key: cord-0788500-np21lqcu authors: Pincikova, Terezia; Parrot, Tiphaine; Hjelte, Lena; Högman, Marieann; Lisspers, Karin; Ställberg, Björn; Janson, Christer; Malinovschi, Andrei; Sandberg, Johan K. title: MAIT cell counts are associated with the risk of hospitalization in COPD date: 2022-05-18 journal: Respir Res DOI: 10.1186/s12931-022-02045-2 sha: 18a81108ca391efb0313b57b8ee91bd548ab58f3 doc_id: 788500 cord_uid: np21lqcu BACKGROUND: Chronic obstructive pulmonary disease (COPD) is characterized by persistent airflow limitation associated with chronic inflammation in the airways. Mucosal-associated invariant T (MAIT) cells are unconventional, innate-like T cells highly abundant in mucosal tissues including the lung. We hypothesized that the characteristics of MAIT cells in circulation may be prospectively associated with COPD morbidity. METHODS: COPD subjects (n = 61) from the Tools for Identifying Exacerbations (TIE) study were recruited when in stable condition. At study entry, forced expiratory volume in 1 s (FEV(1)) was measured and peripheral blood mononuclear cells were cryopreserved for later analysis by flow cytometry. Patients were followed for 3 years to record clinically meaningful outcomes. RESULTS: Patients who required hospitalization at one or more occasions during the 3-year follow-up (n = 21) had lower MAIT cell counts in peripheral blood at study inclusion, compared with patients who did not get hospitalized (p = 0.036). In contrast, hospitalized and never hospitalized patients did not differ in CD8 or CD4 T cell counts (p = 0.482 and p = 0.221, respectively). Moreover, MAIT cells in hospitalized subjects showed a more activated phenotype with higher CD38 expression (p = 0.014), and there was a trend towards higher LAG-3 expression (p = 0.052). Conventional CD4 and CD8 T cells were similar between the groups. Next we performed multi-variable logistic regression analysis with hospitalizations as dependent variable, and FEV(1), GOLD 2017 group, and quantity or activation of MAIT and conventional T cells as independent variables. MAIT cell count, CD38 expression on MAIT cells, and LAG-3 expression on both MAIT and CD8 T cells were all independently associated with the risk of hospitalization. CONCLUSIONS: These findings suggest that MAIT cells might reflect a novel, FEV(1)-independent immunological dimension in the complexity of COPD. The potential implication of MAIT cells in COPD pathogenesis and MAIT cells’ prognostic potential deserve further investigation. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12931-022-02045-2. Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity worldwide [1] . It is characterized by persistent airflow limitation associated with a chronic inflammatory response in the airways. It is believed that the inflammatory response in COPD lung is driven mainly by CD8 T cells, Th1 cells, and oligoclonal B cells [2] . The Global Initiative for Chronic Obstructive Lung Disease (GOLD) classifications predict COPD hospitalizations and all-cause mortality [3] . The most reliable currently available outcome measure is forced expiratory volume in 1 s (FEV 1 ) [4] . However, the prognostic utility of FEV 1 is limited, and may not reflect the full complexity of COPD [5, 6] . To date no reliable associations with components of cellular immunity have been established to function as candidate biomarkers in COPD. Mucosal-associated invariant T (MAIT) cells are a subset of unconventional, innate-like T cells relatively abundant in lung, liver and peripheral blood [7, 8] . MAIT cells express a semi-invariant T-cell receptor and recognize microbial-derived metabolites presented by the evolutionarily highly conserved and nonpolymorphic MHC-Ib-related protein 1 (MR1) [9] . The most well-described MR1-presented antigens recognized by MAIT cells are derivatives from the riboflavin pathway, expressed by important pulmonary pathogens such as Pseudomonas aeruginosa and Klebsiella pneumoniae [10, 11] . MAIT cells play an important role in immune defense and homeostasis at mucosal barrier sites and contribute to control of microbial infections of the lung in murine models [12] [13] [14] . Furthermore, MAIT cells have a strong tissue homing capacity [15] , and display an IL-17-biased pro-inflammatory profile in mucosal tissues [16, 17] . Several chronic and acute conditions are associated with decline of MAIT cells in circulation, sometimes as a result of accumulation at the site of infection or inflammation. This includes diverse inflammatory diseases such as diabetes [18] , viral hepatitis [19] , and COVID-19 [20, 21] . MAIT cells thus represent a conserved T cell