key: cord-0763135-1gsblsjr authors: Oshiumi, Hiroyuki title: Circulating Extracellular Vesicles Carry Immune Regulatory miRNAs and Regulate Vaccine Efficacy and Local Inflammatory Response After Vaccination date: 2021-06-15 journal: Front Immunol DOI: 10.3389/fimmu.2021.685344 sha: 1b1cec511876951083c983af2287abea7a5c71ea doc_id: 763135 cord_uid: 1gsblsjr Vaccination is the best prophylaxis for the prevention of infectious diseases, including coronavirus disease 2019. However, the efficacy of vaccines and onset of adverse reactions vary among individuals. Circulating extracellular vesicles (EVs) regulate the immune responses after vaccination by delivering microRNAs (miRNAs) to myeloid and lymphoid cells. Among these, miR-192 levels in serum EVs increase with aging, in an IL-6-dependent manner, reducing excessive IL-6 expression in aged mice, creating a negative feedback loop. Excessive IL-6 expression reduces vaccination efficacy in aged mice, while EV miR-192 improves efficacy in these aged mice as well, making this miRNA an interesting focus of study. miR-21 levels in serum EVs also increase with aging, and regulates the expression of IL-12 required for Th1 responses; therefore, EV miR-21 is expected to regulate vaccine efficacy. miR-451a, another important miRNA, is abundant in serum EVs and controls the expression of cytokines, such as type I interferon and IL-6. However, levels differ among individuals and correlate with local inflammatory symptoms experienced after a seasonal flu vaccination. These findings suggest the importance of EV miRNAs as a tool to improve vaccine efficacy and also as biomarkers to predict the immune response and adverse reactions after vaccinations. Vaccines are the best prophylaxis for infectious disease prevention, including seasonal flu and coronavirus disease 2019 (COVID-19) (1, 2) . Vaccines comprise specific antigens and adjuvants (3) ; several types of adjuvants, such as aluminum salts and monophosphoryl lipid A, are used in vaccines (4, 5) . These induce pro-inflammatory cytokine expression, and activate dendritic cells and macrophages, leading to the priming of naïve T cells and provoking antigen-specific immune responses, including B-cell activation and antibody production (3) . In addition to artificial compounds, components of viral particles also function as adjuvants, e.g., in the inactivated wholevirus influenza vaccine. Viral RNA within its viral particles that are recognized by Toll-like receptors determine the efficiency of vaccines (6) ; thus, adjuvant-induced innate immune responses are crucial for vaccine efficacy. Studies have revealed that several microRNAs (miRNAs) regulate the innate immune responses (7) (8) (9) (10) . miRNAs are delivered from the host to donor cells by extracellular vesicles (EVs), such as exosomes and microvesicles (11) (12) (13) . Exosomes are small vesicles, approximately 100 nm in diameter that express CD9, CD63, and CD81 proteins (14, 15) , while microvesicles are > 100 nm in diameter (14, 16) . Several miRNAs within EVs affect immune responses after vaccination. Aging affect the immune system (17, 18) , and the efficacy of vaccines decreases with age (19) . It is expected that aging would lead to immune dysfunction because of impaired B cell generation, a reduction in naïve T cells, a decreased ability of hematopoietic stem cells to replicate, and/or some other phenomena associated with age (20, 21) . However, several studies have shown that chronic inflammatory responses increase with age, thereby decreasing vaccination efficacy (17, (22) (23) (24) . For example, excessive TNF-a down-regulates CD28 expression on T cells (25) , and high TNF-a levels lead to reduced B cell responses (26) . These former studies suggest that excessive inflammation diminishes vaccine efficacy (27) . Decreased vaccine efficacy with aging has been observed in mouse animal models; mice aged 8-12 weeks are usually used for immune response analyses, and older mice, (1> year), exhibit lower vaccination efficacy than young mice (22, 28) . miR-192 is a miRNA induced by p53 that improves renal fibrosis in diabetic nephropathy patients (29, 30) and plays a role in several other diseases (31, 32) . Recently, we found that miR-192 was an aging-associated miRNA and that EVs delivered miR-192 to macrophages, thereby reducing pro-inflammatory cytokine expression in the lungs (22) . miR-192 targets ZEB2, MIP2a, TRIM25, IL-17RA, and Rictor mRNAs ( Table 1) : MIP2a is a chemokine