key: cord-0765103-yb8kuch5 authors: Shetty, Ashok K.; Shetty, Padmashri A.; Zanirati, Gabriele; Jin, Kunlin title: Further validation of the efficacy of mesenchymal stem cell infusions for reducing mortality in COVID-19 patients with ARDS date: 2021-09-09 journal: NPJ Regen Med DOI: 10.1038/s41536-021-00161-z sha: f07094c367a59b9a6d1cf2529bab9ec061195c34 doc_id: 765103 cord_uid: yb8kuch5 Recent double-blind, randomized, controlled trials reported that human umbilical cord-derived mesenchymal stem cell (MSC) infusions in COVID-19 patients with acute respiratory distress syndrome (ARDS) could diminish cytokine storm and lung damage. While these outcomes are significant, additional phase II/III trials are required to validate the efficacy of MSCs to improve the survival of COVID-19 patients with ARDS. Future studies also need to assess the efficacy of MSCs to prevent long COVID. Previously, studies from China and Mexico 8, 18, 19 have shown that infusions of human umbilical cord-derived mesenchymal stem cells (UC-MSCs) into COVID-19 patients resulted in better functional outcomes 8, [18] [19] [20] [21] [22] . Leng and associates showed that seven patients with COVID-19 pneumonia displayed improved functional outcomes and recovered after an intravenous administration of clinical-grade human UC-MSCs 8 . Among the patients who received UC-MSC infusions, one had a critically severe type, four had severe types, and the other two had common types of pneumonia 8 . This study provided the first evidence of the promise of MSC therapy for saving the lives of COVID-19 patients developing severe complications and has resulted in the commencement of many clinical trials 23 . A few subsequent studies also found that the infusion of UC-MSCs was safe in COVID-19 patients 19, 22 . The study by Iglesias and colleagues enrolled five patients with severe ARDS who have not shown improvements in their clinical conditions with the prevailing medical care for 48 h and displayed arterial oxygen partial pressure (PaO 2 )/fractional inspired oxygen (FiO 2 ) values <100 mmHg 19 . The study also reported that MSCs mediated anti-inflammatory effects in the lungs, evident from an improved respiratory function with higher PaO 2 /FiO 2 values 19 . Treatment of MSCs resulted in the survival of three patients who were extubated 9 days post-infusion. However, the lack of doubleblind, randomized, controlled trials using MSCs has raised questions about the efficacy of MSCs among skeptics. While the outcome of many more extensive double-blind clinical trials for severe COVID-19 patients is yet to be published, Lanzoni and colleagues' study has been recently published by the journal Stem Cell Translational Medicine 14 . This study represents the first double-blind, phase I/IIa, randomized, controlled trial of MSC treatment for COVID-19 patients. Table 1 lists the significant outcomes of double-blind, randomized controlled trials performed so far using MSCs. The double-blind study by Lanzoni and associates showed that infusions of UC-MSCs were safe for COVID-19 patients with complications, such as ARDS and cytokine storm 14 . The study also did not find any serious adverse events in the 12 patients receiving UC-MSC infusions. The patients in the control and MSC treatment groups were matched for age and ARDS severity, which balanced the control and MSC treatment groups. The study also revealed that the cytokine storm could be restrained through MSC infusions in COVID-19 patients with ARDS. MSC infusions did not decrease the viral load but significantly dampened the concentration of multiple proinflammatory cytokines. This study's critical takeaway message is that the survival of COVID-19 patients with ARDS could be improved substantially with MSC treatment. In all, 91% survival was seen in the MSC infusion group compared to 42% survival in the control group. This is the most impressive finding from this controlled trial. Since severe COVID-19 is widely believed to be due to the overactive immune response with cytokine storm causing other complications such as immunothrombosis, mini-strokes, and multiple organ failure, the ability of MSCs to modulate the immune response and improve the survival of patients with ARDS is a significant advance. Overall, this trial's findings validate the results of previous trials 8, 19 . The results of another randomized, doubleblind, placebo-controlled phase II trial using UC-MSCs in COVID-19 patients with lung damage have been published recently 24 . UC-MSC infusions (~40 million/infusion, 3 infusions over 6 days) in 49 patients resulted in a reduced lung lesion volume compared to 25 patients receiving the placebo 24 . These findings suggest that UC-MSC infusions could be employed as an adjunct therapy to the standard care of COVID-19 patients with lung damage. MSCs have been employed widely in cell therapy, which comprises numerous preclinical studies and a significant number of clinical trials [25] [26] [27] . The rationale for employing MSC infusions for COVID-19 complications is the safety and efficacy of MSCs for immune system-mediated inflammatory diseases, such as graftversus-host disease 28 , type 2 diabetes 29 , and spinal cord injury 30 . Immunomodulatory effects of MSCs are believed to underlie improved function after MSC infusions in multiple disease conditions, as MSCs secrete multiple paracrine factors, which positively interact with immune cells, facilitating immunomodulation [25] [26] [27] 31, 32 . The better outcome in COVID-19 patients after MSC infusions also appeared to comprise the robust anti-inflammatory activity of MSCs suppressing the cytokine storm. MSCs typically accumulate in the lungs after intravenous infusion, which likely facilitates the secretion of multiple paracrine factors 33 , leading to significant protection and rejuvenation of alveolar epithelial cells, and improved lung function in COVID-19 patients. Figure 1 depicts the potential mechanisms by which MSCs improve outcomes in COVID-19 patients. While the new clinical trial results provide further support for