key: cord-0802371-l8yaervj authors: Besutti, Giulia; Pellegrini, Massimo; Ottone, Marta; Cantini, Michele; Milic, Jovana; Bonelli, Efrem; Dolci, Giovanni; Cassone, Giulia; Ligabue, Guido; Spaggiari, Lucia; Pattacini, Pierpaolo; Fasano, Tommaso; Canovi, Simone; Massari, Marco; Salvarani, Carlo; Guaraldi, Giovanni; Rossi, Paolo Giorgi title: The impact of chest CT body composition parameters on clinical outcomes in COVID-19 patients date: 2021-05-14 journal: PLoS One DOI: 10.1371/journal.pone.0251768 sha: cdeac9b9c880a0bf3d76c932f9ace0aa49778e07 doc_id: 802371 cord_uid: l8yaervj We assessed the impact of chest CT body composition parameters on outcomes and disease severity at hospital presentation of COVID-19 patients, focusing also on the possible mediation of body composition in the relationship between age and death in these patients. Chest CT scans performed at hospital presentation by consecutive COVID-19 patients (02/27/2020-03/13/2020) were retrospectively reviewed to obtain pectoralis muscle density and total, visceral, and intermuscular adipose tissue areas (TAT, VAT, IMAT) at the level of T7-T8 vertebrae. Primary outcomes were: hospitalization, mechanical ventilation (MV) and/or death, death alone. Secondary outcomes were: C-reactive protein (CRP), oxygen saturation (SO2), CT disease extension at hospital presentation. The mediation of body composition in the effect of age on death was explored. Of the 318 patients included in the study (median age 65.7 years, females 37.7%), 205 (64.5%) were hospitalized, 68 (21.4%) needed MV, and 58 (18.2%) died. Increased muscle density was a protective factor while increased TAT, VAT, and IMAT were risk factors for hospitalization and MV/death. All these parameters except TAT had borderline effects on death alone. All parameters were associated with SO2 and extension of lung parenchymal involvement at CT; VAT was associated with CRP. Approximately 3% of the effect of age on death was mediated by decreased muscle density. In conclusion, low muscle quality and ectopic fat accumulation were associated with COVID-19 outcomes, VAT was associated with baseline inflammation. Low muscle quality partly mediated the effect of age on mortality. Introduction of individuals (https://www.garanteprivacy.it). Furthermore, property of the data remains of the patient, who gave consent to use data for the objective of the study. Thus, the data underlying this study are available on request to researchers who intend to conduct research in the respect of confidentiality (even if anonymous data are provided, they should be published in aggregated form) and for studies with objectives consistent with those of the original study. In order to obtain data, approval must be obtained from the Area Vasta Emilia Nord (AVEN) Ethics Committee, who would check the consistency of the objective and planned analyses and would then authorize us to provide aggregated or anonymized data. Data access requests should be addressed to the Ethics Committee at CEReggioemilia@ausl.re.it as well as to the authors at the Epidemiology unit of AUSL -IRCCS of Reggio Emilia at info.epi@ausl.re.it, who are the data guardians. including hospitalization, mechanical ventilation (MV) or death, and death alone. We also explored the association between body composition parameters and biomarkers of disease progression at emergency room presentation: oxygen saturation and extension of parenchymal involvement at CT for the lung damage, and C-reactive protein for the inflammatory reaction. Through a mediation analysis of the factors associated with age and death, secondly, we evaluated whether the effect of age on death is partly mediated by body composition. In the Reggio Emilia province (Northern Italy, 532,000 inhabitants, six hospitals), the first case of SARS-CoV-2 infection was diagnosed on 27 February 2020. As of 13 March 2020, there were 1,154 RT-PCR-confirmed COVID-19 patients in the province, with the daily number of new cases rising steadily. This observational study was approved by the Area Vasta Emilia Nord Ethics Committee on 7 April 2020 (protocol number 2020/0045199) and performed in accordance with the ethical standards of the Declaration of Helsinki. Given the retrospective nature of the study, the Ethics Committee authorizes the use of a patient's data without his/ her written informed consent if all reasonable efforts have been made to contact that patient. All consecutive patients were included who presented to the provincial emergency rooms (ERs) between 27 February and 13 March 2020 for suspected COVID-19: these underwent chest CT at ER presentation and tested positive on RT-PCR for SARS-CoV-2 within 10 days. During the COVID-19 