key: cord-0736058-jp8dbndu authors: Cena, Hellas; Fiechtner, Lauren; Vincenti, Alessandra; Magenes, Vittoria Carlotta; De Giuseppe, Rachele; Manuelli, Matteo; Zuccotti, Gian Vincenzo; Calcaterra, Valeria title: COVID-19 Pandemic as Risk Factors for Excessive Weight Gain in Pediatrics: The Role of Changes in Nutrition Behavior. A Narrative Review date: 2021-11-26 journal: Nutrients DOI: 10.3390/nu13124255 sha: 57ed271fcc5a5b8fa55793fad3246532e5e385f0 doc_id: 736058 cord_uid: jp8dbndu During the coronavirus disease 2019 (COVID-19) pandemic, social isolation, semi-lockdown, and “stay at home” orders were imposed upon the population in the interest of infection control. This dramatically changes the daily routine of children and adolescents, with a large impact on lifestyle and wellbeing. Children with obesity have been shown to be at a higher risk of negative lifestyle changes and weight gain during lockdown. Obesity and COVID-19 negatively affect children and adolescents’ wellbeing, with adverse effects on psychophysical health, due in large part to food choices, snacking between meals, and comfort eating. Moreover, a markable decrease in physical activity levels and an increase in sedentary behavior is associated with weight gain, especially in children with excessive weight. In addition, obesity is the most common comorbidity in severe cases of COVID-19, suggesting that immune dysregulation, metabolic unbalance, inadequate nutritional status, and dysbiosis are key factors in the complex mechanistic and clinical interplay between obesity and COVID-19. This narrative review aims to describe the most up-to-date evidence on the clinical characteristics of COVID-19 in children and adolescents, focusing on the role of excessive weight and weight gain in pediatrics. The COVID-19 pandemic has taught us that nutrition education interventions, access to healthy food, as well as family nutrition counselling should be covered by pediatric services to prevent obesity, which worsens disease outcomes related to COVID-19 infection. At the end of 2019, a novel coronavirus caused a cluster of pneumonia in Wuhan, a city in the Hubei province, in China. It then rapidly spread throughout the world. In February 2020, the World Health Organization (WHO) named the disease induced by this novel virus "COVID-19" (coronavirus disease 2019) and the virus "SARS-CoV-2" (severe acute respiratory syndrome coronavirus 2). The WHO declared COVID-19 a pandemic on 11 March 2020 [1] . Royal College of Pediatrics and Child Health (RCPCH) An individual aged <21 years presenting with fever, laboratory evidence of inflammation, and evidence of clinically severe illness requiring hospitalization, with multisystem (>2) organ involvement (cardiac, renal, respiratory, hematologic, gastrointestinal, dermatologic, or neurologic) Fever >38.0 • C for ≥ 24 h or report of subjective fever ≥ 24 h Laboratory evidence including at least one of the following: an elevated CRP level, ESR, fibrinogen, procalcitonin, d-dimer, ferritin, lactic acid dehydrogenase, or IL-6 levels; elevated neutrophil level; reduced lymphocyte level; and low albumin level AND No alternative plausible diagnoses AND Positive for current or recent SARS-CoV-2 infection at RT-PCR assay, serology, or antigen test; or COVID-19 exposure within the 4 weeks before the onset of symptoms A child presenting with persistent fever, inflammation (neutrophilia, elevated CRP level, and lymphopenia) with evidence of single or multiorgan dysfunction (shock, cardiac, respiratory, renal, gastrointestinal, or neurologic disorder) with additional features This may include children fulfilling full or partial criteria for Kawasaki disease Exclusion of any other microbial cause, including bacterial sepsis, staphylococcal or streptococcal shock syndromes, infections associated with myocarditis such as enterovirus SARS-CoV-2 RT-PCR testing may be positive or negative Children and adolescents aged 0-19 years with fever ≥ 3 days AND two of the following: -Rash or bilateral nonpurulent conjunctivitis or muco-cutaneous inflammation signs (oral, hands or feet) -Hypotension or shock -Features of myocardial dysfunction: pericarditis, valvulitis, or coronary abnormalities (including echocardiographic findings or elevated troponin/NT-proBNP) -Evidence of coagulopathy ( Clinically, MIS-C is usually manifested by persistent fever from three to five