key: cord-0738870-pn5omgvh authors: Zhang, Cheng; Tam, Chi wing; Tang, Guoyi; Chen, Yuanyuan; Wang, Ning; Feng, Yibin title: Spatial Transcriptomic Analysis Using R-Based Computational Machine Learning Reveals the Genetic Profile of Yang or Yin Deficiency Syndrome in Chinese Medicine Theory date: 2022-03-16 journal: Evid Based Complement Alternat Med DOI: 10.1155/2022/5503181 sha: 8d88c6ebcbbc5bd4e1abc22be5cd5727bc59835e doc_id: 738870 cord_uid: pn5omgvh OBJECTIVES: Yang and Yin are two main concepts responsible for harmonious balance reflecting health conditions based on Chinese medicine theory. Of note, deficiency of either Yang or Yin is associated with disease susceptibility. In this study, we aim to clarify the molecular feature of Yang and Yin deficiency by reanalyzing a transcriptomic data set retrieved from the GEO database using R-based machine learning analyses, which lays a foundation for medical diagnosis, prevention, and treatment of unbalanced Yang or Yin. METHODS: Besides conventional methods for target mining, we took the advantage of spatial transcriptomic analysis using R-based machine learning approaches to elucidate molecular profiles of Yin and Yang deficiency by reanalyzing an RNA-Seq data set (GSE87474) in the GEO focusing on peripheral blood mononuclear cells (PBMCs). The add-on functions in R including GEOquery, DESeq2, WGCNA (target identification with a scale-free topological assumption), Scatterplot3d, Tidyverse, and UpsetR were used. For information in the selected GEO data set, PBMCs representing 20,740 expressed genes were collected from subjects with Yang or Yin deficiency (n = 12 each), based on Chinese medicine-related diagnostic criteria. RESULTS: The symptomatic gene targets for Yang deficiency (KAT2B, NFKB2, CREBBP, GTF2H3) or Yin deficiency (JUNB, JUND, NGLY1, TNF, RAF1, PPP1R15A) were potentially discovered. CREBBP was identified as a shared key contributive gene regulating either the Yang or Yin deficiency group. The intrinsic molecular characteristics of these specific genes could link with clinical observations of Yang/Yin deficiency, in which Yang deficiency is associated with immune dysfunction tendency and energy deregulation, while Yin deficiency mainly contains oxidative stress, dysfunction of the immune system, and abnormal lipid/protein metabolism. CONCLUSION: Our study provides representative gene targets and modules for supporting clinical traits of Yang or Yin deficiency in Chinese medicine theory, which is beneficial for promoting the modernization of Chinese medicine theory. Besides, R-based machine learning approaches adopted in this study might be further applied for investigating the underlying genetic polymorphisms related to Chinese medicine theory. Yin and Yang in Chinese medicine theory account for the two opposing but complementary forces in matters of nature in an interdependent manner [1] . In accordance with Chinese medicine theory, Yang and Yin are considered fundamental for regulating biological processes. e dynamic equilibrium between Yin and Yang is essential for maintaining a healthy body constitution [2] . Accumulating evidence has suggested that Yang-Yin disharmony is a potential inducer of diseases [3] . Cold intolerance develops in patients with Yang deficiency. It is manifested by the coldness in hands or feet, stomach, and waist. In contrast, heat intolerance featured by hyperthermia and xerophthalmia is an indicator of Yin deficiency. Cold hands and waist (cold intolerance) are syndromes of Yang deficiency, while hot body and xerophthalmia (heat intolerance) are indicators of Yin deficiency [4] . Although modern medical studies have identified numerous genetic profiles for specific diseases, underlying genetic polymorphisms related to body susceptibility (Yin or Yang deficiency) in a healthy person remain obscure. e clinical value to investigate the specific genetic profile is as follows: (1) the understanding of genetic profile has beneficial effects on the molecular classification of body constitution of Yin or Yang deficiency; (2) potential genetic regulation of body constitution has important implications for detecting disease-susceptible individuals, which may accelerate the development of precision medicine and health promotion; and (3) a series of Chinese herbs have evidenced to improve Yin or Yang deficiency, such as Radix Ophiopogonis (Mai dong in Chinese) for treating Yin deficiency and Cortex Cinnamomi (Rou gui in Chinese) for Yang deficiency. Our findings may provide a TCM theoryrelated molecular basis for discovering the