key: cord-0789585-o7htdset authors: Vahid-Ansari, Faranak; Albert, Paul R. title: Rewiring of the Serotonin System in Major Depression date: 2021-12-16 journal: Front Psychiatry DOI: 10.3389/fpsyt.2021.802581 sha: a5cb4a31e507b5b526973810450f9253dc1ea719 doc_id: 789585 cord_uid: o7htdset Serotonin is a key neurotransmitter that is implicated in a wide variety of behavioral and cognitive phenotypes. Originating in the raphe nuclei, 5-HT neurons project widely to innervate many brain regions implicated in the functions. During the development of the brain, as serotonin axons project and innervate brain regions, there is evidence that 5-HT plays key roles in wiring the developing brain, both by modulating 5-HT innervation and by influencing synaptic organization within corticolimbic structures. These actions are mediated by 14 different 5-HT receptors, with region- and cell-specific patterns of expression. More recently, the role of the 5-HT system in synaptic re-organization during adulthood has been suggested. The 5-HT neurons have the unusual capacity to regrow and reinnervate brain regions following insults such as brain injury, chronic stress, or altered development that result in disconnection of the 5-HT system and often cause depression, anxiety, and cognitive impairment. Chronic treatment with antidepressants that amplify 5-HT action, such as selective serotonin reuptake inhibitors (SSRIs), appears to accelerate the rewiring of the 5-HT system by mechanisms that may be critical to the behavioral and cognitive improvements induced in these models. In this review, we survey the possible 5-HT receptor mechanisms that could mediate 5-HT rewiring and assess the evidence that 5-HT-mediated brain rewiring is impacting recovery from mental illness. By amplifying 5-HT-induced rewiring processes using SSRIs and selective 5-HT agonists, more rapid and effective treatments for injury-induced mental illness or cognitive impairment may be achieved. Major Depressive Disorder (MDD) is characterized by a persistent low mood as a core symptom. The prevalence of depression is about 1 in 5 of the general population, affecting nearly 300 million people worldwide (1) , and its prevalence has increased during the COVID-19 pandemic (2) . The most recent global data place MDD as the third greatest source of disability, after low back pain and headache disorders (3) . The currently available antidepressant drugs (ADs) have several disadvantages, including delayed efficacy (4-8 weeks) (4), numerous adverse effects that reduce tolerability (0.64-to 0.83-fold) and modest efficacy (1.15-to 1.55-fold) compared to placebo (5, 6) that limit therapeutic effectiveness to ∼30% remission (7) . Among approved ADs, selective serotonin reuptake inhibitors (SSRIs) are the first-line treatment, and almost all target 5-HT and other monoamine systems (8). However, it is not fully understood why, despite brain levels of serotonin increasing with hours after SSRI administration, behavioral improvement takes weeks to be observed. This delay might reflect neuro-adaptive changes in pre-and post-synaptic cells, including long-term changes in gene expression, protein translation, or ultimately in neuroplasticity (9, 10) . As it is diagnosed by a diversity of symptoms in the absence of biomarkers, major depression remains heterogeneous. A better understanding of the mechanism/s underlying the development of depression and its phenotypes will be critical to develop a more efficient, rational clinical approach to targeted treatment (10, 11) . Unraveling the pathophysiology of depression is a complex challenge. Not only are syndromes heterogeneous and the etiology diverse, but important symptoms such as guilt and suicidality cannot be reproduced in animal models. Nevertheless, other symptoms like anxiety, anhedonia, or behavioral despair have been modeled in animals (12) (13) (14) (15) , and these, together with clinical data, are providing insight into the neurobiology of mood disorders (16, 17) and antidepressant action (18) . Recent studies combining behavioral, molecular, and functional imaging in transgenic mice have revealed that alterations in the functional connectivity of specific subpopulations of neurons forming a neural circuit result in depression-like behaviors (19) (20) (21) (22) (23) . Understanding the underlying causes of these functional changes might offer a crucial new direction for the development of novel treatments for MDD in humans. In pre-clinical and clinical studies, deficits in serotonergic transmission including reductions in serotonin (5hydroxytryptamine, 5-HT) neurons and their projections and increases in 5-HT autoinhibition have been associated with MDD and also with impaired responses to antidepressants (24-36). 5-HT is a monoamine neurotransmitter found mainly in blood platelets and the central nervous system (CNS) in animals and humans. It is widely implicated in mood, emotion, and happiness (37). The monoamine-serotonin hypothesis for depression was proposed in the 1960s suggesting that brain deficiency of monoamines, including 5-HT, triggers the onset of depression (38-40). It continues to guide research into the causes and treatments for depression, anxiety, and other mental illnesses. The 5-HT neurons originating in the raphe midbrain innervate several regions of the brain (41-43). In 5-HT neurons, the enzyme tryptophan hydroxylase type 2 (TPH2) converts the amino acid tryptophan to 5-hydroxytryptophan (5-HTP) to catalyze the rate-limiting step in 5-HT biosynthesis (44-46). Subsequently, the L-aromatic amino acid decarboxylase (AADC) enzyme generates 5-HT. Alterations in 5-HT neurotransmission have been implicated in the pathophysiology of depression and its treatment. Based on clinical evidence that depressive symptoms improve following specific blockade of the 5-HT transporter (5-HTT) (47), early research focused on the uptake site at the terminal targets (48). The forebrain projecting raphe nuclei include the dorsal (DRN) and median (MRN) raphe and contain a diversity of 5-HT and non-5-HT neurons, identified using viral-genetic, immunohistochemistry and electrophysiology methods (49-51). For example, a small population of 5-HT immune-positive cells are not co-labeled with 5-HT1A receptors (52, 53) while some non-5-HT cells (such as GABA neurons) are co-labeled (52). Some 5-HT neurons coexpress vesicular glutamate transporter-3 conferring glutamate neurotransmission and are implicated in anxiety behavior (54). Importantly, different projections of these neurons to target regions may confer stress susceptibility, depression or anxiety behaviors (36, 55, 56). Thus, the distinct properties of select 5-HT neuronal populations may confer behavioral phenotype and response to stress or injury. In addition to developmental innervation, a unique capacity of the 5-HT system to regenerate or alter its innervation of brain regions has been observed after neurotoxin, traumatic or ischemic brain damage in rodents (57-64). Changes in 5-HT innervation have also been observed in non-lesion conditions such as repeated stress rodent models of depression (65, 66) and Parkinsonism in rodents (67) and primates (68) . In post-mortem brain tissue from human depressed subjects, a reduction in 5-HT innervation has also been seen (32), although the functional role of these changes remains unclear. The extensive ascending and descending 5-HT network projects throughout the brain and spinal cord making synaptic or non-synaptic contacts that release 5-HT (69) (70) (71) . Actions of 5-HT are mediated by at least 14 different receptor subtypes (72) . It is believed that 5-HT axons prenatally initiate axon outgrowth concomitant with the onset of 5-HT synthesis (73, 74) . 