outbreak, virtually all symptomatic patients with suspected COVID-19 pneumonia were referred to CT. Patients with CT scans not suitable for different post-processing evaluations were excluded from specific study analyses, e.g., CTs with a small field of view were not suitable for evaluation of subcutaneous adipose tissue, CTs of patients with thoracic lipomas were excluded from the evaluation of fat compartments, and CTs with artifacts due to pacemakers or other implants were not suitable for pectoral muscle segmentation. The main outcomes considered were death, hospitalization, and death or mechanical ventilation while being a COVID-19 patient. We included all outcomes occurring between ER presentation and before symptom remission and two negative RT-PCR tests or end of follow up, i.e., 21 April 2020. Date of symptom onset, diagnosis, hospitalization, and death were retrieved from the COVID-19 Surveillance Registry, coordinated by the Italian National Institute of Health and implemented in each Local Health Authority [33] . Registry data were linked with the hospital radiology information system to search for CTs performed at or after the onset of COVID symptoms and with hospital discharge databases to collect information on comorbidities. The Charlson Index was calculated based on hospital admissions in the previous 10 years [34] . BMI was calculated whenever patient height and weight registered within six months preceding COVID-19 diagnosis were available from the hospital information systems. Diabetes was ascertained through linkage with the local Diabetes Registry [35] . The need for invasive or non-invasive MV during hospitalization was manually collected from medical records. At ER presentation the levels of C-reactive protein, lactate dehydrogenase (LDH), white blood cell, lymphocyte, neutrophil, and platelet counts were routinely collected. Oxygen saturation level was also recorded for patients who had an arterial blood gas analysis before being provided with oxygen support. The tests were carried out in the Hospital Clinical Laboratories with routine automated methods. CT scans were performed using one of three scanners (128-slice Somatom Definition Edge, Siemens Healthineers; 64-slice Ingenuity, Philips Healthcare; 16-slice GE Brightspeed, GE Healthcare) without contrast media injection, with the patient in supine position during endinspiration. Scanning parameters were tube voltage 120 KV, automatic tube current modulation, collimation width 0.625 or 1.25 mm, acquisition slice thickness 2.5 mm, and interval 1.25 mm. Images were reconstructed with a high-resolution algorithm at slice thickness 1.0/1.25 mm. To evaluate COVID-19 pneumonia extension, CT scans were retrospectively reviewed by a chest radiologist with 15-year experience (LS), who graded extension of pulmonary lesions using a visual scoring system (< 20%, 20-39%, 40-59%, � 60%) [26] . To evaluate body composition parameters, CT images were retrospectively analyzed by a single trained image analyzer (EB) supervised by a senior radiologist (PP), both blinded to clinical data and outcomes, by using the OSIRIX-Lite software V5.0 (Pixmeo, Sarl, Switzerland) (S1 Fig). As measures of sarcopenia, pectoralis muscle cross-sectional area (cm 2 ) and mean density (Hounsfield Unit, HU) were obtained selecting a single axial slice directly superior to the aortic arch and manually contouring both pectoralis major and minor on the right side (or on the left side when a defibrillator was present on the right), after applying a density range of -29 to 150 HU [36] . For total, subcutaneous, visceral, and intermuscular adipose tissue areas (TAT, SAT, VAT, and IMAT), a single slice at the level of the seventh to eighth thoracic vertebrae (T7-T8) was selected and a density range from -190 to -30 HU was applied. Fat compartments were measured through autosegmentation, with manual contour correction when necessary [27] . Mean liver and spleen attenuation values (HU) were obtained by drawing nine regions of interest (ROIs) in the liver and three ROIs in the spleen, paying attention to avoid vessels, bile ducts, focal lesions, focal fatty changes, and visceral margins. For all retrospective measures, a second measurement was obtained in a sample of 15 consecutive patients by the same reader after two months, in order to test intrareader agreement. Continuous variables are reported as median and interquartile range, and categorical variables as proportions. CT body composition parameters were considered as continuous variables. We calculated Spearman correlation to assess the association among different fat distribution indices as well as between age and CT body composition parameters. We checked the