key: cord-0758151-8ou1e5f6 authors: Hopkins, Donald R.; Weiss, Adam J.; Roy, Sharon L.; Yerian, Sarah; Sapp, Sarah G.H. title: Progress Toward Global Eradication of Dracunculiasis, January 2019–June 2020 date: 2020-10-30 journal: MMWR Morb Mortal Wkly Rep DOI: 10.15585/mmwr.mm6943a2 sha: 692ad64e5c2e4d052ef83a826685b99d03b2d440 doc_id: 758151 cord_uid: 8ou1e5f6 Dracunculiasis (Guinea worm disease) is caused by the parasite Dracunculus medinensis and is acquired by drinking water containing copepods (water fleas) infected with D. medinensis larvae. The worm typically emerges through the skin on a lower limb approximately 1 year after infection, resulting in pain and disability (1). There is no vaccine or medicine to treat the disease; eradication efforts rely on case containment* to prevent water contamination. Other interventions to prevent infection include health education, water filtration, chemical treatment of unsafe water with temephos (an organophosphate larvicide to kill copepods), and provision of safe drinking water (1,2). The worldwide eradication campaign began in 1980 at CDC (1). In 1986, with an estimated 3.5 million cases† occurring each year in 20 African and Asian countries§ (3), the World Health Assembly (WHA) called for dracunculiasis elimination (4). The global Guinea Worm Eradication Program (GWEP), led by the Carter Center and supported by the World Health Organization (WHO), United Nations Children's Fund, CDC, and other partners, began assisting ministries of health in countries with dracunculiasis. This report, based on updated health ministry data (4), describes progress made during January 2019-June 2020 and updates previous reports (2,4,5). With only 54 human cases reported in 2019, 19 human cases reported during January 2019-June 2020, and only six countries currently affected by dracunculiasis (Angola, Chad, Ethiopia, Mali, South Sudan, and importations into Cameroon), the achievement of eradication is within reach, but it is challenged by civil unrest, insecurity, and lingering epidemiologic and zoologic concerns, including 2,000 reported animal cases in 2019 and 1,063 animal cases in 2020, mostly in dogs. All national GWEPs remain fully operational, with precautions taken to ensure safety of program staff members and community members in response to the coronavirus disease 2019 (COVID-19) pandemic. * Transmission from a patient with dracunculiasis is considered contained only if all of the following conditions are met for each emerging worm: 1) the infected patient is identified ≤24 hours after worm emergence; 2) the patient has not entered any water source since the worm emerged; 3) a village volunteer or other health care provider has managed the patient properly; 4) the containment process, including verification of dracunculiasis, is validated by a Guinea Worm Eradication Program supervisor within 7 days of emergence of the worm; and 5) the approved chemical temephos (Abate) is used to treat known or potentially contaminated surface water. Proper patient management includes cleaning and bandaging the lesion until the worm has been fully removed manually and by providing health education to discourage the patient from contaminating any water source. If two or more emerging worms are present, transmission is not contained until the last worm is removed. Similar criteria are in place for the containment of animal infections. † A dracunculiasis case is defined as an infection occurring in a person exhibiting a skin lesion or lesions with emergence of one or more worms laboratoryconfirmed at CDC as D. medinensis. Because D. medinensis has a 10-to 14-month incubation period, each infected person is counted as having a case only once during a calendar year. § Initially 20 countries, but the former country of Sudan officially separated into two countries (Sudan and South Sudan) on July 9, 2011. animal cases in 2019 and 1,063 animal cases in 2020, mostly in dogs. All national GWEPs remain fully operational, with precautions taken to ensure safety of program staff members and community members in response to the coronavirus disease 2019 (COVID-19) pandemic. In WHO's ICCDE did not meet, and the Informal Meeting during the WHA did not occur during the first half of 2020. WHO has certified 199 countries, areas, and territories as free from human dracunculiasis, with only seven countries still lacking certification (4) . In 2019, Angola, Cameroon, Chad, and South Sudan reported 54 human cases; Angola, Chad, Ethiopia, and Mali reported 2,000 infected animals (mostly dogs), compared with 28 human cases and 1,102 animal infections reported in 2018 (Table 1) . During