key: cord-0809121-03z2slom authors: Islam, Md Asiful; Kundu, Shoumik; Alam, Sayeda Sadia; Hossan, Tareq; Kamal, Mohammad Amjad; Hassan, Rosline title: Prevalence and characteristics of fever in adult and paediatric patients with coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis of 17515 patients date: 2021-04-06 journal: PLoS One DOI: 10.1371/journal.pone.0249788 sha: 6cc74a003312f5769a3504bf4966c5a281c07b76 doc_id: 809121 cord_uid: 03z2slom BACKGROUND: Coronavirus disease 2019 (COVID-19), a pandemic disease caused by the severe acute respiratory syndrome coronavirus 2 started to spread globally since December 2019 from Wuhan, China. Fever has been observed as one of the most common clinical manifestations, although the prevalence and characteristics of fever in adult and paediatric COVID-19 patients is inconclusive. We aimed to conduct a systematic review and meta-analysis to estimate the overall pooled prevalence of fever and chills in addition to fever characteristics (low, medium, and high temperature) in both adult and paediatric COVID-19 patients. METHODS: The protocol of this systematic review and meta-analysis was registered with PROSPERO (CRD42020176327). PubMed, Scopus, ScienceDirect and Google Scholar databases were searched between 1(st) December 2019 and 3(rd) April 2020 without language restrictions. Both adult (≥18 years) and paediatric (<18 years) COVID-19 patients were considered eligible. We used random-effects model for the meta-analysis to obtain the pooled prevalence and risk ratio (RR) with 95% confidence intervals (CIs). Quality assessment of included studies was performed using the Joanna Briggs Institute critical appraisal tools. Heterogeneity was assessed using the I² statistic and Cochran’s Q test. Robustness of the pooled estimates was checked by different subgroups and sensitivity analyses. RESULTS: We identified 2055 studies, of which 197 studies (n = 24266) were included in the systematic review and 167 studies with 17142 adults and 373 paediatrics were included in the meta-analysis. Overall, the pooled prevalence of fever in adult and paediatric COVID-19 patients were 79.43% [95% CI: 77.05–81.80, I(2) = 95%] and 45.86% [95% CI: 35.24–56.48, I(2) = 78%], respectively. Besides, 14.45% [95% CI: 10.59–18.32, I(2) = 88%] of the adult COVID-19 patients were accompanied with chills. In adult COVID-19 patients, the prevalence of medium-grade fever (44.33%) was higher compared to low- (38.16%) and high-grade fever (14.71%). In addition, the risk of both low (RR: 2.34, 95% CI: 1.69–3.22, p<0.00001, I(2) = 84%) and medium grade fever (RR: 2.79, 95% CI: 2.21–3.51, p<0.00001, I(2) = 75%) were significantly higher compared to high-grade fever, however, there was no significant difference between low- and medium-grade fever (RR: 1.17, 95% CI: 0.94–1.44, p = 0.16, I(2) = 87%). 88.8% of the included studies were of high-quality. The sensitivity analyses indicated that our findings of fever prevalence for both adult and paediatric patients are reliable and robust. CONCLUSIONS: The prevalence of fever in adult COVID-19 patients was high, however, 54.14% of paediatric COVID-19 patients did not exhibit fever as an initial clinical feature. Prevalence and risk of low and medium-grade fevers were higher compared to high-grade fever. a1111111111 a1111111111 a1111111111 a1111111111 a1111111111 In December 2019, a novel coronavirus namely severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection outbroke in Wuhan, Hubei province, China causing coronavirus disease 2019 (COVID-19) [1] . Although it started in China, within a very short time, this infection has spread all over the world. Over 108 million people across 219 countries were infected with 2.38 million confirmed death cases until 14 th February 2021 [2] . In the last 17 years, two other human coronaviruses namely SARS-CoV in November 2002 and Middle East respiratory syndrome coronavirus (MERS-CoV) in April 2012 were reported to cause SARS and MERS diseases, respectively; leading to a fatal lower respiratory tract infection [3, 4] . Although SARS-CoV and MERS-CoV are both closely related to SARS-CoV-2, it is evident that SARS-CoV-2 is more infectious and spreads more rapidly than that of SARS-CoV and MERS-CoV [5] . A widespread clinical spectrum of SARS-CoV-2 infection has been observed ranging from asymptomatic, mild upper respiratory tract illness to severe viral pneumonia with respiratory failure and, death [6, 7] . Although the clinical symptoms of COVID-19 include cough, sore throat, muscle ache, shortness of breath, headache. smell dysfunction and taste disorder [7] [8] [9] [10] [11] ; fever has been observed as the most predominant initial clinical symptom in both adult and paediatric COVID-19 patients [12, 13] . A variable degree of fever ranging from low to high-grade accompanied with or without chills has been detected in COVID-19 patients [7, 8, 14] . The prevalence and characteristics of fever in adult and paediatric COVID-19 patients is contradictory and inconclusive. A systematic review and meta-analysis can resolve the debate, aid in clinical diagnosis avoiding unnecessary delay in addition to managing COVID-19 patients in a more appropriate manner. Therefore, the objective of