therapeutic mechanism of herbal medicines, which may be conducive to the modernization of both TCM theory and Chinese herbal medicine therapy. erefore, it is worthy of clarifying the functional genetic profile for Yin or Yang deficiency, including key regulatory genes and gene modules. Circulating peripheral blood mononuclear cells (PBMCs) are composed of lymphocytes (T, B, and NK cells), monocytes, and a small proportion of dendritic cells, showing their potential utility representing the biological activities of our body [5, 6] . It is documented that specific differentially expressed genes in the PBMCs of subjects with or without Yin/Yang deficiency demonstrate the relationship between clinical relevance and responsible functional genes. For instance, a significant increase of thyroid hormone receptor β shows molecular interpretations for cold intolerance in Yang deficiency, while the decrease of lipid syntheses, such as ACSL1 and ABCA1, is the indicator of heat intolerance in Yin deficiency [7, 8] . ese reports suggested that the underlying molecular profile of Yang and Yin deficiency may be deciphered by genomic analysis on the serum PBMCs. erefore, we retrieved an RNA-Seq data set (GEO87474) from GEO data set, in which 20,740 genes expressed in PBMCs from subjects with Yang or Yin deficiency (n � 12 each) were collected. All the classification of individuals with Yang or Yin deficiency in this data set was based on Chinese medicine-related diagnostic criteria of body constitution [8, 9] . Furthermore, machine learning approaches will be adopted for transcriptomic analysis of this data set. R language-based weighted gene coexpression analysis (WGCNA) is the main analytic approach for target identification. e merit of WGCNA is that it identifies the targets in a scale-free network without a specific cut-off value, in which real-world biological relevance generally represents scale-free behavior [10, 11] . As an analytical decision-making tool in computer science, R language programming-based arithmetic analysis is ideal for clarifying the genetic polymorphisms of Yang and Yin deficiency. R contains a wide variety of statistical techniques for life science, such as WGCNA and high-dimensional multivariate statistical analysis [12, 13] . Moreover, R is user-friendly and equipped with wide-ranging functionalities with add-on packages available from CRAN (more than 12,000 packages). is makes R more versatile than other statistical approaches in data manipulation. In accordance with the workflow (Figure 1 ), in this study, taking the advantage of R-based functions, we provided a scientific and computational identification of representative targets for Yang and Yin deficiency, which may promote the modernization of Chinese medicine theory. A clinical data set consisting of an RNA-Seq data set (GSE87474) was retrieved from the GEO database, collecting 20,740 genes expressed in PBMCs from subjects with Yang or Yin deficiency (n � 12 each). e classification of individuals with Yang or Yin deficiency was determined by Professor Wang Qi's Body Constitution Classification Questionnaire, which is based on Chinese medicine theory [8] . e main clinical symptoms for Yang or Yin deficiency are listed in Table 1. e RNA-Seq data set from distinctive groups (Yin or Yang deficiency) was analyzed separately. e inclusion criteria of recruited individuals in GSE87474 are as follows: (1) healthy individuals with Yang or Yin deficiency constitution were determined by a standardized questionnaire for the body constitution classification created by Wang Qi [8] and (2) 18-28 years old. Meanwhile, the exclusion criteria are as follows: (1) individuals are not related to Yang or Yin deficiency resulted from the body questionnaire; (2) beyond or below 18-28 years old; and (3) no medical records of diagnosed diseases. For retrieving the data set on the platform of Affymetrix HG-U133A Plus 2.0 array, the R package "GEOquery" was used to download the GSE87474. e Affymetrix annotation package for human termed "hugene10sttranscriptcluster.db" was adopted for matching probes to corresponding gene symbols [14] . Afterwards, the raw data of transcriptomewide gene expressions in subjects with Yang or Yin deficiency were obtained for further analysis. For the normalization of raw data, the DESeq2 algorithm in R was used for a variance-stabilizing transformation [15] . Simultaneously, the outliers were removed upon Cook's distance by DESeq2 calculation as well. Herein, the normalized data set summarized in Supplementary Data 1 was used for gene coexpression