population in humans, exhibit mucosal tissue-homing characteristics, with known roles in bacterial infections of the lung. COPD has previously been associated with an increased frequency of cytokine-producing CD8 T cells in blood [22] , while the circulating MAIT cell frequency was found to be decreased [23] . However, the role of MAIT cells in COPD is largely unknown [24] . Here, based on what we know about the role of MAIT cells in the lungs, we hypothesized that MAIT cell levels and characteristics may be associated with COPD morbidity. We recruited COPD subjects (n = 61) from the Tools for Identifying Exacerbations (TIE) study in Uppsala [25] . Patients from primary and secondary care settings with a diagnosis of COPD (ICD code J44.0, J44.1, J44.8 and J44.9) and smoking history ≥ 10 pack-years were included. The diagnosis was confirmed at the inclusion visit with spirometry using the post-bronchodilator (400 mcg salbutamol) FEV 1 divided by the highest vital capacity value from a slow or forced maneuver with a ratio of < 0.70 (SpiroPerfect spirometer, Welch Allyn, Skaneateles Falls, NY, USA or Jaeger Masterscreen PFT, Erich Jaeger GmbH, Wurzburg, Germany). At inclusion, all participants were in stable clinical condition. At study entry, postbronchodilator FEV 1 , COPD Assessment Test (CAT) and current medication lists were recorded, and peripheral blood mononuclear cells (PBMCs) were isolated and cryopreserved for later analysis by flow cytometry. The subjects were followed prospectively for 3 years. At the end of the follow-up period, the patients were classified according to GOLD 2017 guidelines [26] and clinically meaningful outcomes were recorded (Table 1) . Participants aged 40-80 years with established COPD diagnosis were eligible. Exclusion criteria included established diagnosis of asthma, the asthma-chronic obstructive pulmonary disease overlap syndrome (ACOS), speech difficulties, dementia, psychotic disorders, and severe comorbidities associated with expected survival less than 12 months. In addition, because of known bad prognosis, patients with ongoing long-term oxygen treatment were not eligible for inclusion into the study. At inclusion and time of sampling, all participants were in stable clinical condition regarding their COPD disease, and at least four weeks had passed since their latest acute exacerbation. To assess lung function, we measured postbronchodilator (400 µg salbutamol) dynamic spirometry volumes in liters at inclusion. FEV 1 percentage of predicted (% predicted) values were calculated using Hedenström reference equation [27, 28] . Based on COPD Assessment Test (CAT) scores and exacerbation frequency during the 3 years of prospective follow-up, the patients were classified according to the GOLD 2017 guidelines into groups A, B, C and D [26] . Exacerbation frequency was counted as mean number of exacerbations per year (i.e., the total number of exacerbations during the 3 years, divided by 3 years). Exacerbation was defined as an acute or sub-acute worsening of dyspnea. We aimed to investigate if MAIT cells may be associated with COPD morbidity. As a measure of morbidity, we chose all-cause hospitalization during the 3-year follow-up because it is a strictly objective outcome that is easily measured, associated with considerable healthcare costs and strongly linked to mortality [29] . PBMCs were isolated from 30 ml heparinized blood using the Ficoll-Paque (Lymphoprep, Axis-Shield), and cryopreserved in liquid nitrogen. The PBMCs were thawed, washed, and counts and viability were assessed using the Countess II automated cell counter (Thermo Fisher Scientific). 1 × 10 6 cells were stained in the dark in a 96-well V-bottom plate. The following antibodies were used for the staining: anti-human CD56 BUV737 (NCAM16. Table S1 for staining panels). The LIVE/ DEAD Fixable Aqua dead cell stain kit (ThermoFisher) was used to discriminate dead cells. Cells were stained for 20 min at 4 °C, washed and fixed in BD CellFIX for Table 1 Clinical characteristics of the COPD cohort, based on data collected at inclusion or during follow-up Values are medians with interquartile ranges, unless stated otherwise. Percentages are of those with valid data For comparison of groups Mann-Whitney U Test was used, for comparing proportions, Fisher's Exact Test was used Heart failure was defined according to the patient records; diagnosed by the clinical picture and/or heart echocardiography Frequent exacerbator was defined as a patient with 2 or more acute exacerbations per year during the 3 years of follow-up (counted as total number of acute exacerbations during the 3 follow-up years divided