this systematic review and meta-analysis was to estimate the overall pooled prevalence of fever and chills in addition to fever characteristics (low, medium, and high temperature) in both adult and paediatric subjects. We conducted a systematic review and meta-analysis in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guideline (S1 Checklist) [15] . The protocol of this study was registered with International Prospective Register of Systematic Reviews (PROSPERO) database, registration number: CRD42020176327. The objective was to identify studies published within the first four months of the COVID-19 outbreak that presented the prevalence of fever in adult (�18 years) and paediatric (<18 years) patients with COVID-19, worldwide. There was no restriction on the study design, therefore; observational studies, clinical trials, and case series were included. In addition to the published studies, preprints were also considered if data of interest were reported. Review articles, case reports, opinions, and perspectives were excluded. Data reported by news reports and press releases or data collected from websites or databases were not considered. Nationwide studies were excluded from the meta-analysis due to the possibility of the overlapping study cohort. We handled studies from identical authors or hospitals with caution and if the study population were different, the study was included. PubMed, Scopus, ScienceDirect, and Google Scholar databases were searched to identify studies published between 1 st December 2019 and 3 rd April 2020 without language restrictions. The following search terms were searched in PubMed database (in the title and abstract of the studies) and were modified to suit other databases: COVID-19, COVID19, coronavirus, nCoV, SARS-CoV-2, SARS-CoV2, clinical, symptom, symptoms, characteristic, characteristics, feature, features, condition, conditions, comorbid, co-morbid, comorbidity, co-morbidity, comorbidities, co-morbidities, epidemiological, epidemiology, and fever. Complete details of the search strategy are in S1 Table. To ensure a robust search procedure, references of the included studies were also reviewed. Duplicate studies were excluded by using EndNote X8 software. To identify eligible studies, articles of interest were screened based on the title and abstract followed by full text by four authors (MAI, SK, SSA, and TH) independently. Disagreements about inclusion were discussed and resolved by consensus. author's last name; region (country, province/municipalities/special administrative regions/ city) of the participants; data collection period; COVID-19 confirmation procedure; total number of COVID-19 patients; number of female COVID-19 patients; age; age category; subgroups of COVID-19 patients; body temperature (˚C); prevalence of fever, and prevalence of chills. The quality of included studies was assessed independently by two authors (SK and SSA) using the Joanna Briggs Institute (JBI) critical appraisal tools for cross-sectional, cohort, case-control, case series, randomised controlled trials (RCTs), and non-randomised experimental studies [16] . Further, two authors (MAI and TH) validated the results of the quality assessment. The studies were classified as low-quality (high-risk of bias) if the overall score was �50%. Random-effects model was used to obtain the pooled prevalence and 95% confidence intervals (CIs) of fever and chills in adult and paediatric patients with COVID-19. Risk ratio (RR) with 95% CIs were used to estimate the risk of developing fever and different grades of fever in different subgroups of COVID-19 patients. Low-, medium-and high-grade fever were defined as 37�3-38�0˚C, 38�1-39�0˚C and >39�0˚C, respectively. To assess publication bias, funnel plots presenting prevalence estimates against their sample size were constructed and the asymmetry of the funnel plot was confirmed with Egger's test when a minimum of ten studies was available. Heterogeneity between studies was assessed using the I 2 statistic (I 2 >75% indicating substantial heterogeneity) in addition to using the Cochran's Q test to identify the significance of heterogeneity. All the analyses and plots were generated by using metaprop codes in meta (ver- To assess the prevalence and risk of fever, different COVID-19 subgroups were analysed including i) low-, medium-and high-grade fever; ii) COVID-19 patients from different regions; iii) severe vs non-severe; iv) survived (recovered or discharged) vs non-survived; v) ICU vs non-ICU patients; vi) pregnant women or new mothers. To identify the source of heterogeneity and to check the robustness of the results, sensitivity analyses were performed individually for studies with adult and paediatric population through the following strategies: i) excluding small studies (n<100); ii) excluding studies with pregnant women or new mothers; iii) excluding the low-quality studies (high-risk of bias); iv) excluding studies where the confirmation method was not reported; v) excluding non-English studies, vi) excluding outlier studies, and vii) considering only cross-sectional studies. Additionally, to identify the outlier studies and the sources of heterogeneity a Galbraith plot was constructed. Our search