5-HT axons form and grow in a targeted manner through guided pathfinding and arborization over several weeks. The 5-HT rich brain areas include cortical and sub-cortical regions. In addition, sensitive HPLC measurements of 5-HT and metabolites have shown that the metabolic activity of 5-HT fibers extending from DRN and MRN is parallels the tissue content of 5-HT (75). Therefore, it is expected that the alterations in 5-HT axons are associated with concomitant changes in 5-HT levels in the same brain region. A large body of studies has characterized the molecular determinants involved in the developmental mechanisms targeting raphe 5-HT projections to the forebrain, proposing that alterations in these processes may predispose to mood disorders (74) . Many of the transcription factors in the 5-HT gene regulatory network required for differentiation and maintenance of 5-HT neuronal subgroups have been extensively characterized, including Lmx1B, Pet-1/FEV, and others (76, 77) . These factors may also be involved in axonal outgrowth as shown for Lmx1B (78) ; conditional deletion of Lmx1B in 5-HT neurons resulted in the loss of axonal projections to the forebrain and spinal cord in mice. Cytoskeleton-associated proteins growthassociated protein 43 (GAP-43) and a microtubule-associated protein, stable tubule only polypeptide (STOP) are also required for the growth and elongation of the 5-HT axons (76) . In normal mice, GAP-43 is prenatally expressed on growing 5-HT axons; but in GAP-43 knockout mice, there is a loss of 5-HT immunoreactive innervation of the cortex and hippocampus (79). In the STOP knockout mice, 5-HT levels, as well as 5-HTT density and terminals, are reduced in projection areas such as hippocampus, but increased in the raphe suggesting impaired trafficking of 5-HT vesicles resulting in deficits in hippocampal neurogenesis, reduced anxiety, increased helplessness, and impaired cognitive function (80, 81) . Despite these deficits in 5-HT innervation, no significant difference in the number of dorsal raphe 5-HT neurons was observed in GAP-43 or in STOP knockouts compared to wild-type littermates. These results suggest that GAP-43 and STOP proteins are the key regulators of normal 5-HT outgrowth and innervation in healthy conditions. Concerning 5-HT axon pathfinding and guidance, Fenstermaker et al. (82) reported that Wnt signaling to planar cell polarity components is required for anterior to posterior axon projection and for proper orientation of 5-HT cell bodies in the raphe nuclei, using mice lacking individual planar cell polarity genes (82) . In addition, to guide the 5-HT axons along the midline and form the long-distance connectivity both Robo1/2 and Slit1/2 have key roles in the formation of major forebrain tracts as shown in knockout mouse lines (83, 84) . Genes involved in cell adhesion have also been implicated in 5-HT axonal outgrowth in development, including the Pcdh-α isoforms (85, 86) . In particular, loss of the αC2 isoform in serotonergic neurons, but not in 5-HT target brain regions, leads to abnormal projection and tiling of serotonergic axons, associated with increased depression-like behaviors (87) . Interestingly, differentiation of induced pluripotent stem cells from SSRI-resistant compared to SSRI-responsive depressed patients to a serotonergic phenotype resulted in deficiencies in Pcdh-α expression and neurite outgrowth in vitro (88) . More recently, an epigenome-wide association study of 150 monozygotic twins reported 428 differentially methylated genes associated with early-onset major depression, many of which are implicated in neurodevelopmental and cell adhesion genes including the protocadherin-α (Pcdh-α) gene cluster (89) . Taken together these studies implicate Pcdh-α genes in 5-HT axonal outgrowth, major depression and response to SSRI antidepressants. Early studies of 5-HT projections in the brain relied on a relatively insensitive formaldehyde-induced immunofluorescence method to visualize 5-HT (90) . Subsequent studies used labeling with [3H]5-HT or immunostaining for 5-HT to visualize 5-HT axons in brain sections (71, 91) . However, more recent studies have used the more sensitive approach of 5-HTT immunostaining to visualize 5-HT projections (92) . In addition, antibodies to TPH have been useful, particularly in human post-mortem brain sections (41). These studies have revealed that 5-HT fibers rarely branch and have a high density in many brain regions. A high density of 5-HT projections has been shown in the cerebral cortex and subcortical regions including striatum, hippocampus, entorhinal cortex and the NAc [core and caudal shell (93) ]. In a single fiber, there are several specialized boutons or varicosities where 5-HT is concentrated (91) . It has been estimated that there are around 6 × 10 6 varicosities/mm 3 in the rat cortex. In addition, each cortical neuron may receive around 200 varicosities (94, 95) . However, there is evidence of some non-5-HT producing neurons that transiently express 5-HTT during development in the thalamus identified by 5-HT uptake and in situ hybridization for 5-HTT RNA (96) . Using 5-HTT-cre mice to drive reporter gene expression, labeling was seen in dorsal thalamus, cingulate cortex, hippocampal CA3 neurons, retinal ganglion cells, superior olivary and cochlear nuclei during embryonic development and postnatally in medial prefrontal cortex (97) . These studies suggest that neurons that lack TPH can take up 5-HT and in the thalamus can store the 5-HT in vesicles for co-transmission with glutamate. On the other hand, chronic SSRI-induced blockade of 5-HTT leads to uptake and release of 5-HT by the dopamine transporter in DA neurons (98, 99) . Similar, l-DOPA treatment leads to DA uptake and release in 5-HT neurons (100), indicating cross-talk between monoamine systems at the level of co-transmission following chronic drug treatment. In addition to conventional synapses, serotonin is also released from varicosities into extracellular spaces with no target cell dendrites nearby (70, 101) , a process termed volume transmission (102, 103) . The non-synaptic release of 5-HT allows a paracrine transmission of serotonin to distal neurons and glia, particularly in the presence of 5-HT reuptake blockers, to activate highaffinity 5-HT receptors. Thus, both synaptic and non-synaptic 5-HT release may be implicated in the actions of raphe activation. As discussed below, activation by 5-HT of multiple 5-HT receptors engage several effector proteins to regulate neurite outgrowth, growth cone motility, synaptogenesis, and shape the dendritic spine and density in a wired brain. The above examples illustrate that to identify 5-HT neurons and their projections it is important to combine different approaches. Recently, several genetic approaches using transgenic mice 5-HT-specific promoters (including 5-HTT, TPH2, Pet-1) to drive the expression of reporter genes (such as LacZ, YFP) have been used in combination with immunostaining for 5-HT markers (5-HT, 5-HTT, TPH2) to identify 5-HT projections (104, 105) . These labeling approaches have been combined with anterograde and retrograde labeling techniques (106) to further define at a macroscopic level the neuroanatomy of the 5-HT system (56, [107] [108] [109] [110] [111] . For example, at the cellular level, dual retrograde tracing revealed that a small (10-20%) proportion of neurons innervate both nucleus accumbens and medial prefrontal cortex (112) . Single-cell biotin labeling has also been used to localize region-specific 5-HT/vGlut3 projections (113) . These results indicate that single 5-HT neurons can innervate multiple brain regions. For high-resolution visualization of 5-HT synapses, electron microscopic (EM) studies (91) and 3D reconstruction of 5-HTTpositive axons have been used to map the 5-HT boutons located proximal to excitatory or inhibitory synapses in limbic brain regions (114, 115) . Post-synaptic components of excitatory or inhibitory synapses form "triads". To finely dissect how 5-HT exerts its modulatory actions, asymmetrical synapses/excitatory triads were mostly localized in the hippocampus, cortex, mPFC while symmetrical synapse/inhibitory triads were enriched in the dorsal raphe nucleus (DR), ventral tegmental area (VTA), central and basolateral amygdala (CeA, BLA) (116, 117) . The combination of both (excitatory-inhibitory) was observed in areas like thalamic regions, bed nucleus of stria terminalis (BNST), and nucleus accumbens (NAc) (91, 114, 115) . The preferential proximity of 5-HT boutons to