analysis. For WGCNA-based data filtering, the R function "apply ()" in WGCNA was adopted for ranking the variance of gene expressions in either Yin or Yang deficiency. ose expression variances larger than 90 th percentile of the whole genome were selected. Finally, 2016 genes in either Yang or Yin deficiency were left as the most informative ones for both body constitutions for WGCNA, including scale-free topology assumption and screening key coexpressed genes/modules. For data clustering and module construction, the R function "hclust ()" was used to establish a homogeneous sample microarray from either Yang or Yin data sets. Similar data will be grouped in a consensus branch site. e similarity of the consensus matrix was identified by calculating the coefficients of Pearson's correlation s ij � cor(i, j) of the whole gene set. Afterwards, a weighted adjacency matrix was established for calculating coexpression similarity by an equation: a ij � |(1 + cor(i, j))/2| β , in which β is a soft thresholding power (a threshold parameter for weighted 2 Evidence-Based Complementary and Alternative Medicine analysis), while a ij represents the resulting adjacency evaluating the strength of weighted connectivity [16] . Finally, a dendrogram of classifying consensus gene modules of gene expression and a topological overlap matrix (TOM) were plotted based on the value of module eigengenes (MEs). e result of MEs is calculated upon the first principal component of the gene expression matrix of gene modules by principal component analysis (PCA) [17] . e filtered key genes with its modules upon the value of ME are shown in Supplementary Data 2 (Yang deficiency group) and Supplementary Data 3 (Yin deficiency group). Besides, both intermodular Pearson's r and p values provided by the Kruskal-Wallis test and one-way ANOVA with Tukey's multiple comparison test were calculated for measuring eigengene correlation. Moreover, the relationships among coexpressed intermodules can be shown by multidimensional views. e function scatter analysis by R was used for evaluating the positions of hub gene modules. e identification of key gene module was based on the sum value of the p value among each gene module with its correlated modules. e gene module with the minimum cumulative p value was selected as the most representative module for its Evidence-Based Complementary and Alternative Medicine corresponding group (Yang or Yin deficiency group). e key genes for the most representative module are identified and ranked by its value of soft connectivity (gene connectivity in a weighted adjacency matrix) in a module, which are functionally significant and usually in the center location of a module. Gene Identification. In order to understand the moduleassociated biological functions, both gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were adopted to analyze the biological relevance of modules [18] . e results further offer valuable insights into Yang and Yin deficiency in subjects. e annotation analysis was performed by an online database DAVID (https://david.ncifcrf.gov/tools.jsp). A p value less than 0.05 was regarded as significant. For the functional key genes, the R function UpsetR was used to identify the crosslinked core functional genes for coexpressed gene modules. Modules. To identify highly correlated gene modules, WGCNA was used to establish the coexpression modules of biological relevance. Data acquisition and normalization for GEO data GSE87474 were conducted in terms of the Methods part. After obtaining the filtered 90 th percentile of the whole genome in either the Yang or Yin deficiency group, around 2016 genes in each group (n � 12 in each group) were adopted for hierarchical clustering (Figures 2(a) and 2(b)). e scale-free clustering dendrogram was constructed with β � 11 (for Yang deficiency) and β � 7 (for Yang deficiency). e values of scale-free topology fit signed R 2 in both networks are all larger than 0.8 (R 2 � 0.94 for Yang deficiency and R 2 � 0.84 for Yin deficiency), suggesting the successful construction of scale-free correlations. us, 5 and 7 gene modules were identified in Yang or Yin deficiency groups, respectively, which are as follows: 5 modules (ME-blue, ME-grey, ME-turquoise, ME-brown, and MEyellow) in Yang deficiency and 7 modules (ME-turquoise, ME-yellow, ME-green, ME-brown, ME-red, ME-blue, and ME-grey) in Yin deficiency (Figures 2(a) and 2(b) ). erefore, the WGCNA-related representative gene modules were established and used for further target identification. Modules. Based on the value of module