key: cord-0804462-dyrvl07t authors: Kim, Jinwoo; Park, Sanghoo; Choe, Wonho title: Surface plasma with an inkjet-printed patterned electrode for low-temperature applications date: 2021-06-09 journal: Sci Rep DOI: 10.1038/s41598-021-91720-3 sha: ebbcaca94fb7e423721192d33273eb42044b04df doc_id: 804462 cord_uid: dyrvl07t The global health crisis caused by the recent pandemic has led to increasing social demand for ‘new normal’ sanitizing and disinfecting facilities to fit our ‘new normal’ lives. Here, we introduce an inkjet-printed, thin-film plasma source applicable to dry disinfection processes. In contrast to conventional plasma reactors, the merits of plasma produced on a film include disposability, cost-effectiveness, and applicability to high-dimensional objects such as the human body. The developed flexible plasma film can be applied to a wide variety of shapes via origami—remaining plasma stable even when bent. However, electrode degradation has been a practical issue in the long-term operation of inkjet-printed plasma sources, which is troublesome from application perspectives. We focus on making the inkjet-printed electrode more plasma stress-resistant, thereby increasing its lifespan from a few minutes to two hours of continuous operation with optimal inkjet printing and passivation, thus increasing the practicality of the source. Considering the fact that ozone and nitrogen oxides are selectively produced by plasma, we implement a disposable pouch-type plasma source and examine its usefulness in extending the shelf life of food. www.nature.com/scientificreports/ substrate: drawing 22, 23 , stamp tapping 24 , silk-screening 25, 26 , etc. In particular, inkjet printing is the most attractive way to fabricate an FXDBD source; the corresponding electrodes, one or more, can be formed on a thin-film dielectric substrate using a conventional inkjet printer with electrically conductive ink (Fig. 1a ). This simple setup provides fast and cost-effective manufacturing and accommodates different designs in lab-scale uses 27, 28 . We observed that the physicochemical stress caused by the plasma degrades the bare-inkjet-printed electrode and affects plasma properties over time, which is critical in plasma applications. Thus, some efforts have been dedicated to overcoming the degradation of inkjet-printed electrodes. Furthermore, we investigate the chemical characteristics of FXDBD, which can be informative in future applications. Our findings reveal that FXDBD can be selectively operated in ozone-dominant or ozone-free mode, with potential merit in various material science and engineering fields. Finally, as a feasible example, our FXDBD source is applied to a food packaging pouch to lengthen the shelf life of blueberries. Inkjet-printed FXDBD. In this study, commercial silver nanoparticle ink (Mitsubishi Paper Mill) and an office printer (Brother, DCP-T300) were employed. Since printing was performed using a commercial office printer, the maximum size of FXDBD that can be currently produced in the A4 paper size; however, enlargement of the production size is viable by replacing the printer. Care was taken with inkjet printing, as ink properties such as viscosity, surface tension, volatility, and particle size are critical in the jetting process from the nozzle. In particular, we used a printer with a piezoelectric-type nozzle to prevent the thermal deterioration of the ink in printing processes. Prior to plasma experiments, we determined the optimal printing conditions to maximize the density of ink drops and consequent conductivity of the printed ink, such as humidity and temperature of the room where printing was performed (20-40 °C, 40% humidity). We used the printing media which has a PET substrate with resin on it (Mitsubishi Paper Mill). A porous chemical (resin) layer on it effectively absorbs ink and prevents smearing, improve the overall inkjet printing performance on the film. The electrical resistivity and thickness of the inkjet-printed electrode were measured using a 4-point probe method (Keithley 6221 current source combined with a Keithley 2182a nano voltmeter) and Tencor P-2 long-scan profiler, respectively. www.nature.com/scientificreports/ The designed electrode was printed onto the film based on black vector images drawn by commercial software on a computer. We chose the electrode pattern size in such a way that the power dissipated to the plasma became maximum at the same applied voltage. The FXDBD source under experiment consisted of 10 × 10 square grids with an area of 7 mm × 7 mm each grid. An additional copper sheet attached to one side of the FXDBD source was used as a powered electrode by connecting it to the power system. The power delivered to the FXDBD was measured in the range of 5 to 45 W depending on the input voltage via the charge-voltage (Q-V) Lissajous method. Even when bent with a 2 mm bending radius, the FXDBD source exhibited uniform and stable discharge (Fig. 1 ). The discharge power was compared with different bending radii ranging from 50 to 2 mm using the same FXDBD source. We found that both current and voltage measured at the electrode remained the same as 4 A max , 6.5 V pp (15 W) regardless of the bending radii. Based on such high deformability, a three-dimensional and