neurochemical excitatory/inhibitory synapses could therefore suggest that serotonergic axons projecting to one area may preferentially target local glutamatergic, interneurons, or both to modulate their activity. For example, the preferential proximity of 5-HT-positive axon terminals to GABA terminals engaged in symmetrical synapses in DR and amygdala sub-regions (CeA, BLA) suggests that 5-HT mainly modulates the activity of interneurons in DR and amygdala. In contrast, 5-HT axon terminals are mainly engaged in asymmetrical synapses in mPFC to modulate the activity of excitatory neurons. Therefore, alterations in 5-HT system activity which preferentially change the activity of different cell types in target brain regions could differentially impact behavioral output. Recently, using a semi-automated approach that combines immunohistochemistry and high-resolution confocal microscopy to label 5-HTT immunoreactive axons has allowed researchers to reconstruct the 5-HT axons in 3D through their distribution within limbic brain regions (114, 115) . Using this approach, the changes in 5-HT axon properties have been also determined in a model of post-stroke depression induced by focal ischemia in mice medial prefrontal cortex (mPFC), before and after treatment with chronic fluoxetine (64) . Imaging techniques have shown that the density and other features of 5-HT fibers can be altered during and after development. For example, Azmitia et al. (118) found that the density of serotonergic fibers is unusually high in the cerebral cortex of individuals suffering from autism spectrum disorders (118) . In contrast, post-mortem studies in adult subjects showed that depression is associated with reduced 5-HT innervation of the orbitofrontal cortex in addition to the loss of hippocampal volume (32). Liu and Nakamura (65) reviewed the effects of chronic stress on regeneration of noradrenaline (NA) and 5-HT axons following NA or 5-HT neurotoxin in adult rats (65) . They reported that, in contrast to NA axons, 5-HT axons are more dynamic in morphological plasticity as they are easily affected by stress and rapidly regenerate after damage. 5-HT axons also exert an inhibitory effect on NA axon regeneration. Furthermore, in a depression model induced by 9-week administration of interferon-α to adult male Sprague-Dawley rats, the density of 5-HT-stained axons decreased specifically in the ventral medial prefrontal cortex and amygdala (119) . Thus, using new imaging approaches could promote the early diagnosis and development of more effective treatments for depression based on the morphological plasticity of 5-HT axons. Recent scientific evidence has focused on the complexities of neurotransmitter (NT) communication in the wired brain. In this regard, the importance and relevance of both fasttargeted synaptic and slow-non synaptic transmission has been recognized. The concept of non-synaptic communication or volume transmission in the brain was proposed in the 1980s (102, 120) , and shown for monoamines including 5-HT (117, 121) . In 1994, Bjelke et al. showed indirect evidence that amphetamineinduced dopamine release may diffuse long distances following fiber tracts, possibly to the contralateral hemisphere (122) . This is supported by the diffusion of Texas-Red-labeled dextran injection in the striatum, which diffuses along fiber tracts to the contralateral brain hemisphere (123) . More recently, based on the half-life of dopamine it has been calculated that it might diffuse up to 7 microns (124) . With newer, more sensitive indicators specific for dopamine and other monoamines (125), it may be possible to detect the diffusion of dopamine from non-synaptic release. Using techniques such as receptor autoradiography, immunohistochemistry, and EM imaging has shown for monoamines a mismatch between the location of NTs relative to synaptic structures (103, 126, 127) . For example, Martin et al. (128) showed that 94% of tyrosine hydroxylase-positive boutons in macaque prefrontal cortex Area 10 had no identifiable synaptic association in non-human primates (129) . Rice et al. (130) modeled dopamine release to show that the presence of dopamine outside of the synaptic zone in the nigrostriatal pathway could be due to the spillover from the synaptic cleft and release into the surrounding extracellular space. Dopamine concentration remains sufficiently high to activate extra-synaptic dopamine receptors on surrounding cells (130) . Mapping studies using diverse techniques also identified varicosities filled with NT granules localized along the axons. This evidence supports the existence of NTs in a high volume in non-terminal axon segments. Rodent studies showed that the main action of modulatory NTs including acetylcholine, norepinephrine, dopamine, and serotonin in the brain is through volume transmission via non-synaptic contacts of varicosities within axons (126) . After the first evidence supporting the concept of volume transmission in dopamine release in the brain by Fuxe and Ungerstedt (131) , similar approaches were used for the 5-HT cell bodies located in dorsal raphe upon treatment of rats with 5-HT reuptake blocker clomipramine (132) . The release of 5-HT from vesicles in the soma, dendrites, and/or axonal varicosities could also be independent of targeted synapses (133) (134) (135) . More directly, parachloroamphetamineinduced non-synaptic somatodendritic release of 5-HT has been visualized using 3-photon microscopy of dorsal raphe sections (136) . Somatodendritic and axonal release of 5-HT can be triggered by neuron depolarization, the stimulation of Ltype calcium channels, activation of glutamatergic receptors, and/or by activation of 5-HT2 receptors (137) . Furthermore, somatodendritic 5-HT release can also regulate the rate of discharge of serotonergic neurons and their tonic activity, via somatodendritic 5-HT1A and 5-HT2B autoreceptors (29, 138, 139) . Nevertheless, direct evidence of 5-HT volume transmission-induced depression of 5-HT firing has not been reported (140) . However, it has been recently shown that somatodendritic release of dopamine acting via D2 receptors autoinhibits the firing of the same neuron (141) , suggesting a truly auto-regulatory system. During development, differentiation of 5-HT neurons (e10.5-13 in rat) and outgrowth 5-HT projections is initiated early in embryonic development of the brain (e12-14 in rat) and continues well into post-natal development (p21 in rat) (73, 76, 142, 143) . The availability of serotonin during embryonic to early post-natal developmental stages implicate serotonin signaling in directed axonal and neurite outgrowth during development (144, 145) and also in mediating neuroplasticity responses to external stimuli during and post-development (146) . In this light, deletion of TPH2 to block neuronal 5-HT synthesis results in abnormal projections of 5-HT neurons both during development and in adults (147) (148) (149) (150) . Serotonin can also accumulate in (96, 151) and affect the development of non-serotonergic neurons in cortex and hippocampus (147, (152) (153) (154) (155) . Vicenzi and Gasperini (156) recently found that exogenous serotonin acts as a guidance cue during axon pathfinding in sensory neurons in vitro, capable of concentration-dependent attraction (via 5-HT2A receptor) or repulsion (via 5-HT1B receptor) of growth cone motility (156) . However, the role of endogenously released 5-HT gradients in axonal outgrowth in vivo remains to be assessed. The actions of serotonin on target cells, including glutamate and GABA neurons, are mediated by a large family of 5-HT receptors. Currently, genes for 14 receptors, including 13 distinct heptahelical G protein-coupled receptors (GPCRs) and one ligand-gated ion channel, have been identified. Based on their structural and downstream signaling characters, receptors are divided into seven distinct classes including 5-HT1-7 receptors (72, 157) . The role of some key receptors in the 5-HT axonal transmission including axonal growth and axonal guidance is summarized below. The largest class of 5-HT receptors is the 5-HT1 receptor family characterized