initially identified 2055 studies. After removing 727 studies [duplicate studies (n = 600), review articles (n = 85), case reports (n = 25), and non-human studies (n = 17)]; titles and abstracts of 1328 studies were screened for eligibility, of which 1131 studies were excluded as those did not comply with the objective of this study. Therefore, 197 studies (n = 24266) were included in the systematic review, of which 167 studies [adult (n = 152), paediatric (n = 12), and mixed (n = 3)] were finally included in the meta-analysis (Fig 1) . Detailed characteristics and references of the included studies are presented in S2 Table. Overall, this meta-analysis reports data from 17515 COVID-19 patients (49.8% female) accumulating 17142 adults (including 270 pregnant women or new mothers) and 373 paediatrics. Ages of the adult and paediatric COVID-19 patients included in this meta-analysis ranged from 29.1±2.4 to 70.7±13.5 years and from 6.9±0.7 to 8.3±3.5 years, respectively. Studies on adult participants were from four countries including China (151 studies, n = 17078), USA (one study, n = 24), France (one study, n = 5), and Singapore (two studies, n = 35) ]. All the studies on paediatric COVID-19 patients were from China. Among the included studies, 94.6% confirmed COVID-19 patients by using the reverse transcription-polymerase chain reaction (RT-PCR) method, whereas, in rest of the studies, confirmatory method was not reported. (Fig 2) . Risk of fever was observed significantly higher in severe or critical COVID-19 patients when compared to non-severe COVID-19 patients (prevalence: 91.69% vs 83.85%; RR: 1.05, 95% CI: 1.02-1.09; p = 0.001, I 2 = 38%) ( Table 2 There was no significant difference of fever risk in ICU vs non-ICU (RR: 1.02; 95% CI: 0.98-1.06; p = 0.31, I 2 = 0%) and survived (recovered or discharged) vs non-survived COVID-19 Table 3 ). In different subgroups of COVID-19 patients, the prevalence of low and medium-grade fever was found significantly higher in non-severe (prevalence: 36 (Tables 2 and 3 ; S4-S13 Figs). Detailed quality assessment of the included studies is shown in S3-S8 Tables. Briefly, 88.8% of the included studies were of high-quality (low-risk of bias); of which, none of the cohort, case series, case-control, RCTs, and non-randomized experimental studies was of low-quality and all the remaining low-quality studies (11.2%) were cross-sectional. Overall, different levels of heterogeneity (ranging from 0% to 97%) were observed during the estimation of the prevalence of fever in COVID-19 adult and paediatric patients from different regions (Table 1) . Moreover, variations in the levels of heterogeneity were also observed in different subgroups ranging from 0% to 97% (Table 2) . Following the visual inspection of funnel plots and Egger's test results (Fig 6) , none of the analyses on adult patients (Table 1 ) and subgroups ( Fever in COVID-19: Meta-analysis exhibited significant publication bias, except for a single analysis on Chinese paediatric patients (Table 1) . Sensitivity analyses on adult COVID-19 patients excluding studies on the basis of small studies, pregnant women or new mothers, low-quality studies, COVID-19 confirmation method not being reported, non-English studies, outlier studies, and considering only Fever in COVID-19: Meta-analysis https://doi.org/10.1371/journal.pone.0249788.g005 Fever in COVID-19: Meta-analysis cross-sectional studies showed marginal differences in overall pooled prevalence with 0.7% lower, 1.6% higher, 0.4% lower, 0.04% higher, 0.04% lower, 3.2% higher, and 2.1% higher, respectively (Table 4 ; S14 Fig) . Additionally, sensitivity analyses on paediatric population excluding low-quality studies, non-English studies, and considering only cross-sectional studies resulted in 8.9% higher, 4.2% lower, and 8.9% lower pooled prevalence, respectively (Table 4 ; S15 Fig) . Overall, our sensitivity analyses for both adult and paediatric population indicated that the fever prevalence of both adult and paediatric patients are reliable and robust as there were no substantial changes following different strategies of sensitivity analyses. As the sources of heterogeneity, although we identified eight outlier studies from the Galbraith plot (Fig 7) , performing a sensitivity analysis excluding these outlier studies could not reduce the levels of heterogeneity. Fever in COVID-19: Meta-analysis Based on the findings of this meta-analysis, the prevalence of fever was estimated to be 79.43% in symptomatic adult COVID-19 patients, which is less common than SARS (99-100%) [19, 20] , however, similar to MERS (77%, meta-analysis result) [21] . We estimated the prevalence of fever in paediatric COVID-19 subjects to be 45.86%, however, from the systematic literature search-based studies, the mean prevalence in the paediatric MERS and SARS subjects was 6.45% and 98%, respectively [22, 23] . Even though the prevalence of fever in COVID-19 paediatric subjects is higher than MERS and lower than SARS paediatric population, nevertheless, more than half of the COVID-19 paediatric patients did not show fever as an initial symptom. Therefore, for the clinical confirmation of paediatric COVID-19 symptomatic subjects, fever Fever in COVID-19: Meta-analysis