eigengenes calculated by PCA, a topological overlaps-based hierarchical cluster was conducted to classify the coexpressed genes with high similarity, as shown in Figures 2(a) and 2(b). Furthermore, taking the advantage of geometric interpretation for data manipulation, we used a scatter plot to illustrate gene expression upon the value of module eigengenes in multiple dimensions. e results suggested that the intramodular key genes were distributed into separated locations (Figures 3(a) and 3(b) ). Prompt by these findings, we continuously calculated the relationship between gene modules, including Pearson's r and p values. e pairwise plot of module correlation is shown in Figures 4(a) and 4(b) . According to the minimum sum of one module with other ones, both ME-yellow in Yang deficiency (cumulative p value � 2.3E − 40; all p value of ME-yellow with other modules <0.001) and ME-green in Yin deficiency (cumulative p value � 2.7E − 10; all p value of ME-green with other modules <0.001) were selected as the most representative module for each body symptom. Modules. After confirming the dominant gene module in either Yang (ME-yellow) or Yin deficiency (ME-green) body constitution, we further identified the hub genes in each module. In terms of the intramodular soft connectivity of genes, the top 50 gene targets were shown in the heatmap and Nightingale's rose map using R functions "dplyr" and "Pheatmap" (Figures 5(a) and 5(b)). e soft connectivity of each gene in its corresponding module is indicated beside the gene term, suggesting the weighted value of genes. In sum, the key targets in the representative module of each body constitution were identified. e functional annotation of ME-yellow in Yang deficiency and ME-green in Yin deficiency would be determined by these top 50 genes in each module. e functional analysis of each module was performed in the database of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). As shown in Figures 6(a) and 6(b), the most enriched functional terms in either the Yang or Yin deficiency group are as follows: For the ME-yellow module in the Yang deficiency group, GO terms "rhythmic process (p value � 0.0059)" and "N-terminal peptidyl-lysine (p value � 0.0064)" were the most enriched ones, while "viral carcinogenesis (p value � 0.0019)" and "human T-lymphotropic virus 1 infection" were the dominant terms in KEGG analysis (p value � 0.0019)". For ME-green in the Yin deficiency group, GO terms "positive regulation of protein transport (p value � 0.0090)" and "positive regulation of peptidyl-serine phosphorylation (p value � 0.0010)" were the most responsible functions, while "protein processing in endoplasmic reticulum (p value � 0.0004)" and "osteoclast differentiation (p value � 0.0281)" were the key terms in KEGG analysis. Additionally, we further analyzed the genes for the construction of these functional terms using the R function UpsetR, aiming to identify whether the underlying genes for these GO or KEGG terms were homogeneous. As shown in Figures 6(a) and 6(b) , the key genes in ME-yellow of the Yang deficiency group were KAT2B, NFKB2, CREBBP, and GTF2H3, while JUNB, JUND, NGLY1, TNF, RAF1, and PPP1R15A were the key genes in ME-green of the Yin deficiency group. ese identified hub genes might be beneficial for medical diagnose, prevention, and treatment of excessive of either Yang or Yin in body constitution. Distinctions between subjects with or without normal physiological body function are of substantial interest in life science. Although the pathological changes of gene expression in response to various diseases have been extensively investigated, it is still obscure whether normal individuals with specific body constitution are susceptible to diseases. Previous reports have shown that the difference in gene expression of PBMCs from healthy individuals is linked with clinical significance. However, inadequate research studies have investigated the correlation between physiological features and disease susceptibility. Of note, Chinese medicine theory has a conceptual framework to classify healthy people with disease risks with Yin-Yang theory, which informs as a diagnostic role in Chinese medicine therapy [19] . Yin-yang harmony points to the healthy status, whereas the imbalance in either side could lead to the generation of diseases [20] . Following this opinion and regarding the current COVID-19 pandemic, we suggested that maintaining the Yin-Yang balance may also be beneficial for reducing the susceptible individuals to SARS-CoV-2 infection. erefore, discovering the