that recruits neutrophils; TRIM25 is required for pro-inflammatory cytokine expression in response to influenza A virus RNAs (45, 46) ; and IL-17RA is crucial for pro-inflammatory cytokine expression in response to IL-17 (47) . These targets might be involved in miR-192-mediated suppression of pro-inflammatory cytokine expression. Additionally, we found that the expression of proinflammatory cytokines in the lung was prolonged in aged mice after intranasal administration of a whole-virus influenza vaccine (22) . However, intranasal administration of EVs containing miR-192 mimic RNA reduced excessive pro-inflammatory cytokine expression, such as IL-6, and improved antigen-specific antibody levels after vaccination in aged mice (22) . Since EV miR-192 levels increased in aged mice in an IL-6-dependent manner (22) , it was expected that miR-192 would constitute a negative feedback loop to attenuate chronic inflammatory responses, resulting in improved immune responses and improved vaccination efficacy in elderly ( Figure 1 ) (22). Serum IL-6 levels increase with aging in humans and mice (48) , and miR-19b, miR-21, miR-181c, and miR-322 levels in serum EVs also increase with aging in an IL-6-dependent manner (22) . Among those aging-associated miRNAs, miR-21 is known to regulate the immune responses following vaccination. miR-21 negatively regulates the expression of IL-12p35, as well as IL-6, IL-8, TNF-a, and IL-1b (38, 49, 50) . Although a contradicting report has shown the miR-21-augmented pro-inflammatory cytokine expression of IL-1b and IL-6 in RAW264.7 cells (51), Knockout (KO) studies have shown that miR-21 KO also increased the expression of these proinflammatory cytokines as well (52, 53) . Therefore, EV miR-21 is expected to attenuate the expression of these pro-inflammatory cytokines ( Figure 1 ). miR-21 targets mRNAs of IL-12p35, PDCD4, and PTEN ( Table 1) : although PDCD4 promotes pro-inflammatory cytokine expression (54), PTEN reduces pro-inflammatory cytokine expression (40) , and these mechanisms might underlie the apparent contradictions. miR-21 levels affect the efficacy of a live-attenuated vaccine of Leishmania, LdCen -/- (55) . IL-12 is an essential cytokine for Th1 response to Leishmania; therefore, miR-21 decreased Th1 immunity, thereby affecting the efficacy of this live-attenuated vaccine (55) . Interestingly, miR-21-containing exosomes derived from dendritic cells regulate CD4 + T cell proliferation (56) ; thus, it is expected that serum EV miR-21 levels would affect innate and adaptive immune responses following vaccination. Further investigation is required to determine the role of EV miR-21 in the immune response after vaccination. Innate immunity itself is required to initiate the adaptive immune responses, whereas it leads to a local inflammatory response. Upon stimulation from adjuvants, IL-6, TNF-a, and IL-1b are produced from macrophages and increase vascular permeability, allowing the flow of red and white blood cells as well as plasma with small molecules, resulting in local swelling, pain, and redness (57) (58) (59) (60) . Additionally, circulation of these cytokines in the blood flow causes prostaglandin E2 (PGE2) production in the hypothalamus, leading to fever (61) . Excessive innate immune responses are harmful to the host: hypermorphic mutations in the genes involved in innate immune responses cause autoimmune disorders (62) . miR-451a attenuates pro-inflammatory cytokine expression (41), as it targets 14-3-3z (Table 1) , which controls the activities of FOXO3 and ZFP36 (41) . FOXO3 is an inhibitory transcription factor for cytokine expression (63) , and ZFP36 can bind to AUrich elements of the untranslated mRNA regions, thus destabilizing cytokine mRNAs (41) . In addition to 14-3-3z, IKK-b and CAB39 are also targeted by miR-451a ( Table 1) : IKK-b plays a crucial role in NF-kB activation (64) . These mechanisms are expected to underlie miR-451a-mediated suppression of pro-inflammatory cytokine expression. miR-451a is efficiently sorted into EVs in several cell types (65, 66); therefore, miR-451a levels in serum EVs are very high (67, 68) , and its intracellular levels are relatively low (65, 69) . We found that EV miR-451a levels in the serum of a culture medium correlated with intracellular miR-451a levels, a few days after incubation of macrophages with a serum-containing medium, because EVs deliver miR-451a to macrophages (69) . Therefore, EVs miR-451a levels in serum of culture