January-June 2020, human cases were reported in Chad (nine), Ethiopia (seven), Mali (one), Cameroon (one), and Angola (one), with 1,063 infected animals reported, compared with 31 human cases and 1,365 infected animals reported during January-June 2019. During January-June 2020, CDC received 44 specimens from humans for morphologic or molecular identification, including 21 (41%) that were laboratory-confirmed as D. medinensis, ¶ compared with 127 specimens received and 67 (53%) confirmed during all of 2019 (Table 2) . During the first 6 months of 2020, CDC received 19 specimens from animals, five (26%) of which were confirmed D. medinensis, compared with 59 received and 33 (56%) confirmed during all of 2019. Two specimens from unknown host sources during 2019 were not D. medinensis. D. medinensis worms removed from animals are genetically and morphologically indistinguishable from those removed from humans (6) . ¶ Specimens are laboratory-confirmed as D. medinensis at CDC by morphologic examination under a microscope or polymerase chain reaction assay. Additional information about laboratory identification of parasites is available at https:// www.cdc.gov/dpdx/dxassistance.html. In affected countries, the national GWEP receives monthly case reports from supervised volunteers in each village under active surveillance** (Table 3 ). Villages where endemic transmission has ended (i.e., zero human cases or animal infections reported for ≥12 consecutive months) are kept under active surveillance for 2 additional years. WHO certifies a country as dracunculiasis-free after adequate nationwide surveillance for ≥3 consecutive years with no indigenous human cases or animal infections. † † Angola. Before 2018 no case of dracunculiasis was ever reported from Angola. After the discovery of a case in a human with no history of foreign travel in Cunene Province in April 2018, Angolan health authorities and WHO investigated nearby communities and began training local health professionals and community health workers about the disease (4) but found no other active cases. Another case was detected in January 2019 and a third in March 2020, both in Cunene ** Villages under active surveillance are those that have endemic dracunculiasis or are at high risk for importation. Active surveillance involves daily searches of households by village volunteers (supported by their supervisors) for persons or animals with signs of dracunculiasis. An imported human case or animal infection is one resulting from ingestion of contaminated water in a place other than the community where the case or infection is detected and reported. Since 2012, no internationally imported cases or infections have been reported. † † An indigenous dracunculiasis human case or animal infection is defined as an infection consisting of a skin lesion or lesions with emergence of one or more Guinea worms in a person or animal who had no history of travel outside their residential locality during the preceding year. Province in persons with no foreign travel. In April 2019, a dog with an emerging Guinea worm was found in the same district as were the first and third human cases. Angola offers a US$450 equivalent cash reward for reporting an infected human or animal. Provisional DNA analysis of Angola's Guinea worm specimens yielded no clear link to another D. medinensis population. Chad. Chad reported 48 cases in 25 villages in 2019. During the first half of 2020, Chad reported nine human cases in seven villages (including four new villages), compared with 29 cases during January-June 2019 (Table 1) . Twenty-two of the cases reported in 2019 were associated with one village in Salamat Region, representing Chad's first documented waterborne outbreak of dracunculiasis in humans since 2010. A Cameroonian woman whose village is approximately 1 mile (1.5 km) from the Chad-Cameroon border had a Guinea worm emerge in 2019; she was likely infected in Chad, as were one human and three dogs in the same area of Cameroon through June 2020. During 2019, 1,935 domestic dogs and 47 domestic cat infections were reported, nearly twice the 1,040 dog and 25 cat infections reported in 2018. During January-June 2020, 24% fewer infected dogs and 56% more infected cats were reported than were during January-June 2019. The Carter Center is helping the Chad Ministry of Health implement active village-based surveillance in 2,219 at-risk villages (as of June 2020), compared with 2,211 villages in December 2019. The working hypothesis is that humans, dogs, and cats might become infected by eating inadequately cooked fish or other aquatic transport or paratenic hosts (hosts in which the larval In areas under surveillance in Chad, 59% of residents surveyed in 2019 knew of the cash rewards for reporting a human (US$100 equivalent) or animal (US$20 equivalent) infection, and during January-June 2020, 86% knew of the rewards. Intensified surveillance generated 50,893 rumors (reports about a possible Guinea worm infection) regarding human or dog infections during January-June 2020 compared with 41,501 rumors during the same period in 2019; a person or dog with compatible signs or symptoms is suspected of having dracunculiasis, pending confirmation. Ethiopia. Ethiopia reported no human case during 2018-2019 but reported seven during January-June 2020. The 2020 cases were in villagers exposed to a shared source of contaminated drinking water near Duli village in Gambella Region. During 2019, Ethiopia reported two infected dogs and six infected baboons, all in Gog district of Gambella Region, compared with 17 infected animals (11 dogs, five cats, and Abbreviation: NA = not applicable. * Participants at the annual Chad Guinea Worm Eradication Program review meeting in November 2014 adopted "1+ case village" as a new description for villages in Chad affected by human cases of Guinea worm disease and/or dogs infected with Guinea worms and defined it as "a village with one or more indigenous and/ or imported cases of Guinea worm infections in humans, dogs, and/or cats in the current calendar year and/or previous year. " † Civil unrest and insecurity since a coup in 2012 continued to constrain Guinea Worm Eradication Program operations (supervision, surveillance, and interventions) in Gao, Kidal, Mopti, Segou, and Timbuktu Regions. § Forty-eight cases were reported from Chad in 2019. One case was reported from Cameroon in 2019 in a village approximately 1 mile (1.5 km) from the Chad-Cameroon border. This is believed to have been acquired in Chad. ¶ Imported from another country. ** Transmission from a patient with dracunculiasis is contained only if all of the following conditions are met for each emerged worm: 1) the infected patient is identified ≤24 hours after worm emergence; 2) the patient has not entered any water source since the worm emerged; 3) a village volunteer or other healthcare provider has managed the patient properly, by cleaning and bandaging the lesion until the worm has been fully removed manually and by providing health education to discourage the patient from contaminating any water source (if two or more emerging worms are present, transmission is not contained until the last worm is removed); 4) the containment process, including verification of dracunculiasis, is validated by a Guinea Worm Eradication Program supervisor within 7 days of emergence of the worm; and 5) temephos is used to treat potentially contaminated surface water if any uncertainty about contamination of these sources of drinking water exists, or if a such a source of drinking water is known to have been contaminated. † † Imported from another in-country disease-endemic village. The Ethiopia Dracunculiasis Eradication Program has 189 villages under active surveillance. It applies temephos monthly to almost all water sources known to have been used by humans in the at-risk area of Gog district, and since 2018 it has supported villager-initiated, constant tethering of approximately 1,100 dogs and cats in villages where most infected animals were detected in recent years to prevent their exposure to water sources in adjacent forests where transmission is believed to occur (2) . In 2018, Ethiopia increased its rewards for reporting a human dracunculiasis case to US$360 equivalent and for reporting and tethering an infected animal to US$40. In 2019, 74% and 96% of persons surveyed in active surveillance areas were aware of the rewards for reporting infected humans and animals, respectively. Mali (7). Stopping transmission among dogs in Chad is now the biggest challenge faced by the eradication program. It is being addressed through innovative interventions and research supported by The Carter Center, WHO, and CDC and involves multiple research institutions with the purpose of better understanding the unusual epidemiology of dracunculiasis in the remaining countries with endemic transmission and assessing antihelminthic treatment of dogs (8) . For example, collaboration with researchers from the University of Georgia (Athens, Georgia) has shown that fish can serve as transport hosts for Dracunculus spp. in the laboratory and that D. medinensis can use frogs as paratenic hosts; Dracunculus larvae have been recovered from multiple wild frogs in Chad (9, 10) . Common source waterborne