days, gastrointestinal symptoms (such as abdominal pain, mimicking appendicitis, vomiting, diarrhea), rash, and conjunctivitis followed by multisystem involvement or shock [41] . In MIS-C, cardiac involvement is a common condition, specifically in terms of myocarditis, pericarditis, and endocarditis [48, 49] . Respiratory symptoms are generally due to shock or cardiogenic pulmonary edema, different from severe COVID-19 cases [41, 43] . Neurocognitive symptoms have also been reported, such as headache, lethargy, and irritability. Less commonly, more severe conditions may occur, such as encephalopathy, seizures, meningoencephalitis, and/or coma [39, 50] . The incidence of MIS-C is uncertain, but it appears to be relatively rare, occurring in less than 1% of children with confirmed SARS-CoV-2 infection [42] . The median age of MIS-C cases was 6 to 12 years [42, 43] and comorbidities were reported in a minority of cases, around 20% [41] . The most common comorbidity reported was obesity, present in 7% to 26% of MIS-C cases, depending on case series [50, 51] . Another associated risk factor is asthma [48] . Racial/ethnic disparities persist in MIS-C, with black children having higher rates than non-Hispanic white children [12, 43] . Laboratory findings in children with documented SARS-CoV-2 are variable. The main laboratory abnormalities show elevated C-reactive protein, serum ferritin, lactate dehydrogenase, D-dimers, procalcitonin, erythrocyte sedimentation rate, serum aminotransferases, and leukocyte count [10, 16] . Less common abnormalities include lymphocytopenia, lymphocytosis, and increased creatine kinase myocardial band [10] . In children affected by MIS-C, additional laboratory abnormalities detected are neutrophilia, mild anemia, thrombocytopenia, hypoalbuminemia, hypertriglyceridemia, and increased interleukin-6 (IL-6) levels [24, 52] . Laboratory markers of inflammation correlate with severity of illness both in severe COVID-19 cases and in MIS-C cases [24, 53] . Interestingly, in patients affected by MIS-C, many endocrinological disturbances are noted, including insulin resistance, glycemic fluctuations, and/or hyperglycemia [54] . This is consistent with findings reporting glucose unbalances in critically ill patients, in which hyperglycemic milieu, aimed at providing fuel for the brain and the immune system in stress conditions [54] , is considered a risk factor for adverse outcomes [55] . In order to limit those glycemic metabolic imbalances, regular glucose monitoring may be useful and insulin therapy may be needed [54] . In the literature, interactions between glucose-insulin metabolic disorders and SARS-CoV-2 infection have been reported, both in adults and in children [56] [57] [58] . Interestingly, those dysmetabolisms have been described both in children affected by type 1 diabetes mellitus [57, 58] as well as in those without any glycemic disorder [54] . These glycemic fluctuations are compatible with SARS-CoV-2-induced hyperinflammatory response, which impairs correct functioning of pancreatic β-cells [59] . In adult patients, many comorbidities associated with enhanced inflammation have been reported as risk factors for a more critical condition [30, 60, 61] . In children, only a few studies have highlighted this issue [39, 43, [50] [51] [52] , making it hard to draw conclusions. Thus, further research should focus on the identification of the role of proinflammatory comorbidities as a substrate for more severe clinical outcomes even in pediatrics. In response to COVID-19, in order to lower virus spread and limit the pressure on the health care system, special measures were implemented by the authorities, such as school closures and home confinement. These restrictions changed children's and adolescents' everyday routine, modifying their eating behaviors, available food choices, and physical activity, thus increasing risk of weight gain and obesity development [62] . Different studies, from different parts of the world, showed that, during the lockdown of the COVID-19 pandemic period, children increased their food intake and gained weight [63] [64] [65] [66] . For instance, in China, a general BMI increase in adolescents and young adults was reported with an increased prevalence of obesity in teens (15-17 years) from 10.5% to 12.9% [63] . In Palestine, a study showed a weight gain in 41% of adolescents associated with