medium correlated with expression levels of cytokines, such as type I IFN and IL-6, in macrophages stimulated with influenza A virus vaccines (69) . This correlation was also observed in several other miRNAs (69) . In the short term, miR-451a levels in human sera are relatively stable, with few changes of more than two-fold in a week (69); however, levels gradually fluctuate and, in some cases, change by more than 10-fold during a year (69) . IL-6 is a pro-inflammatory cytokine regulated by miR-451a that causes inflammatory responses, including vesicular permeability (41) . Our clinical study showed that miR-451a levels in serum EVs before vaccination correlated with the occurrence of local inflammatory symptoms observed after a seasonal flu vaccination (68) . Several other EV miRNAs were also associated with local inflammatory responses (68) . Christian LM et al. have reported the correlation of local inflammatory symptoms with the expression of pro-inflammatory cytokines after vaccination (70). These observations imply that circulating EV miRNAs regulate local cytokine expression and inflammatory responses after vaccination. However, it is still possible that the levels of miR-451a and other immune regulatory miRNA reflect a physical condition that affects the inflammatory responses. Further studies are required to determine mechanism underlying the correlation between miR-451a levels in circulating EVs and immune responses after vaccination. Vaccine efficacy varies among individuals, and vaccine-related adverse reactions occur only in certain cases. Environmental FIGURE 1 | EV miRNAs regulate cytokine expression in response to vaccines. EVs deliver miR-451a, miR-192, and miR-21 to recipient cells, such as macrophages. Vaccine adjuvants then stimulate these macrophages and dendritic cells, resulting in the production of pro-inflammatory cytokines. miR-451a attenuates type I IFN and IL-6 expression in macrophages, and miR-192 reduces the expression of IL-6. miR-21 has the ability to attenuate the IL-12 expression. miR-192 and miR-21 levels in EVs increase with aging in an IL-6-dependent manner. Serum IL-6 levels are increased with aging, and thus constituting a miR-192-dependen negative feedback loop. factors affect immune responses (71, 72) and are expected to cause differences in vaccine efficacy and the onset of adverse reactions. Increasing evidence has shown that circulating EV miRNAs affect immune responses after vaccination, and miRNA levels vary among healthy individuals. For example, excessive glucose uptakes and several diseases are reported to affect miR-451a levels (73) (74) (75) (76) . Some of the environmental factors that affect EV miRNA levels might regulate vaccine-induced immune responses; hence, studies of the environmental factors affecting circulating EV miRNA levels are important in identifying environmental factors affecting immune responses after vaccination. Recent studies have identified the significant potential of serum miRNAs as biomarkers for cancer, diabetes, Alzheimer′s disease, allergic inflammatory disease, rheumatoid arthritis, etc. (77) (78) (79) (80) . Thus, since serum EV miRNAs affect the immune responses following vaccination, they can potentially be used as biomarkers to predict vaccine efficacy and adverse reactions. Similarly, if a vaccination is predicted to be ineffective for a person, improvement of the efficacy by an additional vaccination is possible. In the case of the recent COVID-19 outbreak, herd immunity will be crucial in eradicating the pandemic (81) . Thus, prediction of the efficacy and follow-up vaccination requirements might help achieve effective herd immunity against COVID-19 efficiently. COVID-19 vaccination is progressing all over the world and, thus cohort studies investigating the association of EV miRNAs with antibody production or memory cell generation after vaccination would reveal the potential of EV miRNAs as biomarkers. Vaccination efficacy decreases with age, therefore, miRNAs that affect or improve immune responses of the elderly would also help improve the vaccination efficacy. Indeed, miR-192 in EVs improves the efficacy of vaccination in aged mice. Recent approaches have tested the engineering of exosomes for delivering therapeutic proteins and nucleic acids, as well as miRNAs (82) . Thus, it is expected that vaccines containing EV miR-192 would be useful for vaccinating the elderly. In addition to miR-192, miR-451a could improve vaccines. miR-451a