by an intronless coding sequence with five subtypes sharing 40-63% sequence homology (72, 157) . The 5-HT1A,−1B,−1D,−1E and−1F receptors are localized in a wide variety of brain regions and show distinct pharmacological characteristics. The 5-HT1A receptors are broadly expressed in cortex, limbic areas, raphe nuclei (on 5-HT neurons as autoreceptors), in extrapyramidal areas, such as the substantia nigra, caudate-putamen, and in the cerebellum during embryonic-early postnatal development (158) (159) (160) (161) (162) (163) (164) (165) (166) (167) (168) . The 5-HT1A receptors have been also found on astrocytes (169, 170) to mediate neuroprotective actions (171) . Using in vivo studies, Azmitia et al. (172) showed that 5-HT1A receptors have a key role in 5-HT-induced increases MAP2 and synaptophysin in the hippocampus, hypothalamus, parietal and temporal cortices, and the temporal pole (172) . In vitro studies showed that 5-HT1A receptor stimulation decreased neurite outgrowth in cortical neurons (173) , increased it in hippocampal cultures (174) while had no effect or inhibit outgrowth in serotonergic raphe neurons (175, 176) . The 5-HT1A receptor can trigger diverse downstream signaling mechanisms that are region-and cell-specific and may mediate these actions (177, 178) . 5-HT1A receptor coupling via Gβγ subunits reduces neuronal activity by opening potassium channels and closing calcium channels. However, the receptor is coupled primarily to Gi3 in 5-HT neurons and Gi2 in hippocampal neurons, which may underlie differential signaling and desensitization in these cells. While in 5-HT neurons, the 5-HT1A receptor appears to inhibit extracellular regulated protein kinase (ERK) ERK1/2 activity (179), it signals to activate it in developing and adult hippocampal neurons and may play roles in synaptogenesis (180) . Recent studies implicate 5-HT1A signaling through Gβγ and tyrosine kinase receptors to activate ACII (181), phospholipase C (PLC)/protein kinase C (PKC) (182), calcium-calmodulin-dependent protein kinase II (CAMKII) (183) , and phosphatidylinositol 3'-kinase (PI3K)/Akt signaling (184) mediating synaptogenesis, dendrite outgrowth, cell survival. Thus, the 5-HT1A receptor appears to modify its signaling repertoire depending on the cell type (5-HT vs. post-synaptic neurons) and the developmental state of the neuron (178) . Previous studies also showed the crucial role of serotonin in modulating the neuronal guidance cues to shape the connectome in the wired brain mediated by the 5-HT1 family (185, 186) . For example, 5-HT1B/1D receptor activation induces the growth and guidance of embryonic thalamocortical axons (187) . In this process, axon responses to netrin-1 shift from attraction to repulsion during the cortical network shaping. Cortical plasticity in adulthood can also be modified by 5-HT1 receptor activity. For example, chronic fluoxetine treatment induced a full recovery from monocular deprivation in adult rats by increasing brain-derived neurotrophic factor (BDNF) expression to reduce GABAergic activity in the visual cortex thus enhancing excitatory long-term potentiation (188) . These actions of fluoxetine suggest that synaptic, possibly structural re-organization of the cortex can be induced in adulthood. Interestingly, these actions of fluoxetine were blocked by 5-HT1A antagonist WAY-100635, implicating 5-HT1A-induced BDNF expression in adult cortical plasticity (189) . It remains unclear whether similar 5-HT1-induced signaling to BDNF in the PFC may mediate synaptic reorganization implicated in the antidepressant actions of SSRIs as seen for rapidly acting antidepressants such as ketamine (190, 191) . The 5-HT2 receptor subtypes including 5-HT2A-C share about 50% amino acid sequence identity and show similarities concerning molecular structure, pharmacology, and signal transduction pathways (72, 192) . 5-HT2A receptor expression is widely observed in cortical areas (neocortex, entorhinal, and piriform cortex), olfactory tubercle, dentate gyrus, and several brainstem nuclei, motor cranial nerve nuclei, and the spinal cord ventral horn (168, 193) . In vitro studies have shown that stimulation of 5-HT2A receptors inhibits neurite growth in serotonergic neurons (176) while increasing neurite outgrowth in thalamic neurons (194) , with no effects on cortical glutamatergic neurites (195) . Recent studies by Vicenzi et al., (156) using a growth cone motility assay showed that serotonin is capable of acting as both attractive and repulsive guidance cue on its own axons via activation of 5-HT2A and 5-HT1B receptors, respectively (156) . The low concentration of serotonin as 50 µM induces attraction mediated by 5-HT2A while twice this concentration elicits the repulsion through the stimulation of 5-HT1B. In agreement, high-resolution imaging of growth cones indicateds that differential signaling is involved. For these actions, 5-HT2A receptors signaled through their canonical pathways of endoplasmic reticulum-mediated calcium release and 5-HT1B through cAMP depletion. The 5-HT3 receptors, the only ligand-gated, non-selective cation channel 5-HT receptors, are expressed in the cerebral cortex, hippocampus, amygdala, and the solitary tract nucleus (196) . The 5-HT3 receptor is not coupled to second-messenger cascades which makes it different from the other members of the 5-HT receptor family. The expression of 5-HT3 receptors in neuroblasts during brain development has suggested that they may play a role in neuronal differentiation and development (197) . However, there is debate regarding the role of 5-HT3 receptors in neurite outgrowth, as 5-HT3 receptors may enhance dendritic spine formation in thalamic cultures (194) , but not neurite outgrowth (198) . For example, 5-HT3 receptors form a complex with the light chain of microtubule-associated protein 1B (MAP1B) and the tubulin cytoskeleton in dendrites and growth cones of hippocampal neurons during developmental (199) . However, knockout of 5-HT3 receptor did not alter dendritic spines at baseline or following long-term depression in adult mice (200) . 5-HT4 receptors are implicated in the regulation of multiple physiological processes and are highly expressed in various regions of the limbic and in several basal ganglia components of the rodent brain (201) (202) (203) . In transfected cell lines and primary neurons, 5-HT4 receptors primarily induce the cAMP pathway via Gs proteins (204) , but can also signal to ERK activation via SRC protein kinase (205) . In vitro studies showed that 5-HT4 receptor activation induces decreases in neurite outgrowth (206) . By contrast, studies in the hippocampus also showed that 5-HT4 receptor activation enhances learning-induced hippocampal dendritic spine formation in vivo (207) . 5-HT4 receptor activation was shown to rapidly trigger dendritic spine formation in hippocampal neurons (208) via G13-RhoA signaling pathway (209) . Pharmacological studies showed that agonist-induced 5-HT4 receptor activation inhibits basal synaptic transmission and theta-burst LTP via GABAergic activation (210), while enhancing low-frequency induced hippocampal LTD (211) . In contrast, 5-HT4 antagonist induced thalamostriatal spike timing-dependent LTD expression (212) , while blocking 5-HT-induced late LTP in the amygdala (213) . Therefore, the 5-HT4 receptor has a role in modulating synaptic transmission via the regulation of long-term plasticity. In addition, 5-HT4 receptors mediate SSRI-induced "dematuration" of adult hippocampal granule neurons implicated in behavioral actions (214, 215) . Furthermore, the antidepressant actions of SSRI in depression models requires 5-HT4 receptors (216, 217) . Interestingly 5-HT4 receptors have been implicated in rapid induction of hippocampal neurogenesis and rapid antidepressant actions (218) . Since the above studies have used systemic 5-HT4 ligands, global 5-HT4 knockout mice, or slice preparations, the relative roles of 5-HT4 induced actions on region-specific synaptic transmission, neuroplasticity, and neurogenesis in its behavioral and cognitive actions remains to be clarified using tissue-specific gene knockout or