linearity between continuous predictor variables and the logit of the outcome, and univariate logistic regression analyses were performed to identify the main CT body composition parameters influencing adverse outcomes (hospitalization, MV or death, death alone) in COVID-19 patients. For these parameters and for each outcome, we applied a multivariate logistic model adjusted for sex, age, and calendar period (in weeks since the beginning of the outbreak). We choose not to adjust for patient conditions at disease onset since these could be causally linked to body composition. Furthermore, we did not adjust for cardiovascular and metabolic pre-existing conditions because they can be mediators in the relationship between body composition and outcomes. Hospitalization, mechanical ventilation (MV) and/or death, and mortality at 40 days odds ratios (OR) with 95% confidence intervals (95% CI) are reported for unit increase of CT body composition parameters (HU for pectoral density and cm 2 for adipose tissue variables). Only the OR of IMAT for mortality is reported for IMAT quartiles. As sensitivity analyses, we restricted the sample to patients with no comorbidities, diabetes only, and cardiovascular comorbidities only. We also tested the association between body composition and disease severity at ER presentation using the following biomarkers: CRP as an indicator of cytokine storm intensity; SO2 and CT disease extension as indices of the degree of lung parenchyma involvement. The associations were investigated using multivariate linear regression models adjusted for sex, age, and calendar period. Lastly, we analyzed the relationship between age and body composition parameters. A mediation analysis was conducted to assess to what degree body composition parameters could explain the effect of age on death by using logit model adjusted for sex, age, and calendar period. This analysis subdivided the total effect into indirect effects representing the causal mechanism through body composition, as opposed to direct effects represented by all other mechanisms [37] . Intrareader agreement was evaluated by Spearman's rank correlation coefficient and respective p-value. Data analysis was performed using Stata 13.0 SE (Stata Corporation, Texas, TX). Of the 488 RT-PCR-positive patients presenting to the ER in the time period under study, we included 318 consecutive patients (median age 65.7 years, females 37.7%) satisfying the inclusion criteria (Fig 1) . The remaining 170 patients did not undergo CT scan primarily because chest Xrays and clinical presentation did not suggest pneumonia, and none of them died or received MV during follow up. Patient characteristics are reported in Table 1 Relationship between CT fat distribution parameters and BMI. Association of CT fat distribution parameters with BMI was estimated only for patients with an available BMI measured within six months previous to ER presentation (n = 88). Of the CT parameters describing fat distribution, the strongest association with BMI was for TAT (r = 0.706, p<0.001), which we chose over SAT as a measure of general adiposity. TAT was strongly associated with SAT (r = 0.959, p <0.001) while the associations between IMAT and VAT and both BMI and TAT were weaker (S1 Table) . Distribution of body composition parameters according to outcome. In a preliminary analysis (S2 Table) , we evaluated the association between body composition parameters expressed in quartiles and outcomes, observing a linear relationship of all parameters with hospitalization and MV or death. For death alone, pectoral muscle density and VAT were linearly associated and almost no association was observed for TAT, while the relationship with IMAT was better described by a model including IMAT quartiles. As no association was found with the three outcomes, pectoral muscle area and liver-to-spleen ratio were dropped in subsequent analyses. Intrareader agreement. Intrareader agreement was excellent for pectoral muscle area and density and for fat compartment areas (Spearman rho between 0.96 and 1.00, p<0.001) and moderate for liver-to-spleen ratio (Spearman rho = 0.78, p = 0.001). After correcting for age, sex and calendar period, increased muscle density showed a protective effect on hospitalization (OR for one HU increase = 0.967; 95%CI = 0.935-1.000), death (OR for one HU increase = 0.962; 95%CI = 0.922-1.004) and MV or death (OR for one HU increase = 0.964; 95%CI = 0.934-0.996) (Fig 2) . Increased TAT was a risk factor for hospitalization and for MV or death (OR for one cm 2 increase = 1.005; 95%CI = 1.002-1.008 and OR for one cm 2 increase = 1.005; 95%CI = 1.002-1.009, respectively), but only a small excess was appreciable for