-associated herpesvirus viral interferon regulatory factor 4 targets MDM2 to deregulate the p53 tumor suppressor pathway MDM2 and human malignancies: expression, clinical pathology, prognostic markers, and implications for chemotherapy Regulation of the p53 protein by the MDM2 oncoprotein-thirty-eighth G.H.A. Clowes Memorial Award Lecture p53 Mutation and MDM2 amplification in human soft tissue sarcomas A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans A chromatin-associated and transcriptionally inactive p53-Mdm2 complex occurs in mdm2 SNP309 homozygous cells Impact of the MDM2 SNP309 and p53 Arg72Pro polymorphism on age of tumour onset in Li-Fraumeni syndrome The single-nucleotide polymorphism 309 in the MDM2 gene contributes to the Li-Fraumeni syndrome and related phenotypes MDM2 SNP309 accelerates tumor formation in a gender-specific and hormonedependent manner Association of a functional polymorphism in the promoter of the MDM2 gene with risk of nonsmall cell lung cancer Association between MDM2-SNP309 and age at colorectal cancer diagnosis according to p53 mutation status MDM2 and CDKN1A gene polymorphisms and risk of Kaposi's sarcoma in African and Caucasian patients Lymphoid disorders associated with HHV-8/KSHV infection: facts and contentions Mutational analysis of TP53, PTEN, PIK3CA and CTNNB1/beta-catenin genes in human herpesvirus 8-associated primary effusion lymphoma Incidence rates of cancer in Kyandondo County, Uganda, 1954-1960 Cancer in Kyadondo County, Uganda, 1968-70 Cancer in Kampala, Uganda, in 1989-91: changes in incidence in the era of AIDS Review of the distribution of Kaposi's sarcoma-associated herpesvirus (KSHV) in Africa in relation to the incidence of Kaposi's sarcoma Multifactorial etiology of Kaposi' sarcoma: a hypothesis Endemic Kaposi's sarcoma in Africa and local volcanic soils Kaposi's sarcoma on a lymphedematous immunocompromised limb Linfostasi: importante fattore patogenetico nel sarcoma di Kaposi classico Anomalies régionales des voies lymphatiques et de la réponse au D.N.C.B. dans le sarcome de Kaposi classique Penile Kaposi's sarcoma preceded by chronic penile lymphoedema Acquired immune deficiency syndrome-related hyperkeratotic Kaposi's sarcoma with severe lymphoedema: report of five cases Kaposi's sarcoma. A lymphologic perspective Lymphedema: an immunologically vulnerable site for development of neoplasms Kaposi's sarcoma after repeated surgical procedures in an immunocompetent patient: the lymphatic hypothesis Kaposi's sarcoma restricted to an immunocompromised district Viruses, chemicals and co-carcinogenesis Viruses as tumor initiators and tumor promoters Prospected etiopathogenic mechanisms of AIDS-associated tumors Viruses and cancer Kaposi's sarcoma and its associated herpesvirus Nitrite inhalants: history, epidemiology, and possible links to AIDS Mutagenicity of isobutyl nitrite vapor in the Ames test and some relevant chemical properties, including the reaction of iso-butyl nitrite with phosphate Kaposi's sarcoma: aetiopathogenesis, histology and clinical features Kaposi sarcoma: a continuing conundrum WHO. Malaria treatment guidelines 2010 Treatment of malaria from monotherapy to artemisinin-based combination therapy by health professionals in rural health facilities in southern Cameroon UMSP sentinel site malaria surveillance report Reactivation of Kaposi's sarcoma-associated herpesvirus by natural products from Kaposi's sarcoma endemic regions Kaposi sarcoma and quinine: a potentially overlooked triggering factor in millions of Africans Re-evaluation of antimalarials in treating rheumatic diseases: re-appreciation and insights into new mechanisms of action Antibody response to preexposure human diploid-cell rabies vaccine given concurrently with chloroquine Does quinine facilitate AIDS? Possible causal role of lisinopril in a case of Kaposi's sarcoma Kaposi's sarcoma in a patient with psoriasis vulgaris The non-thiol angiotensin-converting enzyme inhibitor quinapril suppresses inflammatory arthritis Nitric oxide synthase modulates angiogenesis in response to tissue ischemia Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor-induced angiogenesis Bradykinin stimulates IL-6 and IL-8 production by human lung fibroblasts through ERK-and p38 MAPK-dependent mechanisms Chloroquine potentiates the anticancer effect of 5-fluorouracil on colon cancer cells Chloroquine enhances the cytotoxicity of topotecan by inhibiting autophagy in lung cancer cells Autophagy: cellular and molecular mechanisms The influence of antimalarial treatment on IL-1beta, IL-6 and TNF-alpha mRNA expression on UVB-irradiated skin in systemic lupus erythematosus IL-2, IL-5, TNF-alpha and IFN-gamma mRNA expression in epidermal keratinocytes of systemic lupus erythematosus skin lesions Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infections in the 21st century Quinine sulfate inhibits invasion of some bacterial skin pathogens Antiviral effects of quinine sulfate on HSV-1 HaCat cells infected: analysis of the molecular mechanisms involved Quinine sulfate and HSV replication Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) infection of human fibroblast cells occurs through endocytosis Implication of TNF receptor-I-mediated extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation in growth of AIDS-associated Kaposi's sarcoma cells: a possible role of a novel death domain protein MADD in TNF-alpha-induced ERK1/2 activation in Kaposi's sarcoma cells Kaposi's sarcoma in a psoriatic arthritis patient treated with infliximab Inhibition of angiogenesis in Kaposi's sarcoma by captopril Immunosuppressive action of captopril blocked by prostaglandin synthetase inhibitor Tissue inhibition of angiotensin-converting enzyme activity stimulates angiogenesis in vivo Angiotensin converting enzyme inhibitors suppress production of tumor necrosis factor-alpha in vitro and in vivo Electrochemotherapy in the treatment of Kaposi sarcoma cutaneous lesions: a two-center prospective phase II trial Radiotherapy in the management of Kaposi's sarcoma AIDS-related malignancies: state of the art and therapeutic challenges Recrudescent Kaposi's sarcoma after initiation of HAART: a manifestation of immune reconstitution syndrome Use of liposomal anthracyclines in Kaposi's sarcoma Evidence of activity of Irinotecan in patients with advanced AIDSrelated Kaposi's sarcoma Randomized phase II trial of matrix metalloproteinase inhibitor COL-3 in AIDS-related Kaposi's sarcoma: an AIDS Malignancy Consortium Study Activity of thalidomide in AIDS-related Kaposi's sarcoma Treatment of AIDS-related Kaposi's sarcoma with interleukin-12: rationale and preliminary evidence of clinical activity Imatinib-induced regression of AIDS-related Kaposi's sarcoma