by 3 years) Respiratory insufficiency was defined as onset of need of long-term oxygen treatment or need of long-term non-invasive ventilation Acute exacerbation was defined as an episode of acutely or sub-acutely worsened dyspnea BMI body mass index, CAT chronic obstructive pulmonary disease assessment test, FEV 1 forced expiratory volume in 1 s, FVC forced vital capacity, GOLD Global Initiative for Chronic Obstructive Lung Disease After gating on lymphocytes, non-single cells and dead cells were gated out, and MAIT cells were identified as CD3 + CD4-Vα7.2 + CD161 + T cells. The remaining non-MAIT T cell fraction was used to identify classical CD8 T cells (see Fig. 1A for gating strategy). Absolute MAIT, CD8 and CD4 T cell counts were calculated based on absolute lymphocyte counts at inclusion and their respective percentages of live CD3 + lymphocytes determined by flow cytometry. Statistical analyses were performed using Tibco Statistica (Version 13), Prism (Version 6) and R software. For comparison of medians Mann-Whitney U Test was used. Multi-variable logistic regression analyses were performed with hospitalizations (any vs none) as dependent variable and MAIT cell-related parameters as independent variables, correcting for known determinants of hospitalizations, i.e. FEV 1 (% predicted) and GOLD 2017 group (A-D), by adding those two as additional independent variables into the models. In order to assess a potential confounding effect of use of inhaled corticosteroids (ICS), ICS use (any vs none) was added as additional independent variable into the multi-variable logistic regression models. Given the limited number of subjects, no additional independent variables were included in the multi-variable logistic regression analyses. For correlation analyses the Spearman test was used. All tests were two-sided and p < 0.05 was considered as significant. All patients were recruited, and blood was sampled, when in stable disease phase. The patients were followed for 3 years to record all-cause hospitalizations. We first compared patients who required hospitalization at one or more occasions during the 3-year follow-up (n = 21, referred to as "hospitalized" patients) with patients who never got hospitalized during this time period (n = 40, referred to as "never hospitalized" patients). Interestingly, hospitalized patients had lower MAIT cell count at study inclusion, i.e. in a stable disease phase, compared to never hospitalized subjects (p = 0.036, Fig. 2A ). In contrast, hospitalized and never hospitalized patients did not differ in CD8 or CD4 T cell counts. There was also a trend towards lower MAIT cell percentage in hospitalized patients compared with never hospitalized subjects (Fig. 2B) . Next, we investigated whether MAIT cells in hospitalized patients were phenotypically different from those in the never hospitalized group. MAIT cells in hospitalized subjects showed a more activated phenotype with higher CD38 expression, and there was a trend towards higher lymphocyte activation gene 3 (LAG-3) expression ( Fig. 2C and D) . Expression of CCR5, programmed cell death protein 1 (PD-1), T cell immunoreceptor with Ig and ITIM domains (TIGIT), T cell immunoglobulin mucin 3 (TIM-3), CD8, CD56, HLA-DR, Ki-67, granulysin, promyelocytic leukemia zinc finger protein (PLZF), T-box transcription factor TBX21 (T-bet) and the transcription factor T cell factor 1 (TCF-1) by MAIT cells or by conventional CD8 T cells did not differ between hospitalized and never hospitalized patients (Fig. 1B, and data not shown) . We next sought to understand whether the state of the circulating MAIT cell compartment may add predictive value beyond the patients' FEV 1 and GOLD 2017 group. We performed multi-variable logistic regression analysis with hospitalizations (any vs none) as dependent variable, and FEV 1 (% predicted), GOLD 2017 group (A-D) and quantity or activation of MAIT cells or conventional T cells as independent variables. The MAIT-and T-cellrelated variables were entered into the model each separately. Interestingly, MAIT cell count, CD38 expression on MAIT cells, and LAG-3 expression on both MAIT and CD8 T cells were all independently associated with the risk of hospitalization (Table 2) . Circulating MAIT cell levels were previously reported to be significantly lower in patients with moderate to severe COPD, compared with patients with mild COPD [30] . In contrast, in our COPD cohort the FEV 1 measure did not correlate with MAIT cell count, MAIT cell frequency, or CD38 or LAG-3 expression on MAIT cells (Fig. 3) . This was in line with the result of the multi-variable analyses, indicating that MAIT cells