drug delivery approaches. The 5-HT6 receptors are expressed in diverse brain areas including the olfactory tubercle, cortex, dorsal and ventral striatum, hippocampus, amygdala as well as choroid plexus (219) (220) (221) , and are implicated in schizophrenia, anxiety, and Alzheimer's disease (222) . The 5-HT6 receptor activates ACs by coupling to Gs proteins (223) , interacts with Fyn kinase to mediate ras-MEK-ERK1/2 signaling (224, 225) , and with Jab1 to couple to the transcription factor c-Jun (226) . In vivo studies in the developing cortex have implicated 5-HT6 receptors localized in dendritic cilia in dendritic outgrowth and neuronal differentiation, signaling via the Fyn pathway (227, 228) . Actions of 5-HT6 signaling on neurite outgrowth involve constitutive activation of the receptor by cdk5, which can be blocked by 5-HT6 antagonist (229, 230) . In addition, 5-HT6 signaling regulates migration of cortical pyramidal neurons and interneurons during development (231, 232) . More recently, 5-HT6-/-mice have been shown to have altered in vivo dendritic and neuronal morphology, increased neuronal excitability, and increased anxiety and cognitive impairment phenotypes (233) . In terms of neurotransmission, agonistinduced 5-HT6 receptor activation acutely increases expression of BDNF and Arc in cortical and hippocampal brain areas (234) and in the hippocampal CA1 area increases GABA release and decreases synaptic plasticity (235, 236) . Using a 5-HT6 receptor antagonist increases the levels of glutamate, acetylcholine, and catecholamine in the frontal cortex and hippocampus and results in enhanced excitatory neurotransmission. 5-HT6 receptor antagonists inhibit the mTOR complex, which promotes neuronal survival and increases neurite outgrowth (237) . This 5-HT6 modulation of the mTOR complex provides a promising target to treat anxiety, schizophrenia, and Alzheimer's disease (230) . Although an increasing body of studies indicates that acute effects of both 5-HT6 receptor antagonists and agonists elicit improvement in depression and anxiety observed in the preclinical models (238) , the underlying mechanisms are not clear. Given the importance of 5-HT6 receptors in cortical development, this receptor may also play a role in the recovery and regeneration of 5-HT projections lost in adulthood and associated with cognitive impairment (239) and depression (238) . The 5-HT7 receptors are involved in the sleep-wake cycle, body temperature, depression-like behavior and the processes of learning and memory (240) (241) (242) . In the brain, they are mainly expressed in the thalamus, hypothalamus, hippocampus, prefrontal cortex, amygdala, lateral habenula, raphe nuclei, and the suprachiasmatic nucleus (240, 243, 244) . 5-HT7 receptors couple to Gαs (245) and Gα12 (206) . Gα12/13 proteins signal to activate JNK, G protein signaling proteins (RGS) (246), non-receptor tyrosine kinases (nRTK) to signal to the Rho family of small GTPases that promote neurite extension and branching (247, 248) . In vitro studies reported the involvement of 5-HT7 receptors in neurite outgrowth, spinoand synaptogenesis in young neurons, and increases in axon outgrowth via mTOR, Cdc4, to regulate actin filaments dynamics and metalloproteinase induced synaptic remodeling (249) (250) (251) (252) . Interestingly, in postnatal development, the 5-HT7 receptor is co-expressed with 5-HTT on PFC neurons and mediates PFC projections to the DRN implicated in development of anxiety and depression like phenotypes in mice treated postnatally with SSRI (253) . The role of 5-HT7 receptors in modifying PFC projections during adulthood remains to be elucidated. How is spontaneous 5-HT axonal outgrowth triggered? By analogy with activity-dependent neuroplasticity following stroke (254, 255) , it is hypothesized that regrowth of 5-HT axons after an injury is driven by the activity of the affected 5-HT neurons. For example, following a stroke to the left mPFC, we have observed a 3-4 fold chronic activation (FosB + cells) of dorsal raphe 5-HT and vGlut3-positive neurons that is maintained after fluoxetine treatment (256) . Since full recovery of 5-HT innervation and behavior is only seen after chronic fluoxetine treatment (64) , this suggests that fluoxetine-induced augmentation of 5-HT levels at target regions is critical for 5-HT innervation to mediate behavioral and cognitive recovery. This implicates 5-HT autoregulatory effects on its own axons in affected area, which may be mediated via 5-HT receptor signaling (as discussed above). The importance of 5-HT neuronal activation is suggested by deep brain stimulation of the mPFC in rats subjected to chronic social defeat. Increasing cortical drive to the raphe induced dendritic remodeling of 5-HT neurons to restore their activity, resulting in increased size and number of presynaptic 5-HT terminals in the hippocampus (66) . The released 5-HT likely signals through a variety of 5-HT receptors on 5-HT projections, local glial cells and target neurons to ultimately restore behavior as discussed above. Does the loss of 5-HT innervation occur in clinical depression, and can it be reversed by chronic SSRI treatment? The problem is how to visualize 5-HT innervation in depressed patients. One method is to use the 5-HTT as a biomarker for 5-HT innervation. In post-mortem brain, several regions show reduced 5-HTT staining including the ventral PFC, which was associated with depression and childhood maltreatment (257, 258) . More specifically, visualization and quantification of 5-HTT-immunopositive processes have shown a reduction in the length of 5-HT axons in orbitofrontal cortex from depressed subjects (32). This region integrates multi-model sensory input to drive reward and affective behavior (259) , and its activity is inversely correlated with the severity of depression (260) . In living patients, this has been evaluated in positron emission tomography studies using ligands such as 11 C-DASB. This is supported by the loss of DASB binding in cortex and striatum following MCAO in rats, with a gradual recovery over 3 weeks (128) , similar to the time course that we observed in post-ischemic mice (64) . Using 11 C-DASB to label 5-HTT, a reduced 5-HTT ratio between dorsal raphe/ventral striatum was seen in unmedicated depressed compared to healthy controls, suggesting reduced 5-HT innervation to this reward processing center (261) . By contrast, no difference in 5-HTT levels was seen in recovered depressed subjects compared to controls (262) , whereas alterations are seen in several brain areas of severely depressed patients (263) . Restorative effects of antidepressant treatment on 5-HTT levels have also been reported. In depressed subjects, altered 5-HTT ratio between median raphe to bilateral habenula, amygdala-hippocampus and subgenual cingulate cortex predicted treatment response (264) . In bipolar depression, lower levels of 5-HTT and 5-HT1A predicted response and remission to 8-wk lithium treatment (265) . Taken together, these studies suggest that alterations in 5-HTT levels, perhaps due to altered 5-HT innervation, are associated with depression and response to SSRIs. However, these changes could simply reflect changes in 5-HTT expression level, rather than 5-HT innervation. Functional connectivity studies using fMRI with the raphe as a seed may provide addition evidence of impaired 5-HT projections, as raphe connectivity strength mirrors 5-HTT levels in healthy controls (266) . Acute tryptophan depletion decreased functional connectivity of the raphe to right pregenual anterior cingulate cortex in SSRIresistant depressed subjects, but increased raphe-left thalamus connectivity in SSRI-responders, suggesting that increased 5-HT innervation correlates with SSRI response (267) . Taken together, these studies indicate a deficiency in 5-HT innervation occurs in major depression and can be modified by chronic treatment in SSRI-responders. The importance in behavior of these neuroplasticity changes remains to be addressed but developing strategies to enhance 5-HT neuroplasticity may provide a more robust antidepressant response. Using models of