largearea plasma generator with a complicated shape can be implemented, as demonstrated via origami in Fig. 1b. Critical issues for inkjet-printed electrodes. In general, physicochemical stress is unavoidable for baremetal electrodes directly contacting reactive plasma, resulting in electrode corrosion over time. Notably, we experienced the degradation of plasma performance during long-term operation, as the bright-purple plasma began to evanesce and finally disappeared entirely from the electrode (Fig. 2a) . In the unused case, the droplets of silver nanoparticle ink merged well with neighboring droplets, forming an electrically good connection. However, after 6 min of plasma operation, the printed electrode was permanently destroyed; we observed changes in the electrode shape and color (Fig. 2b,c) . The material analysis of inkjet-printed electrode using the energydispersive X-ray spectroscopy (EDS) indicated that the atomic percent of oxygen and carbon were increased from 13.5% to 34.1% and 4.4% to 8.1%, respectively, due to the 6 min plasma operation. The limited durability of the FXDBD may be problematic, particularly for applications in which high plasma reliability and reproducibility are required. There are two major reasons for this limitation. The first reason is the chemical reaction between the electrode and oxidative chemical species, such as ozone. The increases in the gas temperature and oxidant concentration due to plasma gradually accelerate the oxidation of the inkjet-printed electrode, thereby resulting in ohmic dissipation. The second reason is 'physical sputtering' due to collisions between energetic particles and the electrode surface. Since this physical process largely occurs at the electrode edge in contact with the plasma, it progresses from the edge to the inside of the electrode, resulting in significant electrode damage 29 . Particularly, such permanent damage is more severe in the case of FXDBD than in other cases because the thin-film electrode is particularly delicate and can be completely disconnected. Fabrication of plasma stress-resistant FXDBD. Two methods were attempted to increase the durability of the inkjet-printed electrode; these methods are good for not only extending the FXDBD lifespan but also www.nature.com/scientificreports/ improving the power efficiency. Note that the lifespan was defined as the plasma-on period in relation to power dissipation-the period from the onset of discharge to the time when the discharge power decreased rapidly. Figure 3a shows a comparison of microscope images of the electrode printed once and four times. The image clearly shows that the ink ejected from the nozzle takes the form of dots that connect to form a continuous conductive link. It also shows the micro-gaps created by the irregular distribution of ink and air bubbles inside the electrode. Therefore, a single-printed electrode displays a sparse density of the ink, while these gaps are completely covered by repetitive printing. This trend also appears in the electrode thickness and resistivity measurement results. The electrode thickness was not linearly proportional to the number of printing, and resistivity was dramatically reduced due to the gap filling effect by repetitive printing. With an increasing number of prints from one to four, the electrode thickness increased to 310, 365, 520, and 890 nm, and the corresponding resistivity decreased to 300, 29.4, 16.3, and 19 .0 nΩ·m at 289 K, respectively. Also, power-consuming micro discharges that may occur inside sparse electrodes were largely suppressed, and the overall delivered power gradually decreased with an increasing number of printings. Figure 3b shows the power delivered to the plasma as a function of the discharge time with a different number of prints under the same operating conditions with a 5 kV pp sinusoidal voltage waveform at 3 kHz. The lifespan of FXDBD sources with 1-4 printings were approximately 500, 1100, 1550, and 1900s, respectively. Although the electrode thickness was increased by 18%, the lifetime increased by more than twice for the double-printed FXDBD. However, in the fourfold case, the discharge lifetime increased by only 22% over that in the threefold case, whereas the thickness increased by 71%. Based on the aforementioned relationship between the lifetime and electrode thickness of the FXDBD, the efficacy of micro discharge suppression by multi printing is apparent. During micro discharges that occur in gaps, plasma faces all the micro edges of each ink drop, and the plasma-facing area is significantly increased compared to the electrode volume. Thus, gap-filling prevents both physical sputtering and chemical oxidation over the entire electrode surface, thus improving the physicochemical resistance of the inkjet-printed electrode. One of the options for improving the FXDBD lifespan is electrode passivation, which physically separates the electrode from reactive plasma species. Figure 4a shows the structure of the FXDBD source with a passivation layer; the bare inkjet-printed electrode was coated with silicon, of which the thickness was in the range of 20-50 µm. To prevent discharge from occurring in the gap between the electrode and protective layer, liquid silicon was uniformly applied to the entire surface