dracunculiasis outbreaks in Chad in 2019 and Ethiopia in 2020 highlight the need for safe drinking water wherever this disease occurs. Chad's ministry of health has offered a US$100 equivalent reward for reporting a confirmed human dracunculiasis case since 2010 and a reward of US$20 for reporting and tethering an infected dog since 2015. The rewards are given only after a case is confirmed; all reports must be corroborated by supervisors. In 2017, Chad launched a nationwide communication campaign to increase awareness about the rewards and how to prevent dracunculiasis in humans and dogs. Since 2013, Chad's GWEP has urged villagers to cook their fish well, bury fish entrails, and prevent animals from eating them. In 2014, village volunteers began persuading villagers to tether infected dogs until the worms emerged to prevent contamination of water. In March 2020, the program launched a new strategy to tether dogs proactively during the 4 months of peak dracunculiasis incidence in the 118 villages that reported five or more dracunculiasis infections in 2019. The program began applying temephos to cordoned sections of the extremely large lagoons at entry points used by infected humans or dogs in 2014, and it began applying temephos monthly to small ponds in villages with the most infected dogs in 2017. The pattern of transmission to many dogs and few humans in Chad remains peculiar to that country. If the hypothesis is correct that the parasite's life cycle in Chad involves a transport or paratenic host (10), increased active surveillance, containment of infected dogs, application of temephos, and burial of fish entrails should reduce transmission. The dracunculiasis cases found in Cameroon in 2019 and 2020 highlight the risks for cases exported from Chad and the need for ongoing active surveillance in neighboring countries, especially Cameroon and the Central African Republic. Finding three confirmed cases in humans and one infected dog in Angola during 2018-2020 suggests that the problem there is limited, but active surveillance throughout the at-risk areas is required to determine its full extent. If adequate security What is already known about this topic? Human dracunculiasis (Guinea worm disease) cases have decreased from an estimated 3.5 million in 1986 to 54 in 2019. Guinea worm infection in dogs has complicated eradication efforts. What is added by this report? During January-June 2020, the number of human dracunculiasis cases reported decreased to 19 in four countries (Angola, Chad, Ethiopia, and Mali) with one case in Cameroon in a patient possibly infected in Chad; South Sudan reported no human cases. In addition, 1,063 infected animals were reported What are the implications for public health practice? Infected dogs, especially in Chad, and impeded access because of civil unrest and insecurity in Mali and South Sudan remain challenges to interrupting transmission. is maintained, South Sudan is poised to achieve zero-case status soon based on strong technical leadership, strong governmental political support, and no parallel animal infections. In 2020, Mali reported its first human case in approximately 4 years, and Ethiopia reported its first human cases in approximately 2 years. Continued endemic transmission of Guinea worm infections among a few dogs and cats in Mali as well as baboons in Ethiopia appears to be geographically limited in each country. The ecologic study of baboons and proactive tethering of dogs in Gog district might help the program understand the dynamics of residual Guinea worm infections in Ethiopia. Insecurity decreased in some Guinea worm-affected areas of Mali in 2019 and 2020 but is still the main obstacle to stopping transmission in that country. Dracunculiasis (Guinea worm disease) eradication Progress toward global eradication of dracunculiasis Dracunculiasis in Africa in 1986: its geographic extent, incidence, and at-risk population Dracunculiasis eradication: global surveillance summary Dracunculiasis eradication: are we there yet? Population genetic analysis of Chadian Guinea worms reveals that human and non-human hosts share common parasite populations The peculiar epidemiology of dracunculiasis in Chad Meeting of the International Task Force for Disease Eradication Possible role of fish and frogs as paratenic hosts of Dracunculus medinensis A search for tiny dragons (Dracunculus medinensis third-stage larvae) in aquatic animals in Chad All authors have completed and submitted the International Committee of Medical Journal Editors form for disclosure of potential conflicts of interest. No potential conflicts of interest were disclosed.