do not simply mirror the severity of airflow obstruction. Instead, MAIT cells may reflect a FEV 1 -independent immunological dimension of COPD, independently associated with the risk of all-cause hospitalization. Hinks et al. previously observed that COPD patients treated with ICS had lower MAIT cell frequency in peripheral blood, compared with steroid-naive COPD patients [31] . We therefore investigated whether ICS use could influence the associations between MAIT cells and hospitalizations seen in our COPD cohort, and added ICS use (any vs none) as an additional independent variable in the multi-variable logistic regression analysis models. Hospitalizations were more likely in patients with higher CD38 and LAG-3 expression on MAIT cells independent of treatment with ICS (Table 3 ). In the COPD context it is interesting to note that MAIT cells have a broad effector profile, strong tissue homing ability, and are highly abundant in the liver and lung [7] . They contribute to mucosal homeostasis and protection against bacterial pulmonary infections [12] [13] [14] . On the other hand, exaggerated MAIT cell activation and recruitment to the airways might be involved in the immunopathogenesis of severe coronavirus disease 2019 [20, 21] . MAIT cells can also display profibrogenic activity [32] , and a potentially pathogenic role of MAIT cells in inflammatory diseases has been reported [33, 34] . CD38 is a marker of T cell activation [35] . CD38 expression by sinonasal MAIT cells correlates with disease severity in patients with eosinophilic rhinosinusitis [36] . Peripheral blood MAIT cells in patients with chronic hepatitis B express higher levels of CD38 [37] . LAG-3 is a co-inhibitory receptor that is up-regulated on activated T cells [38] . This receptor was proposed to be a part of the exhausted and anergic signature of MAIT cells exposed to superantigens [39] . In our COPD cohort, MAIT cell count in peripheral blood, and expression of CD38 and LAG-3 on MAIT cells were associated with the risk of all-cause hospitalization. We speculate that COPD lung disease progression might be associated with enhanced MAIT cell activation, and recruitment of MAIT cells to the COPD airways. This process might possibly be driven by the accentuated chronic inflammation that characterizes COPD, and/or by repeated acute exacerbations and other acute clinical conditions that are associated with enhanced inflammation in COPD subjects. Whether the exhausted state of MAIT cells contributes to increased infection susceptibility and higher risk of acute exacerbations and therewith represents one of the underlying drivers for hospitalizations in COPD needs to be further investigated. Collectively, even though this is essentially a cross-sectional study with longitudinal follow-up, our findings suggest that MAIT cells may play a role in the pathophysiology of the chronic inflammatory response and tissue remodeling in the COPD lung. A potential limitation of our study is the focus on all-cause hospitalizations instead of hospitalizations due to COPD exacerbation. However, in this data set majority of the hospitalizations were COPD related, so we used the broader definition to avoid classification errors. Another potential limitation is that we only recorded MAIT cell data at a single time-point at baseline when the patients were in a stable phase. It is possible that the cross-sectional nature of the study 23:127 thus prevented us from detecting interesting changes over time. Finally, this type of study design can suffer from the potential issue of selection bias. Future studies examining MAIT cells during the time of exacerbations may provide additional insights into the role of these cells in COPD. In summary, this study indicates that MAIT cell count and expression of the activation markers CD38 and LAG-3 on MAIT cells in peripheral blood of COPD patients are associated with the risk of hospitalization during a 3-year follow-up independently of FEV 1 and GOLD 2017 group. Even though this is an exploratory study, and the results need to be confirmed in an independent validation cohort, our findings support the hypothesis that MAIT cells might reflect a novel FEV 1 -independent immunopathological dimension in the complexity of COPD. Moreover, this study defines MAIT cells as a component of cellular immunity with prognostic potential in COPD, superior to that of conventional T cells. The potential implication of MAIT cells in COPD deserves further investigation to assess whether MAIT cells act here solely as a surrogate biomarker, or if MAIT cells represent an important causal player in the COPD pathogenesis. Trends in