SSRI-resistant depression such as the cF1ko mice (10), it will be possible to elucidate whether changes in 5-HT axons associated with depression and anxiety are unresponsive to fluoxetine and develop alternative or augmentation therapies to efficiently enhance the activity of 5-HT system and axonal plasticity to treat SSRI-resistant patients. Although not extensively studied, increasing evidence is indicating that deficiencies in 5-HT innervation associated with development, chronic stress or brain injury may lead to depression (10) . Furthermore, the 5-HT system is capable of regenerating lost projections. Particularly after injury or chronic stress, 5-HT rewiring is induced during recovery (62) , and can be enhanced by SSRI treatment or activation of 5-HT neurons (64, 66) . While 5-HT rewiring correlates with recovery (66, 256) , it remains to be directly addressed how important this mechanism is for recovery in rodent models. In humans, some research shows alterations in 5-HTT labeling in post-mortem OFC associated with major depression (32). Further studies are needed to determine what other brain regions might be affected, how early, and the effect of successful treatment on these projections. Exactly how SSRIs might trigger reinnervation remains unclear. For example, 5-HT1A receptor-mediated induction of BDNF has been implicated in cortical synaptic plasticity, but whether BDNF mediates changes in innervation is unclear (188) . However, abundant evidence indicates that several 5-HT receptors have actions to enhance synaptic plasticity and the formation of new synaptic connections. Direct activation of some of these receptors has been shown to mediate antidepressant actions in some tests and certain models of depression. However, it remains unclear how effective these compounds will be in human depression. By coordinately targeting 5-HT activity, 5-HT release and 5-HT receptor-induced synaptic remodeling may provide a more effective strategy to treat depression, even in treatment-resistant depressed subjects. Depression and Other Common Mental Disorders: Global Health Estimates Prevalence of depression symptoms in US adults before and during the COVID-19 pandemic Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study Timing of onset of antidepressant response with fluoxetine treatment Comparative efficacy and acceptability of 12 new-generation antidepressants: a multiple-treatments meta-analysis Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis Medication augmentation after the failure of SSRIs for depression Can we increase speed and efficacy of antidepressant treatments? Part I: General aspects and monoamine-based strategies The molecular neurobiology of depression Overcoming resistance to selective serotonin reuptake inhibitors: targeting serotonin, Serotonin-1A receptors and adult neuroplasticity Novel therapeutic strategies in major depression: focus on RNAi and ketamine Non-specificity of "behavioral despair" as an animal model of depression The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice Rodent models of depression: forced swim and tail suspension behavioral despair tests in rats and mice The rodent forced swim test measures stress-coping strategy, not depression-like behavior Resolving the neural circuits of anxiety The future of rodent models in depression research Identifying fast-onset antidepressants using rodent models Serotonin-prefrontal cortical circuitry in anxiety and depression phenotypes: pivotal role of pre-and post-synaptic 5-HT1A receptor expression Wiring the depressed brain: optogenetic and chemogenetic circuit interrogation in animal models of depression Prefrontal cortex circuits in depression and anxiety: contribution of discrete neuronal populations and target regions Optogenetic and chemogenetic insights into the neurocircuitry of depression-like behaviour: radioautographic and immunocytochemical ultrastructural study Ultrastructural analysis of the serotonin hyperinnervation in adult rat neostriatum following neonatal dopamine denervation with 6-hydroxydopamine Regrowth of serotonin axons in the adult mouse brain following injury Serotonin axons in the neocortex of the adult female mouse regrow after traumatic brain injury Fluoxetineinduced recovery of serotonin and norepinephrine projections in a mouse model of post-stroke depression Stress-induced plasticity of monoamine axons Antidepressant-like effects of cortical deep brain stimulation coincide with pro-neuroplastic adaptations of serotonin systems Layerspecific axonal degeneration of serotonergic fibers in the prefrontal cortex of aged A53T alpha-synuclein-expressing mice Serotonin hyperinnervation of the striatum with high synaptic incidence in parkinsonian monkeys Quantitative data on serotonin nerve terminals in adult rat neocortex The fine structure of central serotonin neurons Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals International union of basic and clinical pharmacology. CX classification of receptors for 5-hydroxytryptamine; pharmacology and function An immunohistochemical study of serotonin neuron development in the rat: ascending pathways and terminal fields Monoamines tissue content analysis reveals restricted and site-specific correlations in brain regions involved in cognition Serotonin neuron development: shaping molecular and structural identities Embracing diversity in the 5-HT neuronal system Lmx1b is required at multiple stages to build expansive serotonergic axon architectures The deletion of the microtubule-associated STOP protein affects the serotonergic mouse brain network The deletion of STOP/MAP6 protein in mice triggers highly altered mood and impaired cognitive performances Wnt/planar cell polarity signaling controls the anterior-posterior organization of monoaminergic axons in the brainstem Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain Robo1 and Robo2 cooperate to control the guidance of major axonal tracts in the mammalian forebrain Protocadherin-alpha family is required for serotonergic projections to appropriately innervate target brain areas The role of clustered protocadherins in neurodevelopment and neuropsychiatric diseases Pcdhalphac2 is required for axonal tiling and assembly of serotonergic circuitries in mice Altered serotonergic circuitry in SSRI-resistant major depressive disorder patient-derived neurons An epigenome-wide association study of earlyonset major depression in monozygotic twins Evidence for the existence of monoamine-containing neurons in the central nervous system. I demonstration of monoamines in the cell bodies of brain stem neurons Ultrastructure of the serotonin innervation in the mammalian central nervous system Immunodetection of the serotonin transporter protein is a more valid marker for serotonergic fibers than serotonin Dual serotonin (5-HT) projections to the nucleus accumbens core and shell: relation of the 5-HT transporter to amphetamine-induced neurotoxicity Serotonin dynamics in and around the central nervous system: is autism solvable without fundamental insights? Serotonin in space: understanding single fibers Transient uptake and storage of serotonin in developing thalamic neurons Serotonin transporter transgenic (SERTcre) mouse line reveals developmental targets of serotonin specific reuptake inhibitors (SSRIs) Antidepressants and the monoamine masquerade Corelease of dopamine and serotonin from striatal dopamine terminals Depression of serotonin synaptic transmission by the dopamine precursor L-DOPA The monoamine innervation of rat cerebral cortex: synaptic and nonsynaptic axon terminals From the Golgi-Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: wiring and volume transmission The discovery of central monoamine neurons gave volume transmission to the wired brain Projections and interconnections of genetically defined serotonin neurons in mice Beyond gene inactivation: evolution of tools for analysis of serotonergic circuitry Genetic dissection of neural circuits: a decade of progress A whole-brain atlas of inputs to serotonergic neurons of the dorsal and median raphe nuclei Presynaptic partners of dorsal raphe serotonergic