molecular profile of body constitution is beneficial for health promotion. Unlike most conventional approaches, we use R-based WGCNA for target and gene module identification followed by understanding the genomic profile of Chinese medicine theory (Yang or Yin deficiency). e advantage of computational pharmacology on reanalyzing the genomic data of distinctive body constitutions has four aspects: (1) it allows rapid and comprehensive observation of genomic profile; (2) the lack of preliminary hypothesis in an unsupervised analysis improves the reliability of the outcomes; (3) the results may exceed the typical understanding of our knowledge and provide discoveries; and (4) conventional analyses mainly use a cut-off value to distinguish the strength of target or module connections, especially the differential expression between groups by an unweighted analysis, which could lead to information loss. For instance, if the cut-off value of a biological differentiation is 0.8, it is not fully considered if the biological significance of 0.79 is Evidence-Based Complementary and Alternative Medicine rejected. However, WGCNA could avoid this drawback by calculating (weighting) the correlation coefficient with a power value, which may meet the scale-free relationship of a real-world network [21] . erefore, our study may clarify the intrinsic molecular characteristics of both Yang and Yin deficiency by machine learning approaches. Although these enriched GO and KEGG terms could provide functional insights into the gene modules, the terms in either the Yang or Yin deficiency group were not well consistent in the same group, which may be resulted from the limited sample size and genetic diversity of hub genes. us, instead of focusing on the explanation of the functional annotations, we used the R function UpsetR to investigate whether the background genes for these GO or KEGG terms were homogeneous. Surprisingly, the key genes for supporting GO or KEGG terms were highly consistent, suggesting the critical role of these targets for representing the main feature of either Yang or Yin deficiency of body constitution. For the key modules identified in terms of the criteria described in the Methods part, ME-yellow and MEgreen were the representative modules for Yang and Yin deficiency groups, respectively. In particular, KAT2B, NFKB2, CREBBP, and GTF2H3 were the key contributive targets for the Yang deficiency group. Histone acetyltransferase KAT2B (lysine acetyltransferase 2B) is a proteincoding gene, which plays a critical role in the transcriptional regulation of adipocyte differentiation [22] . Noncanonical NF-κB pathway signaling is integral in immunoregulation. Mutation of NFKB2 (nuclear factor kappa B subunit 2) is associated with immunodeficiency, including the CD4+ or CD8+ T cell dysfunction but normal function and number of NK cells [23] . CREBBP (CREB binding protein) is ubiquitously expressed in the transcriptional activation of transcription factors like Ap-2 [24] . CREBBP is a crucial regulator for maintaining cellular energy homeostasis by growth control [25] . GTF2H3 (general transcription factor IIH subunit 3) is an encoded protein, which is a subunit of the core TFIIH basal transcription factor and located in the nucleus [26] . GTF2H3 dysfunction is involved in the disorder of transcription-coupled nucleotide excision repair of damaged DNA, resulting in the genetic mutation of proteins and affecting DNA repair mechanism [27] . Such a pathological process induced by abnormal GTF2H3 expression may aggravate the immunodeficiency for individuals with Yang deficiency. erefore, observation of Yang deficiency includes immune dysfunction tendency and energy deregulation. KAT2B, NFKB2, CREBBP, and GTF2H3 are represented as candidate markers for Yang deficiency. On the other hand, JUNB, JUND, RAF1, NGLY1, PPP1R15A, and TNF in ME-green are the representative targets for the Yin deficiency group. More specifically, JUNB and JUND are the transcriptional factors and members of the JUN family. Both are functional components of the AP1 transcription factor complex [28, 29] . e common related pathological pathways for both JUNB and JUND are oxidative stress and T cell lymphoma [30] [31] [32] . RAF1 (RAF-1) is a cellular homolog of the viral RAF gene [33] . e phosphorylation of MEK1 and MEK2 could be stimulated by RAF1, which in turn activates the ERK1 and ERK2 to control cell cycle, apoptosis, and cell migration [34, 35] . Also, the related pathway of RAF1 is the oxidative stress pathway [36] . NGLY1 is an enzyme involved in the