the risk of death (OR for one cm 2 increase = 1.002; 95%CI = 0.998-1.007). Increased VAT and IMAT were significantly associated with hospitalization (OR for one cm 2 increase = 1.028, 95%CI = 1.008-1.049 and OR for one cm 2 increase = 1.028, 95%CI = 1.006-1.050, respectively) and MV or death (OR for one cm 2 increase = 1.026, 95%CI = 1.008-1.043 and OR for one cm 2 increase = 1.024, 95%CI = 1.005-1.043, respectively). Considering VAT and IMAT as risk factors for death alone, the associations were weaker and the excesses were possibly due to random fluctuations (OR for one cm 2 increase of VAT = 1.017, 95%CI = 0.997-1.038, OR for the last quartile of IMAT vs. first quartile = 1.615, 95%CI = 0.431-6.053). Except for VAT, the effect of body composition parameters on outcomes decreased or disappeared when excluding all comorbidities, cardiovascular diseases only, and diabetes only, but not when excluding previous cancer diagnosis only (S3 Table) . Multivariate logistic models adjusted for sex, age, and calendar period (weeks since the beginning of the outbreak). A) Mortality OR for unit increase with 95% CI for unit increase of pectoral muscle density (HU), VAT (cm 2 ), and TAT (cm 2 ). B) Mortality OR with 95% CI for IMAT quartiles (cm 2 ). C) Hospitalization OR with 95% CI for unit increase of pectoral muscle density (HU), VAT (cm 2 ), IMAT (cm 2 ), and TAT (cm 2 ). D) Mechanical ventilation and/or death OR with 95% CI for unit increase of pectoral muscle density (HU), VAT (cm 2 ), IMAT (cm 2 ), and TAT (cm 2 ). OR, Odds Ratio; CI, Confidence Interval; TAT, total adipose tissue area; VAT, visceral adipose tissue area; IMAT, intermuscular adipose tissue area. https://doi.org/10.1371/journal.pone.0251768.g002 TAT, VAT, and IMAT in our sample were linearly associated with all secondary outcomes (CRP, SO2, and CT disease extension at ER presentation). Instead, pectoral muscle density was linearly associated only with CT disease extension and SO2 but not with CRP (S2 and S3 Figs) . Consequently, in multivariate linear regression models corrected for age, sex and calendar period, all body composition parameters were used as continuous variables, with the exception of pectoral muscle density, which was used in quartiles in the model for CRP. As reported in Table 2 , in multivariable models a decreasing pectoral muscle density was linearly associated with increasing lung involvement (increasing CT disease extension and decreasing SO2), while the second and the fourth pectoral muscle density quartiles were inversely associated with CRP as an indicator of systemic inflammation. Increasing TAT, VAT, and IMAT were associated with increasing CT disease extension and decreasing SO2, while the association with CRP was higher for VAT (R squared 0.12 for VAT and 0.09 for TAT). As part of the mediation analysis, to determine whether the effect of age on Covid-19 prognosis was at least partially mediated by a worse body composition, we analyzed the association between CT body composition parameters expressed in quartiles and age. Pectoralis muscle density linearly decreased with age. VAT and IMAT increased with age, while the relationship between TAT and age was more complex, without a clear association (S4 Table) . Consequently, a possible mediation effect on death was evaluated for VAT, IMAT, and pectoralis muscle density, after correcting for sex and calendar period. No mediation effect was found for VAT and IMAT, even if they were associated with both age and death. Instead, the effect of age on death decreased when adding pectoralis muscle density to the model. This analysis suggests that approximately 3% of the effect of age on death was mediated by decreased muscle density (Fig 3) . This observational study showed an association of chest CT measures of fat distribution and muscle quality with a continuum of outcomes representing COVID-19 progression. Chest CT scans routinely performed in symptomatic COVID-19 patients at ER presentation were used to generate body composition measures. Increasing thoracic TAT as a measure of general adiposity as well as VAT and IMAT, representing ectopic fat compartments, were associated with increased risk of hospitalization, the composite of death and MV, and, to a lesser degree, death alone. A higher pectoral density, representing better muscle quality, exhibited a protective effect on the same outcomes. Pectoral muscle area, and liver-to-spleen ratio as a measure of liver steatosis, were not associated with these outcomes. A few studies have validated thoracic CT to assess ectopic fat areas [38] , and pectoral muscle area and density have been used to study the effect of muscle wasting on the outcomes of different diseases [30] [31] [32] . Our data are consistent with recently published studies on COVID-19 patients. In a small observational study of 51 patients, a predictive model for hospitalization including VAT and SAT measured on abdominal CT along with clinical variables, performed better than the model that included clinical variables only [39] , while, in a study of 165 patients, increasing abdominal VAT was associated with MV or death [23] . In another small cohort of hospitalized patients, increasing upper abdominal VAT on chest CT was associated with higher risk of intensive care admission or MV [19] , while in a study of 150 patients who performed chest CT at the ER, upper abdominal VAT was independently associated with the need for intensive care [20] . Higher VAT and lower lumbar skeletal muscle density on abdominal CT of 143 hospitalized COVID-19 patients were independently associated with critical illness [5] . Finally, in a small study of 58 patients, an increasing ratio between waist circumference (as a measure of fat) and paraspinal muscle circumference (as a measure of muscle), measured at T12 level, was associated with a higher probability of MV [40] . In comparison with the present investigation, all cited studies were conducted on smaller cohorts, for the most part including hospitalized patients only, and with a restricted spectrum of intermediate and final outcomes. Furthermore, in some of these studies body composition parameters were measured on patients undergoing abdominal CT scans for specific indications (e.g., abdominal pain), thus in a selected population with specific clinical characteristics [5, 39] . Besides the impact of body composition parameters on COVID-19 progression, we investigated their association with biomarkers of disease severity at ER presentation, trying to distinguish between the two main courses of COVID-19 progression: lung involvement and inflammatory response. Decreasing pectoral muscle density and increasing TAT, VAT, and IMAT were all associated with lung parenchyma involvement reflected by SO2 and CT extension, while higher VAT showed the strongest association with CRP, a proxy of the systemic inflammatory response. While the impact of other CT body composition parameters on COVID-19 outcomes was much less evident when excluding patients with comorbidities, the effect of VAT remained substantially similar. These sensitivity analyses suggest that body composition and comorbidities, which are linked in a complex interplay, may be on the same causal sequence in determining COVID-19 outcomes, with the exception of VAT, which may also act through different pathways. Overall, our results confirm the association between adipose tissue, especially ectopic fat, and the inflammatory state driving disease severity and progression in COVID-19. VAT is known to be an endocrine organ with pro-inflammatory characteristics [13, 21] and different studies have measured higher levels of circulating inflammatory cytokines in people with visceral adiposity compared with lean individuals [13] , leading to the hypothesis that they are susceptible to developing a more powerful cytokine storm during COVID-19 progression [41] . Moreover, abdominal obesity can profoundly alter pulmonary function by diminishing exercise capacity and augmenting airway resistance, resulting in increased respiratory fatigue [42] . Also, pectoral muscle density is a measure of respiratory muscle capacity, which is of central importance in COVID-19 patients undergoing MV. In fact, in these patients, death is frequently the consequence of muscle fatigue. The risk of muscular insufficiency increases with age, since sarcopenia is one of the main hallmarks of ageing [15, 43] . Accordingly, pectoral muscle density in our study decreased with age, while VAT and IMAT increased. Even if associated with muscle deterioration and function [30, 31] , IMAT is still a measure of ectopic fat deposition rather than a measure of the quality of the muscle itself. This association with age, along with the association between these parameters and COVID-19 outcomes, justified our choice to explore the possibility of a mediating effect of body composition on the strong relationship between age and COVID-19 outcome. We found that approximately 3% of the effect of age on death was mediated by decreased pectoral muscle density, while no mediation effect was found for VAT or IMAT, leading to the hypothesis that ectopic fat may belong to another causal pathway than that linking age, muscle quality, and death. This opens up the way for new study hypotheses on the pathogenetic mechanisms in COVID-19 disease progression. This study has several limitations. First, data collection was