of the FXDBD. In doing so, plasma was produced on the www.nature.com/scientificreports/ passivation layer without interacting with the electrode. Silicon was chosen as a material for the protective layer because it is not only widely used in various industries, but also flexible, inexpensive, and transparent enough to check the extent of damage to the electrode. The composition of the silicone used in the experiment was 30% silicone polymer, 30% dimethyl ether, 25% toluene, and 15% acetone. Figure 4b shows the change in the power delivered to the plasma over time with and without the protective layer. An uncoated, single-printed FXDBD ran for 8.3 min, and the lifespan exceeded 120 min with the protective layer, a value 14 times larger than that in the former case. The results suggest that this approach is valid for increasing the electrode life from both physical and chemical perspectives. First, a physical buffer between the electrode and plasma is created, thereby reducing electrode damage from plasma stress. Second, a chemical barrier against oxidizing plasma species is formed. However, the protective layer is not permanent because it was irreversibly damaged by the plasma over time, eventually resulting in electrode dissipation. Moreover, we observed an increase in the electrical (power) stability of the FXDBD with the addition of electrode passivation, namely, a narrow variation in dissipated power with time (Fig. 4b ). Both sources with and without the protective layer displayed initial power dissipation at approximately 4.2 W. However, dissipation power decreased from 5.5 to 3.4 W over time in the bare electrode case, whereas a slight decrease in dissipated power from 4.9 to 4.2 W was observed over time in the presence of the protective layer. Because the input power is directly associated with the uniform generation of reactive species, as discussed below, it is an important factor in ensuring the consistency and reliability of a plasma source from application perspectives. for satisfactory application. Thus, we investigated the relationship between reactive oxygen and nitrogen species (RONS) production in FXDBD and plasma-dissipated power. Hereinafter, the FXDBD source was operated using a 30 kHz bipolar square wave voltage source in the discharge power range of 5-45 W. Figure 5 shows the www.nature.com/scientificreports/ concentrations of O 3 , NO, and NO 2 generated by an FXDBD source inside the chamber with different discharge power. In the 5 W case, O 3 was the major chemical that appeared first, and its concentration rapidly reached a plateau. Simultaneously, NO 2 increased gradually and reached a steady level after 1200 s, whereas the NO concentration remained below the detection limit (0.05 ppm). However, at high discharge power, O 3 depletion occurred due to the quenching reaction of O atoms with NO and NO x 30 . As the input power increased to 35 W, ozone, the concentration of which peaked near 200 s, gradually decreased; the ozone concentration fell below the detection limit at approximately 1200 s. Accordingly, a clear mode transition from O 3 to NO 2 was apparently observed at approximately 500 s; the high discharge power case showed relatively rapid crossover between the NO 2 and O 3 concentrations. At 40 W, there was no O 3 after 200 s, and the concentrations of NO and NO 2 rapidly reached plateaus of 50 and 170 ppm, respectively. As the input power was increased, the concentration of vibrationally excited nitrogen molecules also increased, which actively react with O atoms, thereby decreasing O 3 production 30 . Accordingly, it was concluded that O 3 and NO have an interdependent relation in FXDBD, and this relation is quite similar to that for conventional surface DBDs 31, 32 . As shown, the chemical production of O 3 , NO, and NO 2 is also controllable in FXDBD depending on the operation conditions, thus highlighting the potential for expanding the utilization of the FXDBD. Feasibility test for the FXDBD pouch. As noted, the need for 'new normal' health technology has been reported; for example, such technology may be used with sterile packs, which are indispensable for food storage and the biomedicine field. Compared to conventional methods, plasma has become an emerging, green processing technology with many potential applications 5 . As a simple demonstration, we performed a feasibility test of FXDBD involving the shelf life extension of blueberries in a disposable packaging pouch for food storage (Figs. 6a,S1a) . A simple plasma pouch consisting of a commercial plastic zipper bag and the proposed FXDBD source was fabricated. The FXDBD source was attached to the inner surface of a gas-tight food packaging pouch. Two 1 cm by 1 cm square sections of the zipper bag were replaced with a copper sheet for a connection between FXDBD and an external power supply while maintaining airtightness. The photographs shown in Fig. 6b indicate that fungal growth was remarkably reduced in the blueberry samples treated with plasma. The fungus was distributed throughout the blueberry sample without plasma treatment, as shown in the left image, and 5 min plasma-treated samples were free from fungus. Figure 6c presents the corruption rate of blueberries based on the plasma treatment time and storage