key: cord-0752384-9h604rnn authors: Yadouleton, Anges; Sander, Anna-Lena; Adewumi, Praise; de Oliveira Filho, Edmilson F.; Tchibozo, Carine; Hounkanrin, Gildas; René, Keke K.; Ange, Dossou; Kohoun, Rodrigue K.; Nari, Ramalia Chabi; Salifou, Sourakatou; Saizonou, Raoul; Kakai, Clement G.; Bedié, Sonia V.; Al Onifade, Fattah; Nagel, Michael; Aïssi, Melchior A. Joël; Akogbeto, Petas; Drosten, Christian; Wulf, Ben; Moreira-Soto, Andres; Djingarey, Mamoudou Harouna; Hounkpatin, Benjamin; Drexler, Jan Felix title: Emergence of SARS-CoV-2 Delta Variant, Benin, May–July 2021 date: 2022-01-03 journal: Emerg Infect Dis DOI: 10.3201/eid2801.211909 sha: ff18cd381495383e26e9613381f3570d9be5dd39 doc_id: 752384 cord_uid: 9h604rnn Severe acute respiratory syndrome coronavirus 2 Delta variant epidemiology in Africa is unknown. We found Delta variant was introduced in Benin during April–May 2021 and became predominant within 2 months, after which a steep increase in reported coronavirus disease incidence occurred. Benin might require increased nonpharmaceutical interventions and vaccination coverage. N umerous genetic variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged globally since the start of the coronavirus disease (COVID-19) pandemic (https://cov-lineages.org). By September 2021, the World Health Organization defi ned 4 lineages as variants of concern (VOCs): B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.617.2 (Delta) (1) . The Delta VOC was detected in India in October 2020 (1) . By September 2021, >33 sublineages (AY.1-AY.33) of the Delta VOC were reported globally (https://cov-lineages.org). Increased transmissibility of the Delta VOC compared with other lineages has been attributed to potential immune escape and intense replication (2; B. Li et al., unpub. data, https://www.medrxiv.org/content/10.1101/ 2021.07.07.21260122v2), which is consistent with the global spread of the Delta VOC (1), and rapid outcompetition of other lineages, such as Alpha and Kappa, in India (3) . By August 2021, the Africa Centres for Disease Control and Prevention had reported Delta VOC infections from 30 countries (4) . Nevertheless, epidemiologic information on the emergence and dissemination of the Delta VOC in Africa is missing. We conducted genomic surveillance to monitor emergence and spread of SARS-CoV-2 variants in Benin in West Africa. We recently described the circulation of 10 diverse SARS-CoV-2 lineages with mutations associated with VOCs in Benin (5), but we did not detect any Delta variants by the end of that study in late March 2021. Here, we report continuous genomic surveillance at the Benin reference laboratory on samples obtained from 4 sites in southern Benin during late April-mid-July 2021 (Figure 1, panel A) . During the study period, routine testing at the reference laboratory and associated satellite laboratories in Benin averaged at 1,370 samples per day ( Figure 1, panel B) , a 900% increase from a comparable timeframe in 2020 (6) (Figure 1 , panel B). The decentralization of diagnostic testing and simplifi cation of extraction protocol contributed to increased testing (7) . During the study period, the laboratory identifi ed 1,181 SARS-CoV-2-positive samples, specifi cally 419 in May, 245 in June, and 517 in July Table 1 , https://wwwnc.cdc. gov/EID/article/28/1/21-1909-App1.pdf) to 12 distinct lineages (Figure 2 , panel A). SARS-CoV-2 epidemiology in Benin changed drastically within just 2 months. The only commonality between our previous study (5) and this study was the continuous detection of the B.1.1.318 lineage and detection of the Alpha VOC. Unlike our previous study, we detected Beta and Delta variants in this study. Of note, we only sporadically detected Alpha and Beta VOCs, plus 6 other lineages, in this study (Figure 2, panel A) , highlighting a lack of intense transmission of these variants during the study period. We first detected the Delta variant in a sample collected on May 27, 2021, in the capital of Benin, Cotonou (Appendix Table 2 ). To ensure that we did SARS-CoV-2 Delta Variant, Benin not miss any Delta strains during our previous study, we sequenced another 90 genomes (Appendix Table 1 ) collected during January-March 2021 but did not detect Delta VOCs in those samples. Detection of the Delta variant increased rapidly, from 3.4% of positive samples in May to 37.9% in June and 63.6% in July (Table) . We detected 2 sublineages of Delta variant, B.1.617.2 and AY.4, in our dataset. We first detected the Delta sublineage AY.4 in a sample collected in Cotonou on June 24, 2021, after which it co-circulated with the B.1.617.2 sublineage. Of note, we did not detect AY.4 outside of the capital city, Cotonou (Appendix Table 2 ). However, we cannot exclude a sampling bias because of low sample numbers from other cities, which could affect the apparent spatial distribution of the AY.4 sublineage. We did not detect Delta sublineage AY.1 signature mutations (V70F, W258L, and K417N) (8), nor did we detect the E484K mutation, which is associated with immune escape in the Delta sublineage AY. 2 (9) , in any of the Delta variant genomes from Benin (Appendix Figure 1 ). In addition, Delta VOC mutations did not occur at identical frequencies in SARS-CoV-2 strains circulating in Benin, (Appendix Figure 1) , suggesting that the Delta variant expanded in Benin irrespective of mutations that are hypothesized to enhance partial immune escape. In our study, samples containing Delta VOC strains did not show significantly higher viral RNA concentrations compared with other lineages (Figure 2, panel B) . This