retrospective and chest CT body composition parameters are less validated than those obtained from abdominal CT at L3 level [18, 27, 28] . Body composition was collected at ER admission, i.e., 2 to 10 days after symptom onset. Therefore, we cannot exclude that body composition was already altered by disease progression, leading to an inversion of the cause-effect interpretation. In fact, patients with more severe forms of COVID-19 may experience loss of muscle mass [44, 45] . Nevertheless, the median time from symptom onset and ER visit in our study was 7 days, a very short time to see important changes in CT-measured body composition. As data on patient height were mostly lacking, it was not possible to calculate the skeletal muscle index, a marker of muscle quantity more reliable than the skeletal muscle area. For this reason, we may argue that pectoral muscle quality seems to be more meaningful than pectoral muscle quantity. However, more studies are needed, especially because a recent study showed that lower pectoral muscle area and index were associated with COVID-19 outcomes [22] . Due to the lack of data on height, BMI was available only in a subset of patients. However, TAT allowed us to have a reliable measure of general adiposity, and ectopic fat depots, particularly VAT, are generally stronger outcome predictors than BMI when studying cardiometabolic risk and associated systemic inflammatory state [46] . We had to exclude 170 COVID-19 patients for whom CT was not available, mostly because chest X-rays and clinical presentation did not suggest pneumonia. Consequently, some potentially eligible patients were missed. This may have occurred among the less severe cases, who were referred to household isolation. This may have introduced a selection bias, especially if we envisage a possible role of body composition and above all obesity as a known risk factor for severe disease, in the decision to perform CT scans. This bias may have led to an underestimation of the association between body composition and patient outcomes. Finally, the described associations may not be strong enough to be used as prognostic biomarkers in guiding clinical decision making. In conclusion, we confirmed the association between low muscle quality and ectopic fat accumulation with COVID-19 severity and outcomes. VAT was particularly associated with inflammatory reaction in COVID-19, while all indices including pectoral muscle density were associated with parenchymal involvement. Low muscle quality appears to be one of the mechanisms for the extremely strong effect of age on COVID-19 mortality. Despite the limits of this observational study, the consistency of results observed on different outcomes and indicators, including disease severity markers and medium-term outcomes, together with the results of previous smaller studies, make a causal relation plausible. Supporting information S1 Table. Correlations between BMI and CT fat distribution parameters. Spearman correlations between BMI and CT fat distribution parameters. Spearman's rank correlation coefficients are reported with respective p-values between brackets. CT: Computed Tomography; IMAT: intermuscular adipose tissue area; SAT: subcutaneous adipose tissue area; TAT: total adipose tissue area; VAT: visceral adipose tissue area. (PDF) S2 Table. Preliminary analysis to verify the relationship and linearity between CT body composition parameters (quartiles) and the outcome, by an unadjusted logit regression model. β coefficients with respective 95% confidence intervals are reported. CT: Computed Tomography; IMAT: intermuscular adipose tissue area; L/S: liver to spleen ratio; TAT: total adipose tissue area; VAT: visceral adipose tissue area. (PDF) S3 Table. Multivariate logistic model adjusted for sex, age, and calendar period (weeks since the beginning of the outbreak). Hospitalization, ventilation and/or death, and mortality OR with 95% CI are reported for unit increase of CT body composition parameters (HU for pectoral density and cm 2 for VAT and TAT) and for IMAT quartiles. The same model is reported after excluding all patients with comorbidities, only patients with diabetes, only patients with cardiovascular comorbidities, including hypertension, and only patients with previous cancer diagnosis. OR adj: adjusted for age, sex, and calendar period. HU: Hounsfield Unit; IMAT: intermuscular adipose tissue area; TAT: total adipose tissue area; VAT: visceral adipose tissue area. a as continuous variable (for one unit increase). (PDF) S4 Table. Distribution of CT body composition parameters expressed in quartiles in different age quartiles. P � Pearson's chi-squared test and p-value for the hypothesis of