period. Corruption was judged based on the occurrence of fungal colonies. After 72 h of storage, white fungi grew in 84% of the control group, and the corruption rate decreased to 15% with 7 min plasma treatment. It is well known that the sterilization efficacy is proportional to the plasma treatment time with a constant concentration of active species www.nature.com/scientificreports/ such as O 3 33 . However, the degree of corruption after plasma treatment was partly consistent with the timing of O 3 and NOx production in the plasma pouch ( Figure S1b ); both concentrations sharply increased during the first 3 min and were plateaued, as a bactericidal effect appeared in the first few minutes of treatment and led to saturation conditions. Our results indicate that 5 min of plasma treatment in an FXDBD operated at 4 kW/m 2 is enough to extend the lifetime of 30 blueberry samples. A more quantitative assessment about the reduction of pathogen and quality changes by FXDBD was done by separate research 34 . Considering the price side, the cost of manufacturing a set of plasma pouches in a laboratory environment is $0.6 each. This study reports the development of a flexible plasma source using an inkjet printing method, from manufacturing to characterization for durability, and a practical demonstration is presented. We introduce a proof-of-concept for the inkjet-printed FXDBD source. Inevitable stresses caused by plasma on the bare inkjet-printed electrode degrade the FXDBD source, limiting the operational life span and consequently its applicability. We clearly demonstrate that simple ways to make an inkjet-printed electrode more resistive include multiple inkjet printing and passivation. This plasma film, FXDBD, is operable in two distinct modes associated with RONS production in the power range of 25-40 W. The mode change from ozone-dominant to nitrogen oxide-dominant chemical www.nature.com/scientificreports/ production appeared with increasing input power. Finally, the developed FXDBD was applied to lengthen the shelf life of blueberries, with distinct fungal growth inhibition. Blueberries treated with plasma for at least 5 min inside a disposable pouch displayed an 80% decrease in the corruption rate compared to controls. Quantifying stable gaseous chemical species. For characterizing plasma, an FXDBD source was installed in a gas-tight chamber ( Figure S2) . A stainless-steel cuboid chamber with dimensions of 150 mm × 150 mm × 100 mm was used, and the 100 mm × 100 mm FXDBD source was located therein. Two facing gas ports on the sidewalls of the chamber were installed for gas analysis. The copper sheet electrode was connected to the high-voltage power supply (TREK 10/10B-HS or FTLAB HPI500), and the inkjet-printed electrode was grounded. A 100 nF capacitor connected in series to the ground electrode was used as a reference capacitor to determine the Q-V Lissajous curve associated with the amount of electric power dissipated to plasma. The voltage across the 100 nF capacitor was measured using a 10:1 voltage probe (Tektronix P2100) combined with an oscilloscope (Keysight DSOX3034A), and the voltage across the FXDBD source was measured using a 1000:1 voltage probe (Tektronix P6015). The reactive species produced inside the chamber were quantified by sampling gas through the ports. Prior to gas analysis, we verified that the use of a 1 m long polyurethane tube is reliable in gas analysis. Compared to the concentration measured when using stainless steel or Teflon tubes, little to no change in chemical concentrations occurred during gas transport from the chamber to the gas analyzers. Nitrogen oxides (NOx) and ozone (O 3 ) concentrations were measured using an Eco Physics nCLD63 NOx analyzer and a 2BTechnology 106-M ozone analyzer, respectively. Note that dry synthetic air was supplied to the chamber at a 1.5 slpm flow rate, which was balanced with the sampling rate of the gas analyzer. Before each experiment, the inside of the chamber was cleaned with ethyl alcohol, and each FXDBD source was a "one-off source" throughout the experiments. The temperature of the chamber was set at 30 °C using a hot plate (DAIHAN Scientific MSH-20D) throughout each experiment, and the gas temperature inside the chamber was determined using an optical thermometer (FISO FTI-10). The air altered by plasma was totally replaced by dry air (21% oxygen with balanced nitrogen, 0% relative humidity) after each experiment. Plasma-assisted blueberry storage. In order to exclude differences in harvest time and region between blueberry grains, blueberries harvested on the same date on the same farm were purchased and immediately stored at 7 °C. To exclude external contaminants, 100 g of blueberries at a time were inoculated with 500 mL of distilled water, vortexed for 1 min on a clean bench. This process was repeated for all blueberries purchased. After that, blueberries were divided into 50 g portions per single sample in sterilized Petri dishes. According to the plasma operation time, 5 samples for each experimental condition, a total of 25 samples were prepared. After placing the blueberry samples in the center of the pouch, the pouch air was purged with dry synthetic air. Plasma treatment experiments were conducted using 15 W with 30 kHz bipolar square