considering MSC infusions for COVID-19 complications, a few critical issues need to be addressed in future MSC therapy trials for COVID-19 patients with ARDS. The numbers of patients recruited in one of the trials were low (24 subjects; out of that, 12 patients received MSC infusions, and the other 12 were controls) 14 . However, another trial has validated some of the beneficial effects of MSC infusions in 49 COVID-19 patients 24 . Since UC-MSCs were used in both studies, as in the previous study 8 , it will be necessary to ascertain whether similar efficacy could be obtained from MSCs from other sources such as those derived from the bone marrow or adipose tissue. The average age of patients employed in these trials was~59-60 years 14, 24 . Therefore, it remains to be determined whether MSC infusions would be efficacious in much older COVID-19 patients (e.g., ≥65 years). Furthermore, the dose employed was 40-100 million per infusion, with infusions separated by 72 h apart. Dose-response studies are needed in the future to improve the efficacy further. Since the primary endpoint was safety, efficacy measures in these studies were restricted to patient survival and cytokine levels in the blood 14 or lung lesion volume and a 6-min walk test 24 . Future studies need to assess whether MSC infusions in COVID-19 patients with ARDS or other complications would prevent the symptoms of long COVID. Patients with long COVID (i.e., patients with symptoms persisting for >6 months post-infection) experience persistent brain-related problems, including brain fog typified by cognitive impairments, post-exertional malaise, and chronic fatigue, mimicking chronic multisymptom conditions, such as fibromyalgia 34, 35 , chronic fatigue syndrome 36 , or Gulf War Illness 37 . Additional phase II/III trials evaluating the outcomes of MSC infusions for reducing mortality and preventing long COVID symptoms are needed. Also, while the advent of efficacious vaccines has reduced SARS-CoV-2 infections in many nations, SARS-CoV-2-infected survivors experiencing long COVID symptoms might benefit from MSC therapy because of the ability of MSCs to ease neuroinflammation and promote regeneration in organs, such as the lungs, brain, and heart. Fig. 1 Potential mechanisms by which mesenchymal stem cells (MSCs) can improve outcomes in COVID-19 patients. MSCs can directly modulate a variety of immune cells from their proinflammatory states into non-inflammatory or anti-inflammatory phenotypes, suppress cytokine storm, and promote lung regeneration. A.K. Shetty et al. A novel coronavirus emerging in China -key questions for impact assessment A pneumonia outbreak associated with a new coronavirus of probable bat origin COVID 19 -clinical picture in the elderly population: a qualitative systematic review World Health Organization declares Global Emergency: a review of the 2019 novel coronavirus (COVID-19) Geroscience in the age of COVID-19 Severe Covid-19 Cytokine levels in critically ill patients with COVID-19 and other conditions Transplantation of ACE2-mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan High-flow nasal cannula in critically iii patients with severe COVID-19 Umbilical cord mesenchymal stem cells for COVID-19 acute respiratory distress syndrome: a double-blind, phase 1/2a, randomized controlled trial Covid-19 -navigating the uncharted Updated approaches against SARS-CoV-2. Antimicrob. Agents Chemother A comprehensive summary of the knowledge on COVID-19 treatment Clinical remission of a critically ill COVID-19 patient treated by human umbilical cord mesenchymal stem cells: a case report Mesenchymal stem cells for the compassionate treatment of severe acute respiratory distress syndrome due to COVID 19 Mesenchymal stem cells and management of COVID-19 pneumonia Mesenchymal stem cell infusion shows promise for combating coronavirus (COVID-19)-induced pneumonia Administration of umbilical cord mesenchymal stem cells in patients with severe COVID-19 pneumonia Combating COVID-19 with mesenchymal stem/stromal cell therapy: promise and challenges Effect of human umbilical cord-derived mesenchymal stem cells on lung damage in severe COVID-19 patients: a randomized, double-blind, placebocontrolled phase 2 trial The exciting prospects of new therapies with mesenchymal stromal cells Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial Mesenchymal stromal cells as treatment or prophylaxis for acute or chronic graft-versus-host disease in haematopoietic stem cell transplant (HSCT) recipients with a haematological condition Stem cells in the treatment of diabetes mellitus -focus on mesenchymal stem cells Pathophysiology, mechanisms and applications of mesenchymal stem cells for the treatment of spinal cord injury The disillusioned comfort with COVID-19 and the potential of convalescent plasma and cell therapy Fighting the war against COVID-19 via cell-based regenerative medicine: lessons learned from 1918 Spanish flu and other previous pandemics Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6 Characterizing long COVID in an international cohort: 7 months of symptoms and their impact Fibromyalgia and chronic fatigue syndrome in the age of COVID-19 Gulf War Illness: mechanisms underlying brain dysfunction and promising therapeutic strategies The authors are supported by grants from the National Institute of Neurological Disorders and Stroke (1R01NS106907-01 to A.K.S.) and the Department of Defense (W81XWH-14-1-0572 and W81XWH-16-1-0480 to A.K.S.). G.Z. is supported by a postdoctoral fellowship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Government of Brazil. All authors contributed to manuscript writing and editing and approved the final version of the manuscript. All data needed to evaluate the conclusions of this commentary are present in the paper.Received: 10 January 2021; Accepted: 12 August 2021; The authors declare no competing interests. Correspondence and requests for materials should be addressed to Ashok K. Shetty. Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons. org/licenses/by/4.0/.