and GABAergic neurons Multiscale single-cell analysis reveals unique phenotypes of raphe 5-HT neurons projecting to the forebrain Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5-B9) to the forebrain and brainstem Organization of functional long-range circuits controlling the activity of serotonergic neurons in the dorsal raphe nucleus Topography of serotonin neurons in the dorsal raphe nucleus that send axon collaterals to the rat prefrontal cortex and nucleus accumbens Distribution of VGLUT3 in highly collateralized axons from the rat dorsal raphe nucleus as revealed by single-neuron reconstructions Serotonergic Neuroplasticity in Alcohol Addiction Mapping the connectivity of serotonin transporter immunoreactive axons to excitatory and inhibitory neurochemical synapses in the mouse limbic brain Cytoarchitecture of serotonin-synthesizing neurons in the pontine tegmentum of the human brain The human raphe nuclei and the serotonergic system Increased serotonin axons (immunoreactive to 5-HT transporter) in postmortem brains from young autism donors Interferon-alpha reduces the density of monoaminergic axons in the rat brain A correlation analysis of the regional distribution of central enkephalin and beta-endorphin immunoreactive terminals and of opiate receptors in adult and old male rats. Evidence for the existence of two main types of communication in the central nervous system: the volume transmission and the wiring transmission A comparison of the subsecond dynamics of neurotransmission of dopamine and serotonin Evidence for volume transmission in the dopamine denervated neostriatum of the rat after a unilateral nigral 6-OHDA microinjection. Studies with systemic D-amphetamine treatment Long distance pathways of diffusion for dextran along fibre bundles in brain. Relevance for volume transmission Striatal dopamine neurotransmission: regulation of release and uptake The chemical tools for imaging dopamine release Non-synaptic receptors and transporters involved in brain functions and targets of drug treatment Brain dopamine transmission in health and parkinson's disease: modulation of synaptic transmission and plasticity through volume transmission and dopamine heteroreceptors PET imaging of serotoninergic neurotransmission with [(11)C]DASB and [(18)F]altanserin after focal cerebral ischemia in rats The fine structure of the dopaminergic innervation of area 10 of macaque prefrontal cortex Dopamine spillover after quantal release: rethinking dopamine transmission in the nigrostriatal pathway Histochemical, biochemical and functional studies on central monoamine neurons after acute and chronic amphetamine administration Fluorescence microscopy in neuroanatomy The serotonin neurons in nucleus raphe dorsalis of adult rat: a light and electron microscope radioautographic study Quantitative evaluation of 5-hydroxytryptamine (serotonin) neuronal release and uptake: an investigation of extrasynaptic transmission Paracrine neurotransmission in the CNS: involvement of 5-HT Action potential-independent and pharmacologically unique vesicular serotonin release from dendrites Somato-dendritic regulation of raphe serotonin neurons; a key to antidepressant action Abrogated Freud-1/Cc2d1a repression of 5-HT1A autoreceptors induces fluoxetine-resistant anxiety/depression-like behavior Positive regulation of raphe serotonin neurons by serotonin 2B receptors 5-HT1A receptor-mediated autoinhibition and the control of serotonergic cell firing Activity-dependent somatodendritic dopamine release in the substantia nigra autoinhibits the releasing neuron Development of the serotonergic system in the rat embryo: an immunocytochemical study Early development of serotonin-containing neurons and pathways as seen in wholemount preparations of the fetal rat brain The serotonin innervation of the basal forebrain shows a transient phase during development Serotonergic projections govern postnatal neuroblast migration Serotonin regulation of the prefrontal cortex: cognitive relevance and the impact of developmental perturbation Postnatal growth defects in mice with constitutive depletion of central serotonin Development of serotonergic fibers in the post-natal mouse brain. Front Cell Neurosci Perturbation of serotonin homeostasis during adulthood affects serotonergic neuronal circuitry Refining the role of 5-HT in postnatal development of brain circuits. Front Cell Neurosci Disruption of transient serotonin accumulation by non-serotonin-producing neurons impairs cortical map development Effects of neonatal serotonin depletion on the development of rat dentate granule cells Interactions between TrkB signaling and serotonin excess in the developing murine somatosensory cortex: a role in tangential and radial organization of thalamocortical axons Excess of serotonin affects neocortical pyramidal neuron migration Birth regulates the initiation of sensory map formation through serotonin signaling Serotonin functions as a bidirectional guidance molecule regulating growth cone motility Molecular biology of 5-HT receptors Transient expression of 5-HT1A receptor binding sites in some areas of the rat CNS during postnatal development Transient localization of 5-HT1A receptors in human cerebellum during development Postnatal development and localization of 5-HT1A receptor mRNA in rat forebrain and cerebellum Early localization of mRNA coding for 5-HT1A receptors in human brain during development The central 5-HT1A receptors: pharmacological, biochemical, functional, and regulatory properties Serotonin 5-HT1D receptors The distribution of 5-HT1A and 5-HT2A receptor mRNA in human brain Direct immunohistochemical evidence of the existence of 5-HT1A autoreceptors on serotoninergic neurons in the midbrain raphe nuclei Autoradiographic localization of 5-HT1A receptors in the post-mortem human brain using [3H]WAY-100635 and [11C]way-100635 Cartography of 5-HT1A and 5-HT2A receptor subtypes in prefrontal cortex and its projections Cellular localization of the 5-HT1A receptor in primate brain neurons and glial cells Expression of serotonin receptors in human fetal astrocytes and glioma cell lines: a possible role in glioma cell proliferation and migration Mirtazapine exerts astrocyte-mediated dopaminergic neuroprotection 5-HT1A agonist and dexamethasone reversal of para-chloroamphetamine induced loss of MAP-2 and synaptophysin immunoreactivity in adult rat brain 5-HT1A receptors control neurite branching during development Serotonin (5-HT) regulates neurite outgrowth through 5-HT1A and 5-HT7 receptors in cultured hippocampal neurons Adaptation of the serotoninergic neuronal phenotype in the absence of 5-HT autoreceptors or the 5-HT transporter: involvement of BDNF and cAMP Chronic activation of the 5-HT(2) receptor reduces 5-HT neurite density as studied in organotypic slice cultures What do we really know about 5-HT1A receptor signaling in neuronal cells? The 5-HT1A receptor: signaling to behavior Coupling of 5-HT1A autoreceptors to inhibition of mitogen-activated protein kinase activation via Gbetagamma subunit signaling Serotonin 1A receptor-mediated signaling through ERK and PKCalpha is essential for normal synaptogenesis in neonatal mouse hippocampus Constitutive G(i2)-dependent activation of adenylyl cyclase type II by the 5-HT1A receptor. Inhibition by anxiolytic partial agonists Plasticity of 5-HT 1A receptor-mediated signaling during early postnatal brain development Serotonin 5-HT1A receptors regulate NMDA receptor channels through a microtubule-dependent mechanism Dual effect of serotonin on the dendritic growth of cultured hippocampal neurons: Involvement of 5-HT1A and 5-HT7 receptors The developmental role of serotonin: news from mouse molecular genetics Serotonin in the modulation of neural plasticity and networks: implications for neurodevelopmental disorders Serotonin modulates the response of embryonic thalamocortical axons to netrin-1 The antidepressant fluoxetine restores plasticity in the adult visual cortex Serotonin triggers a transient epigenetic mechanism that reinstates adult visual cortex plasticity in rats Adult neuroplasticity: a new "cure" for major