key: cord-0859163-hhhvbz9j authors: Siow, Wen Ting; Liew, Mei Fong; Shrestha, Babu Raja; Muchtar, Faisal; See, Kay Choong title: Managing COVID-19 in resource-limited settings: critical care considerations date: 2020-04-22 journal: Crit Care DOI: 10.1186/s13054-020-02890-x sha: c6fa3ead0bf31e9fd4e6a81fe33ad908ea966cf1 doc_id: 859163 cord_uid: hhhvbz9j nan Anticipation of an impending outbreak helps vital preparation. Unfortunately, during the COVID-19 pandemic, there is little time to construct new infrastructure. The World Health Organization (WHO) has recommended airborne isolation, but isolation facilities are limited. Industrial exhaust fans have been used to convert existing normal pressure single rooms to negative pressure rooms to increase isolation [2] . This approach is relatively quick and may be used for creating more negative pressure intensive care unit (ICU) beds. Alternatively, confirmed cases can be cohorted in open ICUs with adequate ventilation. Opening field hospitals in large public spaces (e.g., stadiums) allows for triaging and managing stable patients and decongest other hospitals. Local networks between smaller district hospitals and larger tertiary centers can be established to facilitate patient transfers, as smaller hospitals can be easily overwhelmed. Well patients with COVID-19, instead of being quarantined in hospitals, can be quarantined in specially designated facilities, such as a hotel. If communication systems are available, well patients could be sent home and monitored remotely. Makeshift acute or critical care units can be set up in operating theaters and clinic spaces to cope with increasing numbers of critically ill patients. This can be achieved by reducing non-essential services such as elective surgeries and outpatient clinics. For LMICs, focused testing on symptomatic patients instead of random screening would place less strain on the healthcare system. Rapid test kits are an option to allow LMICs to perform diagnostic tests faster, but this would require international health organizations to transfer knowledge and test kits. It may be necessary to isolate an entire community for containment. Radiological investigations and laboratory support would also be stretched beyond capacity. Physicians may need to rely mainly on bedside clinical examination. If available, bedside point-of-care ultrasonography can yield significant amounts of information. Early clinical detection and admission to the correct facility can help with right-siting before confirmatory tests are out, reducing nosocomial and community spread. Simple scoring systems, such as the qSOFA score, can be harnessed to detect deteriorating patients [3] . Hospital ventilators will likely be in shortfall. To supplement ventilators, anesthesia units in operating theaters and transport ventilators can be used. Improvised continuous airway pressure (iCPAP) ventilation systems [4] or bubble continuous airway pressure for children [5] can be employed when there is a dire shortage. The addition of high-efficiency particulate air (HEPA) filters to the expiratory limb of the circuit can help minimize aerosolization if the ventilator does not have a closed circuit. Other creative approaches include splitting a ventilator to support several patients simultaneously by using T-tubes and pressure-cycled ventilation [6] [7] [8] . Proning positioning has been reported to work in critically ill COVID-19 patients with moderate-to-severe acute respiratory distress syndrome [1] . Patients who are moderately hypoxemic can be proned early to improve oxygenation if oxygen supplies are limited, presumably even if they are not invasively ventilated [9] . Other approaches to save ICU resources include using enteral vasopressors, such as midodrine for hypotensive patients, instead of intravenous formulations [10] . In states of emergencies, veterinary supplies, such as cleaning solutions, syringe pumps, and even ventilators, could be mobilized to augment hospital stocks. Ultimately, there still needs to be fair and ethical resource stewardship [11] . Healthcare workers (HCWs) working on the frontlines need to be protected adequately, or they risk catching COVID-19 and even dying [12] . This is also applicable to personnel such as ambulance drivers and military troops. PPE can be reused to reduce waste [13] and preserve existing stocks. Certain types of PPE like goggles may be shared after disinfection. Deploying reusable powered air-purifying respirators is an option. Other innovative approaches include testing, validating, and assembling simple reusable elastometric respirators to replace N95 respirators [14] . If prior infection can be proven to confer immunity, other approaches to reduce PPE use can include deploying convalescent HCWs to care for confirmed COVID-19 patients and enrolling convalescent patients to volunteer in healthcare. To cope with healthcare demands, active recruitment and training of healthcare personnel should be done concurrently. Besides recalling HCWs on leave, recruitment and redeployment from different sectors (e.g., dentists, paramedics, medical students, military personnel) and even recalling retired personnel may be required. Laypeople, including carers, can be recruited into the hospital after training to provide basic care for patients. Interprofessional skill training should also be done among nurses and doctors. For example, surgeons can be taught simple ventilator care. Sharing simple treatment protocols will aid those who have been redeployed. In a large-scale pandemic, crucial information about the disease and workflows are constantly evolving. There is a need for information to be disseminated and assimilated rapidly on the ground to prevent delays. An agile system of information dissemination should include mobile phones via text messages or emails and paperbased mailers. Protocols and checklists will also help in standardizing medical care and reducing wastage. Harnessing non-medical transport services, such as private-hire and public vehicles and military vehicles, can help improve accessibility to healthcare in LMICs. These vehicles can help ferry unwell patients from the suburbs to regional or central hospitals and reduce delays to medical care. A caveat would be that these transport vehicles need to be thoroughly cleaned following transport [15] . Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a singlecentered,retrospective, observational study Expanding ICU facilities in an epidemic: recommendations based on experience from the SARS epidemic in Hong Kong and Singapore Association of the Quick Sequential (sepsis-related) Organ Failure Assessment (qSOFA) score with excess hospital mortality in adults with suspected infection in low-and middle-income countries A pilot study of improvised CPAP (iCPAP) via face mask for the treatment of adult respiratory distress in low-resource settings Bubble continuous positive airway pressure for children with severe pneumonia and hypoxaemia in Bangladesh: an open, randomised controlled trial Use of a single ventilator to support 4 patients: laboratory evaluation of a limited concept A single ventilator for multiple simulated patients to meet disaster surge Simultaneous ventilation of two healthy subjects with a single ventilator Prone positioning improves oxygenation in spontaneously breathing nonintubated patients with hypoxemic acute respiratory failure: a retrospective study Feasibility, utility, and safety of midodrine during recovery phase from septic shock Allocation of ventilators in a public health disaster Reasons for healthcare workers becoming infected with novel coronavirus disease 2019 (COVID-19) in China Recommended guidance for extended use and limited reuse of N95 filtering facepiece respirators in healthcare settings Making your own reusable elastomeric respirator for use during COVID-19 viral pandemic N95 shortage 2020 Safe patient transport for COVID-19 Not applicable. Not applicable. Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.Ethics approval and consent to participate Not applicable. Not applicable. The authors declare that they have no competing interests. Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.