levels in EVs were negatively correlated with inflammatory responses at the vaccination site and reduced pro-inflammatory cytokine expression (68, 69) ; therefore, the addition of EV miR-45 to a vaccine might improve excessive inflammatory symptoms, such as pain, swelling, and redness, without reducing efficacy. EVs containing immune regulatory miRNAs could be useful tools to improve vaccine efficacy and to reduce adverse reactions. Although both exosomes and microvesicles deliver miRNAs, there are functional differences between them; for example, miR-150 is efficiently sorted into exosomes but not microvesicles (83) . Furthermore, EVs can be classified into several types, and each type contains distinct components (84) . It is therefore possible that specific EVs affect the immune response after vaccination. Further studies are required to reveal the role of EVs in regulating immune responses after vaccination. The author confirms being the sole contributor of this work and has approved it for publication. This work was supported in part by Grants-in-Aid from the Japan Agency for Medical Research Development (AMED) and Society of the Promotion of Sciences (JSPS). Covid-19 Vaccine Development and a Potential Nanomaterial Path Forward Evaluation of the Mrna-1273 Vaccine Against SARS-CoV-2 in Nonhuman Primates Vaccine Adjuvants: Putting Innate Immunity to Work The Vaccine Adjuvant Monophosphoryl Lipid A as a TRIF-biased Agonist of TLR4 Vaccine Adjuvants as Potential Cancer Immunotherapeutics Plasmacytoid Dendritic Cells Delineate Immunogenicity of Influenza Vaccine Subtypes Upregulation of miRNA-140-5p Inhibits Inflammatory Cytokines in Acute Lung Injury Through the MyD88/NF-kappaB Signaling Pathway by Targeting TLR4 Activation of TLR3 and Its Adaptor TICAM-1 Increases miR-21 Levels in Extracellular Vesicles Released From Human Cells Circulating microRNAs in Exosomes Indicate Hepatocyte Injury and Inflammation in Alcoholic, Drug-Induced, and Inflammatory Liver Diseases Exosome-Delivered microRNAs Modulate the Inflammatory Response to Endotoxin Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles MicroRNA-containing Microvesicles Regulating Inflammation in Association With Atherosclerotic Disease Mechanism of Transfer of Functional microRNAs Between Mouse Dendritic Cells via Exosomes Extracellular Vesicles Deliver Host and Virus RNA and Regulate Innate Immune Response Exosome-Mediated Transfer of mRNAs and microRNAs Is a Novel Mechanism of Genetic Exchange Between Cells Microvesicles and Exosomes: New Players in Metabolic and Cardiovascular Disease Inflammageing: Chronic Inflammation in Ageing, Cardiovascular Disease, and Frailty Age-Dependent Dysregulation of Innate Immunity Aging and Influenza Vaccine-Induced Immunity Thymus Involution and Regeneration: Two Sides of the Same Coin? Age-Related Changes in Lymphocyte Development and Function Aging-Associated Extracellular Vesicles Contain Immune Regulatory Micrornas Alleviating Hyperinflammatory State and Immune Dysfunction in the Elderly Aging of the Immune System: Focus on Inflammation and Vaccination Inflamm-Aging. An Evolutionary Perspective on Immunosenescence Modulation of CD28 Expression With Anti-Tumor Necrosis Factor Alpha Therapy in Rheumatoid Arthritis High TNF-Alpha Levels in Resting B Cells Negatively Correlate With Their Response Inflammaging Decreases Adaptive and Innate Immune Responses in Mice and Humans Cpg Improves Influenza Vaccine Efficacy in Young Adult But Not Aged Mice p53 Activates miR-192-5p to Transforming Growth Factor-Beta-Induced Cross Talk Between p53 and a microRNA in the Pathogenesis of Diabetic Nephropathy Histone Methyltransferase SET8 Is Regulated by miR-192/215 and Induces Oncogene-Induced Senescence Via P53-Dependent DNA Damage in Human Gastric Carcinoma Cells Transcriptome Analysis Uncovers the Diagnostic Value of miR-192-5p/HNF1A-AS1/VIL1 Panel in Cervical Adenocarcinoma p53 Regulates Epithelial-Mesenchymal Transition Through microRNAs Targeting ZEB1 and ZEB2 MicroRNAs Are Differentially Expressed in Ulcerative Colitis and Alter Expression of Macrophage Inflammatory Peptide-2 Alpha Lncrna XIST Upregulates TRIM25 via Negatively Regulating miR-192 in Hepatitis B Virus-Related Hepatocellular Carcinoma Exosomes Derived From Human Adipose Mesenchymal Stem Cells Attenuate Hypertrophic Scar Fibrosis by miR-192-5p/IL-17RA/Smad Axis Lipotoxic Hepatocyte-Derived Exosomal MicroRNA 192-5p Activates Macrophages Through Rictor/Akt/Forkhead Box