depression? Brain-derived neurotrophic factor signaling in depression and antidepressant action 5-HT2 receptors Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors Multiple receptors mediate the trophic effects of serotonin on ventroposterior thalamic neurons in vitro Serotonin promotes the survival of cortical glutamatergic neurons in vitro Serotonin 5-HT(3) receptors in the central nervous system The serotonin 5-HT3 receptor: a novel neurodevelopmental target Serotonin receptor activation enhances neurite outgrowth of thalamic neurones in rodents Modulation of 5-HT3 receptor desensitization by the light chain of microtubule-associated protein 1B expressed in HEK 293 cells 5-HT3A receptors are required in long-term depression and AMPA receptor internalization Regional distribution and ontogeny of 5-HT4 binding sites in rodent brain Localization of 5-HT4 receptor mRNA in rat brain by in situ hybridization histochemistry Mapping of serotonin 5-HT(4) receptor mRNA and ligand binding sites in the post-mortem human brain Differences in signal transduction of two 5-HT4 receptor splice variants: compound specificity and dual coupling with Galphas-and Galphai/oproteins 5-hydroxytryptamine 4 receptor activation of the extracellular signal-regulated kinase pathway depends on Src activation but not on G protein or beta-arrestin signaling 5-HT7 receptor is coupled to G alpha subunits of heterotrimeric G12-protein to regulate gene transcription and neuronal morphology The promnesic effect of G-protein-coupled 5-HT4 receptors activation is mediated by a potentiation of learning-induced spine growth in the mouse hippocampus Roles of the serotonin 5-HT4 receptor in dendrite formation of the rat hippocampal neurons in vitro Serotonin 5-HT(4) receptor boosts functional maturation of dendritic spines via RhoA-dependent control of F-actin Interplay between 5-HT4 Receptors and GABAergic system within CA1 hippocampal synaptic plasticity 5-HT4-receptors modulate induction of long-term depression but not potentiation at hippocampal output synapses in acute rat brain slices Serotonergic signaling controls input-specific synaptic plasticity at striatal circuits 5-Hydroxytryptamine induces a protein kinase A/mitogen-activated protein kinase-mediated and macromolecular synthesis-dependent late phase of long-term potentiation in the amygdala Reversal of hippocampal neuronal maturation by serotonergic antidepressants Behavioral destabilization induced by the selective serotonin reuptake inhibitor fluoxetine The absence of 5-HT4 receptors modulates depression-and anxietylike responses and influences the response of fluoxetine in olfactory bulbectomised mice: Adaptive changes in hippocampal neuroplasticity markers and 5-HT1A autoreceptor Serotonin 1A and serotonin 4 receptors: essential mediators of the neurogenic and behavioral actions of antidepressants -HT(4)) receptor agonists are putative antidepressants with a rapid onset of action Localization of serotonin subtype 6 receptor messenger RNA in the rat brain by in situ hybridization histochemistry Immuno-localization of serotonin 5-HT6 receptor-like material in the rat central nervous system The distribution of 5-HT6 receptors in rat brain: an autoradiographic binding study using the radiolabelled 5-HT6 receptor antagonist [125I]SB-258585 A role for the 5-HT(1A), 5-HT4 and 5-HT6 receptors in learning and memory Cloning and expression of a novel serotonin receptor with high affinity for tricyclic psychotropic drugs The novel cellular mechanism of human 5-HT6 receptor through an interaction with Fyn ST1936 stimulates cAMP, Ca2+, ERK1/2 and Fyn kinase through a full activation of cloned human 5-HT6 receptors Physical interaction of Jab1 with human serotonin 6 G-protein-coupled receptor and their possible roles in cell survival Arborization of dendrites by developing neocortical neurons is dependent on primary cilia and type 3 adenylyl cyclase Restoration of physiological expression of 5-HT(6) receptor into the primary cilia of null mutant neurons lengthens both primary cilia and dendrites Cdk5 induces constitutive activation of 5-HT6 receptors to promote neurite growth The 5-HT6 receptor interactome: New insight in receptor signaling and its impact on brain physiology and pathologies Excess of serotonin affects embryonic interneuron migration through activation of the serotonin receptor 6 The serotonin 6 receptor controls neuronal migration during corticogenesis via a ligand-independent Cdk5-dependent mechanism 5-HT6R null mutatrion induces synaptic and cognitive defects Acute onset by 5-HT(6)-receptor activation on rat brain brain-derived neurotrophic factor and activityregulated cytoskeletal-associated protein mRNA expression The 5-HT(6) receptor antagonist SB-271046 selectively enhances excitatory neurotransmission in the rat frontal cortex and hippocampus Activation of the 5-HT(6) receptor attenuates long-term potentiation and facilitates GABAergic neurotransmission in rat hippocampus 5-HT(6) receptor recruitment of mTOR as a mechanism for perturbed cognition in schizophrenia Effects of the brain-penetrant and selective 5-HT6 receptor antagonist SB-399885 in animal models of anxiety and depression Molecular imaging of serotonin degeneration in mild cognitive impairment Functional, molecular and pharmacological advances in 5-HT7 receptor research 5-HT7 receptor inhibition and inactivation induce antidepressantlike behavior and sleep pattern Pharmacology and therapeutic potential of the 5-HT(7) receptor Molecular cloning and expression of a 5-hydroxytryptamine7 serotonin receptor subtype A receptor autoradiographic and in situ hybridization analysis of the distribution of the 5-ht7 receptor in rat brain Functional characterization of the recombinant human 5-hydroxytryptamine7(a) receptor isoform coupled to adenylate cyclase stimulation Regulation of neurite morphogenesis by interaction between R7 regulator of G protein signaling complexes and G protein subunit Gα(13) induce Rhodependent neurite retraction through different signaling pathways Antagonistic regulation of neurite morphology through Gq/G11 and G12/G13 The serotonin receptor 5-HT7R regulates the morphology and migratory properties of dendritic cells Activation of 5-HT7 receptor stimulates neurite elongation through mTOR, Cdc42 and actin filaments dynamics Synaptic remodeling depends on signaling between serotonin receptors and the extracellular matrix Serotonin 5-HT7 receptor increases the density of dendritic spines and facilitates synaptogenesis in forebrain neurons Implication of 5-HT7 receptor in prefrontal circuit assembly and detrimental emotional effects of SSRIs during development Neuroplasticity in stroke recovery. The role of microglia in engaging and modifying synapses and networks Virtual histology of cortical thickness and shared neurobiology in 6 psychiatric disorders chronic fluoxetine induces activity changes in recovery from poststroke anxiety, depression, and cognitive impairment Neuron density and serotonin receptor binding in prefrontal cortex in suicide Serotonin receptors and suicide, major depression, alcohol use disorder and reported early life adversity The orbitofrontal cortex: reward, emotion and depression Orbitofrontal cortex function and structure in depression Attenuated serotonin transporter association between dorsal raphe and ventral striatum in major depression 5-HTT binding in recovered depressed patients and healthy volunteers: a positron emission tomography study with [11C]DASB Brain serotonin transporter binding potential measured with carbon 11-labeled DASB positron emission tomography: effects of major depressive episodes and severity of dysfunctional attitudes Prediction of SSRI treatment response in major depression based on serotonin transporter interplay between median raphe nucleus and projection areas Prediction of lithium treatment response in bipolar depression using 5-HTT and 5-HT1A PET Functional connectivity of the dorsal and median raphe nuclei at rest Effects of acute tryptophan depletion on raphe functional connectivity in depression The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.