independence in the two-way table. IMAT: intermuscular adipose tissue area; TAT: total adipose tissue area; VAT: visceral adipose tissue area. (PDF) Clinical Characteristics of Coronavirus Disease 2019 in China Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy COVID-19) Dashboard Management of Critically Ill Adults With COVID-19 Visceral Adiposity and High Intramuscular Fat Deposition Independently Predict Critical Illness in Patients with Sars-COV-2 Covid-19 in Critically Ill Patients in the Seattle Region-Case Series Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Obesity and SARS-CoV-2: a population to safeguard Obesity in patients younger than 60 years is a risk factor for Covid-19 hospital admission Obesity and Higher Risk for Severe Complications of Covid-19: What to do when the two pandemics meet Obesity is associated with higher risk of intensive care unit admission and death in influenza A (H1N1) patients: a systematic review and metaanalysis High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease Myosteatosis and Myofibrosis: relationship with aging, inflammation and insulin resistance Myosteatosis in the Context of Skeletal Muscle Function Deficit: An Interdisciplinary Workshop at the National Institute on Aging Myosteatosis: a relevant, yet poorly explored element of sarcopenia Diagnostic Criteria and Clinical Outcomes in Sarcopenia Research: A Literature Review A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care The role of visceral adiposity in the severity of COVID-19: Highlights from a unicenter cross-sectional pilot study in Germany. Metabolism Visceral fat shows the strongest association with the need of intensive care in patients with COVID-19 Immunopathology of adipose tissue during metabolic syndrome The prognostic value of pneumonia severity score and pectoralis muscle Area on chest CT in adult COVID-19 patients Visceral fat is associated to the severity of COVID-19 COVID-19 rise in Younger adults with Obesity: Visceral Adiposity can predict the Risk. Obes Silver Spring Md Visceral adiposity elevates the risk of critical condition in COVID-19: A systematic review and meta-analysis. Obes Silver Spring Md Accuracy of CT in a cohort of symptomatic patients with suspected COVID-19 pneumonia during the outbreak peak in Italy Chest Fat Quantification via CT Based on Standardized Anatomy Space in Adult Lung Transplant Candidates Single cross-sectional area of pectoralis muscle by computed tomography-correlation with bioelectrical impedance based skeletal muscle mass in healthy subjects Relationship of Thoracic Adipose Tissue Depots with Coronary Atherosclerosis and Circulating Inflammatory Biomarkers Quantitative Computed Tomography Measures of Pectoralis Muscle Area and Disease Severity in Chronic Obstructive Pulmonary Disease. A Cross-Sectional Study Computed tomography-derived area and density of pectoralis muscle associated disease severity and longitudinal changes in chronic obstructive pulmonary disease: a case control study Skeletal muscle quality as assessed by CT-derived skeletal muscle density is associated with 6-month mortality in mechanically ventilated critically ill patients Survival of hospitalized COVID-19 patients in Northern Italy: a population-based cohort study by the ITA-COVID19 Network A new method of classifying prognostic comorbidity in longitudinal studies: development and validation Building a population-based diabetes register: An Italian experience Preoperative Pectoralis Muscle Quantity and Attenuation by Computed Tomography Are Novel and Powerful Predictors of Mortality After Left Ventricular Assist Device Implantation Causal mediation analysis in the context of clinical research Pectoralis muscle area and mortality in smokers without airflow obstruction Visceral adipose tissue in patients with COVID-19: risk stratification for severity Body composition on low dose chest CT is a significant predictor of poor clinical outcome in COVID-19 disease-A multicenter feasibility study COVID-19 and immunotherapy: the complex relationship! Immunotherapy Obesity and its Implications for COVID-19 Mortality Sarcopenia in older adults Body Composition Findings by Computed Tomography in SARS-CoV-2 Patients: Increased Risk of Muscle Wasting in Obesity Survivorship after COVID-19 ICU stay Inflammatory links between obesity and metabolic disease We thank Jacqueline Costa for the English language editing. The following are the members of the Reggio Emilia COVID-19 Working Group: Massimo Costantini, Roberto Grilli, Massimiliano Marino, Giulio Formoso, Debora Formisano, Paolo Giorgi Rossi, Emanuela Bedeschi, Cinzia Perilli, Elisabetta La Rosa, Eufemia Bisaccia, Ivano Venturi, Massimo Vicentini, Cinzia