should not be considered as the only initial symptom. To avoid delaying in diagnosis, history of exposure to COVID-19 patients, especially household exposure and other clinical manifestations including cough, expectoration, polypnea, chest tightness, diarrhoea should be considered as well [24] [25] [26] . Our meta-analysis estimated fever prevalence in severe or critical COVID-19 patients as 91.69%. In severe or critical MERS patients, the prevalence of fever was observed as 71% [27] , whereas fever was predominant in 95.7% of the severe or critical SARS patients [28] . Similar to severe or critical vs non-severe COVID-19 patients, body temperature was also detected higher in severe or critical patients with SARS than that of non-severe patients [29] . Similar to our findings, risk of fever was observed high in non-survived patients with MERS compared to survived patients (79.1% vs 93.9%, p = 0.04) [30] . Additionally, alike our findings on COVID-19, body temperature was higher in non-survived MERS patients compared to that in survived MERS patients [31, 32] . The prevalence of fever in ICU vs non-ICU SARS (95.7% vs 89.9%) [28] and COVID-19 patients from our meta-analysis (98.83 vs 94.27) were quite similar. Pregnancy data on SARS and MERS is very limited. From our meta-analysis, we observed 56.45% of the pregnant women or new mothers with COVID-19 presented with fever. In contrast, 100% of pregnant women or new mothers with SARS [33, 34] and 80-100% with MERS [35, 36] exhibited fever. As less than half of the pregnant women or new mothers with COVID-19 did not exhibit fever as an initial symptom, other clinical manifestations observed in pregnant women or new mothers such as cough, fatigue, dyspnoea, and myalgia should also be considered [37] [38] [39] [40] [41] . Medium to high-grade fever was predominantly detected in patients with SARS [29, [42] [43] [44] [45] and MERS [4, 46, 47] ; findings from our meta-analysis indicate that both low and mediumgrade fever is clearly prevalent, not high-grade fever in COVID-19 patients. We detected chills in only 14.45% of the adult COVID-19 patients, whereas, in SARS [48] and MERS [33, 49] , chills were estimated to be 59.3% and 87%-92%, respectively. Therefore, while chills were considered as a distinctive clinical feature in SARS and MERS diagnosis, chills are not possibly a typical clinical manifestation for COVID-19 diagnosis. Our study has several strengths. This meta-analysis is the first, to our knowledge, to comprehensively investigate the prevalence and characteristics of fever in adult and paediatric COVID-19 patients. This meta-analysis was conducted with a large number of studies and hence including a large number of participants, resulting in more robust estimates. We included both English and non-English-language articles, and the non-English-language articles do not seem to affect overall estimates in this meta-analysis. Majority of the included studies confirmed COVID-19 subjects by using the RT-PCR technique which strengthens our findings. Majority of the analyses did not represent significant publication bias demonstrating that we were unlikely to have missed studies that could have altered the findings. All the conducted sensitivity analyses generated similar results to the main findings indicating the robustness of the meta-analysis results. Based on the quality assessments, approximately 89% of the studies were of high methodological quality (low-risk of bias) which ensured a reliable result. Nevertheless, there are several notable limitations. Based on the search strategy and considered time period, this meta-analysis could include only 3% studies conducted outside China, therefore, the prevalence may not represent at a global scale and generalisation of the findings should be done with care. Most of the analyses generated substantial degrees of heterogeneity even though we tried to identify the sources of heterogeneity by constructing subgroup, sensitivity analyses and Galbraith plot. Due to the absence of fever as an initial clinical presentation, diagnosis of COVID-19 may be initially missed. Identification of suspected patients with COVID-19 would be difficult when the patients are asymptomatic [12, 50] , especially without fever manifestation. In such cases, other manifestations should be considered. As fever seems to be an important initial symptom of COVID-19, to halt the spread of the disease, a digital infrared thermal imaging system with maximum accuracy could be considered to screen mass suspected COVID-19 patients with a history of contact to COVID-19-positive individuals or history of intra and intercountry travelling or visiting in hospitals or clinics [51] . Temperature-monitoring campaign and fever hotline which were quite successful during the SARS outbreak could be considered for identifying suspected COVID-19 subjects and take immediate actions [52, 53] . In conclusion, the findings from this meta-analysis represent the most comprehensive and robust currently available evidence of fever prevalence in adult and paediatric COVID-19 patients. We estimated the prevalence of fever reported during admission as 79.43% in adult and 45.86% in paediatric COVID-19 patients in addition to 14.45% chills. Prevalence and risk of low and medium-grade fevers were higher compared to high-grade fever. Therefore, fever should be considered as one of the most common initial clinical symptoms for adults. In case of paediatric COVID-19 patients, fever should not be considered as the only initial symptom, rather, history of exposure to COVID-19 patients, especially household exposure and other clinical manifestations including cough, expectoration, polypnea, chest tightness, diarrhoea should be considered as well. We hope that these results will assist in the decision making of patients, clinicians, and policymakers. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster COVID-19 Weekly Epidemiological Update Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study Middle East respiratory syndrome A genomic perspective on the origin and emergence of SARS-COV-2 Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Clinical features of patients infected with 2019 novel coronavirus in Wuhan Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study Prevalence and Characteristics of Taste Disorders in Cases of COVID-19: A Meta-analysis of 29,349 Patients. Otolaryngol Head Neck Surg Prevalence of Olfactory Dysfunction in Coronavirus Disease 2019 (COVID-19): A Meta-analysis of 27,492 Patients Prevalence of Headache in Patients With Coronavirus Disease 2019 (COVID-19): A Systematic Review and Meta Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study Association of radiologic findings with mortality of patients infected with 2019 novel coronavirus in Wuhan Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement Critical appraisal tools. South Australia: The University of Adelaide Conducting meta-analyses in R with the metafor package Review manager (RevMan)[computer program] Version 5.3. Copenhagen: The Nordic Cochrane Centre. The Cochrane Collaboration Severe Acute Respiratory Syndrome: Historical, Epidemiologic, and Clinical Features Severe acute respiratory syndrome: clinical and laboratory manifestations Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV): a systematic review and meta-analysis Middle East respiratory syndrome coronavirus disease is rare in children: An update from Saudi Arabia Severe acute respiratory syndrome in children Clinical and CT features in pediatric patients with COVID-19 infection: Different points from adults The different clinical characteristics of corona virus disease cases between children and their families in China-the character of children with COVID-19 Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: a single center's observational study Critically ill patients with Middle East respiratory syndrome coronavirus infection Acute respiratory distress syndrome in critically ill patients with severe acute respiratory syndrome A retrospective study on clinical features of and treatment methods for 77 severe cases of SARS Clinical presentation and outcomes of Middle East respiratory syndrome in the Republic of Korea Clinical outcomes among hospital patients with Middle East respiratory syndrome coronavirus (MERS-CoV) infection Middle East respiratory syndrome coronavirus in Al-Madinah City, Saudi Arabia: demographic, clinical and survival data Pregnancy and perinatal outcomes of women with severe acute respiratory syndrome A case-controlled study comparing clinical course and outcomes of pregnant and non-pregnant women with severe acute respiratory syndrome Impact of Middle East Respiratory Syndrome coronavirus (MERS-CoV) on pregnancy and perinatal outcome Middle East Respiratory Syndrome Coronavirus infection during pregnancy: a report of 5 cases from Saudi Arabia Clinical and CT imaging features of the COVID-19 pneumonia: Focus on pregnant women and children Clinical manifestations and outcome of SARS-CoV-2 infection during pregnancy Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records Pregnancy and perinatal outcomes of women with coronavirus disease (COVID-19) pneumonia: a preliminary analysis Clinical features and obstetric and neonatal outcomes of pregnant patients with COVID-19 in Wuhan, China: a retrospective, single-centre, descriptive study Clinical characteristics, management and prognostic factors in patients with probable severe acute respiratory syndrome (SARS) in a SARS center in Taiwan Critically ill patients with severe acute respiratory syndrome Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area Critically ill healthcare workers with the middle east respiratory syndrome (MERS): A multicenter study Clinical and epidemiologic characteristics of spreaders of Middle East respiratory syndrome coronavirus during the 2015 outbreak in Korea Clinical management and infection control of SARS: lessons learned Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study CT image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19) Infrared thermography to mass-screen suspected SARS patients with fever Body temperature monitoring and SARS fever hotline Severe acute respiratory syndrome (SARS): Knowledge, attitudes, practices and sources of information among physicians answering a SARS fever hotline service We would like to thank Ms. Yuh Cai Chia for assisting us in translating the articles in Chinese language.