proteasome-mediated degradation of misfolded glycoproteins [37] . NGLY1 (N-glycanase 1) deficiency is related to neuropathy and the disorder of metabolism of protein, especially the dysfunction of endoplasmic reticulum [38, 39] . PPP1R15A (protein phosphatase 1 regulatory subunit 15A) is a member of GADD and MyD mammalian genes whose responsibility synergistically suppresses cell growth and endoplasmic reticulum-related cell death [40] . PPP1R15A is usually a target of ATF4 in endoplasmic reticulum stress [41] . TNF (tumor necrosis factor) encodes proinflammatory cytokines for the TNF family, which is primarily secreted by macrophages [42, 43] . TNF is capable of regulating lipid metabolism, cell growth, protein binding, and cytokine activity [44] . As TNF is a multifunctional cytokine with a wide spectrum of biological processes, suggesting that Yin deficiency may be resulted from the disturbance of essential substances of our body, such as blood and fluid, for supporting individuals with a healthy body constitution. us, JUNB, JUND, RAF1, NGLY1, PPP1R15A, and TNF might be the responsible targets for Yin deficiency. Features of Yin deficiency may include oxidative stress, dysfunction of the immune system, and abnormal lipid/protein metabolism. Notably, since the capacity of gene number of genomewide genes is very large, it is worthy of discovering a shared and key functional target related to Yang or Yin deficiency by unsupervised analysis. Using WGCNA and functional analysis, CREBBP is coincidentally identified as a cofactor gene in regulating either Yin or Yang deficiency ( Figure 6 ). For the biological characteristic of CREBBP, it is a key regulator for maintaining cellular energy homeostasis, which might be correlated with energy metabolism disorder in Yang or Yin deficiency symptoms. For the transcriptional analysis, the DESeq2-normalized expression of CREBBP in either the Yang or Yin deficiency group was significantly different (p � 0.051) (Figure 7(a) ). e mean value of CREBBP-related z-score is 0.541 (Yang deficiency) and −0.541 (Yin deficiency). ese results suggested that the difference between a normalized expression of CREBBP in either the Yang or Yin deficiency group is around 1.082 standard deviation (SD) (|0.541| * 2 � 1.082 SD), indicating the transcriptional expression ratio (1.082 SD) of CREBBP within the Yang or Yin deficiency group. In accordance with the gene functional analysis (Figure 6 ), CERBBP-associated coexpressed genes are illustrated in Figure 7 (b). Taken together, our study might offer representative gene targets for supporting clinical traits of TCM theory-related Yang or Yin deficiency. On the basis of Chinese medicine theory and R-dependent machine learning, our study provided the transcriptomic profile of subjects with Yang or Yin deficiency body constitution by reanalyzing RNA-Seq data in GEO. e main merits of this study are as follows: (1) by reanalyzing RNA-Seq data, we identified the responsible targets for Yang deficiency (KAT2B, NFKB2, CREBBP, GTF2H3) and Yin deficiency (JUNB, JUND, NGLY1, TNF, RAF1, PPP1R15A) in Chinese medicine theory; (2) functional annotations for the representative targets in both body constitution (Yang or Yin deficiency) were provided; and (3) R-based machine learning approaches used in this investigation might be further adopted for unveiling the potential genetic polymorphisms related to the Chinese medicine theory. However, the limitation of this study is that, although we identified the key gene targets for the body constitution with Yang or Yin deficiency, target validation based on clinical and basic experimental investigations should be further provided for strengthening the findings in this study. e data used to support the findings of this study are included within the article, supplementary information files, and NCBI GEO database (GSE87474). e Yin and Yang of traditional Chinese and western medicine Mechanism underlying treatment of diabetic kidney disease using traditional Chinese medicine based on theory of Yin and Yang balance Yang deficiency body constitution acts as a predictor of diabetic retinopathy in patients with type 2 diabetes: taichung diabetic body constitution study End-to-end syndrome differentiation of Yin deficiency and Yang deficiency in traditional Chinese medicine Single-cell transcriptomics of blood reveals a natural killer cell subset depletion in tuberculosis Single-cell RNA sequencing reveals the heterogeneity of liver-resident immune cells in human Molecular basis for cold-intolerant yang-deficient constitution