wave voltage-driven FXDBDs, with the corresponding chemical behavior shown in Figure S1b for 0, 1, 3, 5, 7, and 9 min treatment times. Note that there was no difference in the appearance of the blueberries with and without plasma treatment. Treated samples were regularly monitored 12 h apart during storage at 25 °C in a 40% humidity environment without post-treatment measures. Korea Advanced Institute of Science and Technology (KAIST, Republic of Korea) approved the experiments, including any relevant details. The research facility follows the Standard Microbiological Practices for Biosafety Level 1 (BSL1) guideline. Energy-dispersive X-ray spectroscopy. Characterization of the inkjet-printed electrode was tested by using Quattro environmental scanning electron microscopy (ESEM) equipped with an EDS unit (Thermo Fisher Scientific) at X-ray energies lower than 10 keV. We observed that the initial mass ratio of electrode materials Ag, Al, Cl, O, and C were changed from 81.2%, 8.5%, 5.2%, 4.3%, and 0.8% to 70.7%, 13.6%, 2.3%, 11.5%, and 1.9%, respectively, due to 6 min plasma operation. Based on the measured mass ratio, atomic percents were estimated by considering the atomic number of each element. Disinfection and sterilization using plasma technology: fundamentals and future perspectives for biological applications Glow discharge plasma treatment for surface cleaning and modification of metallic biomaterials Understanding the role of plasma technology in food industry Cold plasma: a novel non-thermal technology for food processing Inactivation of chemical and heat-resistant spores of Bacillus and Geobacillus by nitrogen cold atmospheric plasma evokes distinct changes in morphology and integrity of spores Cold atmospheric plasma inactivation of aerosolized microdroplets containing bacteria and purified SARS-CoV-2 RNA to contrast airborne indoor transmission Room temperature sterilization of surfaces and fabrics with a One Atmosphere Uniform Glow Discharge Plasma Sterilization of contaminated matter with an atmospheric pressure plasma Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet (APPJ) Effects of minimal exposures to atmospheric pressure plasma on the activity of Salmonella Typhimurium: deactivation of bacterial motility and suppression of host-cell invasion Plasma-functionalized solution: a potent antimicrobial agent for biomedical applications from antibacterial therapeutics to biomaterial surface engineering Color development, physiochemical properties, and microbiological safety of pork jerky processed with atmospheric pressure plasma Inactivation of murine norovirus-1 and hepatitis A virus on fresh meats by atmospheric pressure plasma jets Cold plasma for effective fungal and mycotoxin control in foods: mechanisms, inactivation effects, and applications Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment Cold atmospheric gas plasma disinfection of chicken meat and chicken skin contaminated with Listeria innocua Disinfection of ocular cells and tissues by atmospheric-pressure cold plasma New nonthermal atmospheric-pressure plasma sources for decontamination of human extremities Flexible dielectric barrier discharge reactor with water and teflon dielectric layers Wearable atmospheric pressure plasma fabrics produced by knitting flexible wire electrodes for the decontamination of chemical warfare agents Paper-based plasma sanitizers Fully written flexible potentiometric sensor using two-dimensional nanomaterial-based conductive ink Copper nanowires as conductive ink for low-cost draw-on electronics Large-area nanocontact printing with metallic nanostencil masks Disposable and flexible electrochemical sensor made by recyclable material and low cost conductive ink UV curable conductive ink for the fabrication of textile-based conductive circuits and wearable UHF RFID tags Instant inkjet circuits: lab-based inkjet printing to support rapid prototyping of ubicomp devices Review-inkjet printing of metal structures for electrochemical sensor applications Effect of atmospheric pressure dielectric barrier discharge air plasma on electrode surface The dynamics of ozone generation and mode transition in air surface micro-discharge plasma at atmospheric pressure Interplay among ozone and nitrogen oxides in air plasmas: rapid change in plasma chemistry The chemical product mode transition of the air DBD driven by AC power: a plausible evaluation parameter and the chemical behaviors Effects of ozone treatment on microflora of dried figs Effect of inkjet-printed flexible dielectric barrier discharge plasma on reduction of pathogen and quality changes on sliced cheese. LWT 143, 111128 This work was supported by the R&D Program of 'Plasma Advanced Technology for Agriculture and Food J.K., S.P. and W.C. conceived the study. J.K. conducted investigation and prepared original draft. S.P. participated in preparing the original draft. W.C. did the concept development, supervised the study and revision of the manuscript. The authors declare no competing interests. Supplementary Information The online version contains supplementary material available at https:// doi. org/ 10. 1038/ s41598-021-91720-3.Correspondence and requests for materials should be addressed to W.C. Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.