prevalence and incidence of chronic respiratory diseases from 1990 to 2017 The nature of small-airway obstruction in chronic obstructive pulmonary disease GOLD classifications, COPD hospitalization, and all-cause mortality in chronic obstructive pulmonary disease: the HUNT study Comparison of pre-and post-bronchodilator lung function as predictors of mortality: the HUNT Study Global assessment of the COPD patient: time to look beyond FEV 1 ? Predictors of mortality in COPD MAIT cells in health and disease Mucosal-associated invariant T cells and disease MAIT cells, surveyors of a new class of antigen: development and functions convenient online submission • thorough peer review by experienced researchers in your field • rapid publication on acceptance • support for research data, including large and complex data types • gold Open Access which fosters wider collaboration and increased citations maximum visibility for your research: over 100M website views per year • At BMC, research is always in progress. Learn more biomedcentral.com/submissions Ready to submit your research Ready to submit your research ? Choose BMC MR1 presents microbial vitamin B metabolites to MAIT cells T-cell activation by transitory neo-antigens derived from distinct microbial pathways Antimicrobial activity of mucosal-associated invariant T cells MAIT cells protect against pulmonary Legionella longbeachae infection MAIT cells are critical for optimal mucosal immune responses during in vivo pulmonary bacterial infection Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells MAIT cells reside in the female genital mucosa and are biased towards IL-17 and IL-22 production in response to bacterial stimulation Tissue-resident MAIT cell populations in human oral mucosa exhibit an activated profile and produce IL-17 Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients Chronic hepatitis delta virus infection leads to functional impairment and severe loss of MAIT cells MAIT cell activation and dynamics associated with COVID-19 disease severity Outcome of SARS-CoV-2 infection is linked to MAIT cell activation and cytotoxicity Systemic CD4+ and CD8+ T-cell cytokine profiles correlate with GOLD stage in stable COPD Deficiency of innate-like T lymphocytes in chronic obstructive pulmonary disease The influence of innate lymphoid cells and unconventional T cells in chronic inflammatory lung disease Global Initiative for Chronic Obstructive Lung Disease reclassifies half of COPD subjects to lower risk group Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD Executive Summary Reference values for lung function tests in females. Regression equations with smoking variables Reference values for lung function tests in men: regression equations with smoking variables Early emergency readmission frequency as an indicator of short-, medium-and long-term mortality post-discharge from hospital Mucosal-associated invariant T cell deficiency in chronic obstructive pulmonary disease Steroid-induced deficiency of mucosal-associated invariant T cells in the chronic obstructive pulmonary disease lung. Implications for nontypeable haemophilus influenzae infection Mucosalassociated invariant T cells are a profibrogenic immune cell population in the liver Mucosalassociated invariant T cells promote inflammation and exacerbate disease in murine models of arthritis Reduced numbers and proapoptotic features of mucosal-associated invariant T cells as a characteristic finding in patients with inflammatory bowel disease CD38: an immunomodulatory molecule in inflammation and autoimmunity IL-17A-producing sinonasal MAIT cells in patients with chronic rhinosinusitis with nasal polyps Mucosal-associated invariant T-cells are severely reduced and exhausted in humans with chronic HBV infection Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation MAIT cells launch a rapid, robust and distinct hyperinflammatory response to bacterial superantigens and quickly acquire an anergic phenotype that impedes their cognate antimicrobial function: defining a novel mechanism of superantigen-induced immunopathology and immunosuppression Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations Not applicable. TePi, LH, JKS: conceived idea for the study; TePi, LH, JKS, AM, CJ: designed the study; TePi, TiPa, CJ, AM, MH, KL, BS: data collection; TePi, TiPa, JKS: data analyses; TePi: drafted the manuscript. All authors critically revised the manuscript for intellectual content and approved the final version. All authors read and approved the final manuscript. The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12931-022-02045-2.Additional file 1. Staining panels.