of traditional Chinese medicine Expression profiling-based clustering of healthy subjects recapitulates classifications defined by clinical observation in Chinese medicine Association between nine types of TCM constitution and five chronic diseases: a correspondence analysis based on a sample of 2,660 participants WGCNA: an R package for weighted correlation network analysis K-module algorithm: an additional step to improve the clustering results of WGCNA Co-expression networks Separation optimization in HPLC analysis implemented in R programming language Identification of key gene modules and pathways of human breast cancer by coexpression analysis Integrated multichip analysis identifies potential key genes in the pathogenesis of nonalcoholic steatohepatitis RLE (DESeq2), and MRN normalization methods for a simple twoconditions-without-replicates RNA-seq experimental design WGCNA application to proteomic and metabolomic data analysis Eigengene networks for studying the relationships between co-expression modules Prediction of gene phenotypes based on GO and KEGG pathway enrichment scores Yin-Yang and Zheng: exported from Chinese medicine Machinereadable Yin-Yang imbalance: traditional Chinese medicine syndrome computer modeling based on three-dimensional noninvasive cardiac electrophysiology imaging Cosplicing network analysis of mammalian brain RNA-seq data utilizing WGCNA and mantel correlations Kat2a and Kat2b acetyltransferase activity regulates craniofacial cartilage and bone differentiation in zebrafish and mice Clinical and immunological phenotype of patients with primary immunodeficiency due to damaging mutations in NFKB2 Human CREBBP acetyltransferase is impaired by etoposide quinone, an oxidative and leukemogenic metabolite of the anticancer drug etoposide through modification of redox-sensitive zinc-finger cysteine residues Exploring the emerging complexity in transcriptional regulation of energy homeostasis Whole exome sequencing of a consanguineous Turkish family identifies a mutation in GTF2H3 in brothers with spermatogenic failure Genetic variants in DNA repair pathway genes and risk of esophageal squamous cell carcinoma and gastric adenocarcinoma in a Chinese population Emerging role of AP-1 transcription factor JunB in angiogenesis and vascular development AP-1 (activated protein-1) transcription factor JunD regulates ischemia/reperfusion brain damage via IL-1beta (interleukin-1beta) JunD reduces tumor angiogenesis by protecting cells from oxidative stress Over-expression of JunB inhibits mitochondrial stress and cytotoxicity in human lymphoma cells exposed to chronic oxidative stress e expression levels of JunB, JunD and p-c-Jun are positively correlated with tumor cell proliferation in diffuse large B-cell lymphomas RAF1 kinase activity is dispensable for KRAS/p53 mutant lung tumor progression Clinical response to a MEK inhibitor in a patient with metastatic melanoma harboring an RAF1 gene rearrangement detected by cancer gene panel testing Cadmium induced inflammation and apoptosis of porcine epididymis via activating RAF1/MEK/ERK and NF-kappaB pathways Luteolin attenuates neutrophilic oxidative stress and inflammatory arthritis by inhibiting Raf1 activity Ngly1 -/-rats develop neurodegenerative phenotypes and pathological abnormalities in their peripheral and central nervous systems e cytoplasmic peptide: N-glycanase (NGLY1)-structure, expression and cellular functions e cytoplasmic peptide:N-glycanase (Ngly1)-basic science encounters a human genetic disorder Effects of growth arrest and DNA damage-inducible protein 34 (GADD34) on inflammation-induced colon cancer in mice Protein phosphatase 1 subunit Ppp1r15a/GADD34 regulates cytokine production in polyinosinic:polycytidylic acid-stimulated dendritic cells Tumor necrosis factor-alphainduced protein 8-like 2 negatively regulates innate immunity against RNA virus by targeting RIG-I in macrophages Tumor necrosis factor primes and metal particles activate the NLRP3 inflammasome in human primary macrophages Progranulin does not bind tumor necrosis factor (TNF) receptors and is not a direct regulator of TNF-dependent signaling or bioactivity in immune or neuronal cells e authors declare that there are no conflicts of interest. Y.F. and N.W. conceived and designed the study. C.Z., N.W., and Y.F. collected the data and drafted the manuscript. All the authors revised, commented, and approved the final version. Additionally, the authors acknowledged the contributors for sharing their RNA-Seq data on the NCBI Gene Expression Omnibus (GEO) database.