Transcription Factor O1 Signaling in Nonalcoholic Fatty Liver Disease MicroRNA-21 is Up-Regulated in Allergic Airway Inflammation and Regulates IL-12p35 Expression Negative Regulation of TLR4 via Targeting of the Proinflammatory Tumor Suppressor PDCD4 by the microRNA Mir-21 STAT3 Activation of miR-21 and miR-181b-1 via PTEN and CYLD Are Part of the Epigenetic Switch Linking Inflammation to Cancer miR-451 Regulates Dendritic Cell Cytokine Responses to Influenza Infection Defective Erythroid Differentiation in miR-451 Mutant Mice Mediated by 14-3-3zeta MicroRNA-451 Regulates LKB1/AMPK Signaling and Allows Adaptation to Metabolic Stress in Glioma Cells miR-451 Inhibits Cell Proliferation in Human Hepatocellular Carcinoma Through Direct Suppression of IKK-Beta Influenza A Virus NS1 Targets the Ubiquitin Ligase TRIM25 to Evade Recognition by the Host Viral RNA Sensor RIG-I Structural Analysis Reveals That the Cytokine Il-17f Forms a Homodimeric Complex With Receptor Il-17RC to Drive Il-17ra-Independent Signaling Altered Regulation of IL-6 Production With Normal Aging. Possible Linkage to the Age-Associated Decline in Dehydroepiandrosterone and Its Sulfated Derivative MicroRNA-21 Limits In Vivo Immune Response-Mediated Activation of the IL-12/IFN-gamma Pathway, Th1 Polarization, and the Severity of Delayed-Type Hypersensitivity MicroRNA-21-5p Targets PDCD4 to Modulate Apoptosis and Inflammatory Response to Clostridium Perfringens Beta2 Toxin Infection in IPEC-J2 Cells MicroRNA 21 Elicits a Pro-inflammatory Response in Macrophages, With Exosomes Functioning as Delivery Vehicles MicroRNA-21 Down-Regulates Inflammation and Inhibits Periodontitis MicroRNA-21 Prevents Excessive Inflammation and Cardiac Dysfunction After Myocardial Infarction Through Targeting KBTBD7 Hbx-Mediated miR-21 Upregulation Represses Tumor-Suppressor Function of PDCD4 in Hepatocellular Carcinoma Mir-21 Expression Determines the Early Vaccine Immunity Induced by LdCen Exosomes Derived From Thymic Stromal Lymphopoietin-Treated Dendritic Cells Regulate T Helper 17/Regulatory T Cell Differentiation Via miR-21/Smad7 Axis Regulation of Endothelial Junctional Permeability Infection, Fever, and Exogenous and Endogenous Pyrogens: Some Concepts Have Changed Cytokines as Endogenous Pyrogens Prostaglandin E2 and Pain-an Update EP3 Prostaglandin Receptors in the Median Preoptic Nucleus are Critical for Fever Responses Autoimmunity Caused by Constitutive Activation of Cytoplasmic Viral RNA Sensors FOXO3 as a New IKK-epsilon-controlled Check-Point of Regulation of IFN-beta Expression IKK-Beta Links Inflammation to Obesity-Induced Insulin Resistance Sumoylated hnRNPA2B1 Controls the Sorting of miRNAs Into Exosomes Through Binding to Specific Motifs KRAS-Dependent Sorting of miRNA to Exosomes The RNA-Binding Protein SYNCRIP is a Component of the Hepatocyte Exosomal Machinery Controlling MicroRNA Sorting Immune-Regulatory microRNA Expression Levels Within Circulating Extracellular Vesicles Correspond With the Appearance of Local Symptoms After Seasonal Flu Vaccination MicroRNA-451a in Extracellular, Blood-Resident Vesicles Attenuates Macrophage and Dendritic Cell Responses to Influenza Whole-Virus Vaccine Differential Effects of Environmental and Genetic Factors on T and B Cell Immune Traits Environmental and Genetic Factors Shape the Human T-cell Receptor Repertoire Glucose-Based Regulation of miR-451/AMPK Signaling Depends on the OCT1 Transcription Factor Downregulation of microRNA-451 in Non-Alcoholic Steatohepatitis Inhibits Fatty Acid-Induced Proinflammatory Cytokine Production Through the AMPK/AKT Pathway The Potential Role of miR-451 in Cancer Diagnosis, Prognosis, and Therapy Identification of Suitable Reference Genes for qPCR Analysis of Serum microRNA in Gastric Cancer Patients MicroRNA as Biomarkers and Diagnostics Circulating microRNAs as Biomarkers in Cancer Diagnosis The Analysis of miRNA Expression Profiling Datasets Reveals Inverse microRNA Patterns in Glioblastoma and Alzheimer's Disease MicroRNAs in Rheumatoid Arthritis Herd Immunity: Understanding Covid-19 Engineering Exosomes as Refined Biological Nanoplatforms for Drug Delivery Intracellular Modulation, Extracellular Disposal and Serum Increase of MiR-150 Mark Lymphocyte Activation Proteomic Comparison Defines Novel Markers to Characterize Heterogeneous Populations of Extracellular Vesicle Subtypes ACKNOWLEDGMENTS I thank all my laboratory members for helpful discussion and Enago for English language editing.