observation contrasts preliminary studies showing higher concentrations of Delta VOCs in upper respiratory tract samples (B. Li et al., unpub. data, https://www.medrxiv.org/content/ 10.1101/2021.07.07.21260122v2). At the same time, those results countered a potential bias toward sequencing Delta VOC strains from putatively higher virus concentrations, exceeding the threshold we applied for genomic sequencing. We observed no differences in age or sex of patients infected with Delta versus non-Delta VOC strains, hinting at similar sociodemographic determinants of SARS-CoV-2 spread in Benin (Appendix Figure 2) . Conclusions Our data confirm that the SARS-CoV-2 Delta lineage was introduced into Benin during April-May 2021, ≈6 months after its detection in India and ≈1 month after its emergence in Europe (10) . Reduced international connectivity in Benin likely delayed introduction of the Delta VOC (7) . In addition, our data show that it took ≈2 months for Delta VOC strains to become predominant in Benin, which is roughly comparable to findings from India, where Delta became the predominant variant detected by genomic surveillance, with a frequency of 16% in March 2021 to 83% in April 2021 (https://nextstrain.org). Immediately after our study period, Benin reported a steep increase in COVID-19 cases to the World Health Organization (Figure 1, panel B) , which could be associated with Delta VOC spread. In India, Delta VOC takeover occurred at an average background SARS-CoV-2 seroprevalence of ≈50% by December 2020 (A. Velumani et al., unpub. data, https://www.medrxiv.org/content/10.1101/2 021.03.19.21253429v1). Robust investigation of SARS-CoV-2 spread in Benin and adjacent countries could clarify whether Delta VOC spread occurred within largely naive or partially immune populations and elucidate potential immune escape by Delta VOC strains (11) (12) (13) . Continentwide genomic surveillance should be pursued in Africa to assess the spread of SARS-CoV-2 VOCs, which would enable crossnational control measures and inform comparative studies (11; E. Wilkinson et al. unpub. data, https:// www.medrxiv.org/content/10.1101/2021.05.12.2125 7080v1). However, direct comparisons between countries are challenging because of differences in vaccine coverage and socioeconomic factors, such as population density, connectivity, and wealth. Our study is limited by a laboratory-based sampling that does not represent the total population of Benin. In addition, we cannot precisely define initial introduction of Delta VOCs into Benin because of the few samples collected during April 2021. Nonetheless, the steady increase of Delta VOC transmission and comparable speed and magnitude of Delta VOC takeover in other regions globally support the robustness of our data. In conclusion, most COVID-19 vaccines protect against severe disease from Delta VOC infections (14) . However, vaccination coverage in Benin is still only ≈1%, as in many other countries in Africa (https:// www.bloomberg.com/graphics/covid-vaccinetracker-global-distribution). Progress on vaccination campaigns will be crucial to limiting spread of the Delta VOC in countries in Africa. World Health Organization. Weekly epidemiological update on COVID-19-4 Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization Indian SARS-CoV-2 Genomics Consortium (INSACOG); Genotype to Phenotype Japan (G2P-Japan) Consortium; CITIID-NIHR BioResource COVID-19 Collaboration. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion Africa Centre for Disease Control and Prevention Mutations associated with SARS-CoV-2 variants of concern A faster and less costly alternative for RNA extraction of SARS-CoV-2 using proteinase k treatment followed by thermal shock An observational laboratory-SARS-CoV-2 Delta Variant, Benin based assessment of SARS-CoV-2 molecular diagnostics in Benin Evolutionary analysis of the Delta and Delta Plus variants of the SARS-CoV-2 viruses Breakthrough infections of E484K-harboring SARS-CoV-2 Delta variant SARS-CoV-2 variants of concern and variants under investigation in England-technical briefi ng 16 Use of serological surveys to generate key insights into the changing global landscape of infectious disease Limited specifi city of serologic tests for SARS-CoV-2 antibody detection demographics, risk of hospital admission, and vaccine effectiveness Address for correspondence Rank Badge with Leopard, Wave and Sun Motifs, late 18th century. Silk, metallic thread. 10 ¾ in x 11 ¼ in / 27.31 cm x 28.57 cm. Public domain digital image courtesy of the Metropolitan Museum of Art Middle East respiratory syndrome (MERS), and 2019 novel coronavirus disease (COVID-19). Sources: 1. Almeida JD, Tyrrell DA. The morphology of three previously uncharacterized human respiratory viruses that grow in organ culture Cultivation of the virus of infectious bronchitis Coronaviruses, a new group of animal RNA viruses Demonstration of an interference phenomenon associated with infectious bronchitis virus of chickens We thank Sebastian Brünink and Arne Kühne for technical assistance. We also thank Antje Kamprad for organizational support. Dr. Yadouleton is a medical entomologist in the Centre de Recherche Entomologique de Cotonou, Benin, head of the Laboratoire des Fièvres Hémorragiques in Cotonou, and a teacher at the University of Natitingou, Benin. His research interests include mosquito control and the diagnosis of viral hemorrhagic fevers. Ms. Sander is a PhD student at the Institute of Virology at Charité-Universitätsmedizin, Berlin, Germany. Her main research interest is the evolution of newly emerging viruses.