increased consumption of fried foods, sugary drinks, sweets, and dairy products during home confinement [67, 68] . In Poland, changes in dietary intake, such as reduced consumption of fresh fruit, vegetables, and legumes, were associated with weight and BMI increases both in adults and children [65] . In a USA cohort study with 17 million adolescents, the obesity prevalence rose to 15% [67] . Lockdown's impact on BMI changes in pediatrics showed weight gain, with the highest BMI increases in children already most vulnerable to unhealthy weight gain [66] , including children with pre-existing obesity, or black or Hispanic children [66] . In addition, 8-to-12-year-old children had higher rates, perhaps in relation to more screen time [66] . In Italian children, especially in males, an increase in the quantity and a reduction in the quality of meals (with higher intake of potato, meat, and sugary drinks) was described [64] . Such results have also been confirmed by international multicenter studies reporting an increased consumption of comfort food, including sweets and fried food, of up to 20% in adolescents from Spain, Italy, Brazil, Colombia, and Chile during lockdown and an association with higher BMI at younger ages [69] . Weight gain was also correlated with lower socio-economic status, attributable to food insecurity and parents' concern about financial and health consequences of the viral disease, besides stress and social distancing [68, 70] . This becomes more relevant considering that previous epidemics have shown a healthy diet is needed to improve physical and mental health [71] . The widespread weight gain and increased risk of obesity during the "COVID-19 era" in children is related not only to changes in eating behaviors, but also to other factors including physical inactivity [72] [73] [74] , stress [62, 70] , and increased screen time or TV watching with a consequent increase in snacking [66, 75] , decreased sleep quality [62, 76] , and even indoor pollution due to parental smoking during home confinement [62, 77] . The measures implemented by the authorities reduced children's extracurricular and outdoor activities and limited physical activity (PA) [67] . This led to a general decrease in PA and an increase in sedentary behavior [72] , factors known to be associated with a reduction in energy expenditure and an increased risk of obesity development [78] . Indeed, PA contributes to daily energy expenditure, lean body mass, and metabolic and psychological profiles [73] . Thus, it helps children to maintain physical and emotional wellbeing and prevent excessive weight gain [73, 78, 79] . Data collected in the US during the most restrictive period of time (April-May 2020) showed that only around 10% of children practiced team sports through virtual platforms, about 29% participated in physical activity lessons (as martial arts or yoga), and 2.4% participated in online gym programs [67, 72] . In addition, adolescents from Latin America, Brazil, and Chile were less active during quarantine and increased their weight [69] . In one study using a microsimulation model to project the impact of the COVID-19 pandemic on childhood obesity in the United States [80] , the model predicted that a 2-month school closure alone could result in an increase of the childhood obesity rate by 0.64% in US children of kindergarten age [80] . In addition to the increased risk of obesity development in children with a lean or overweight BMI, special attention should be paid to children already affected by obesity. It is well known that children and adolescents tend to gain more weight during summer vacations than during the school year [81] [82] [83] as schools provide a structured routine with school meals, physical activity, and a routine that promotes an adequate sleep schedule, three factors implicated in obesity risk [64] . This raise the concern that lockdown could cause unfavorable changes in the lifestyle behaviors of homebound children with obesity [64, 84] . Moreover, it was shown that COVID-19 lockdown measures caused increased anxiety in children with severe obesity [85] . This could affect lifestyle [85] , with consequent weight gain, consistent with the findings that depression, stress, and anxiety are linked with more severe obesity among youths with obesity [62, 86, 87] . In addition, the COVID-19 pandemic also caused high levels of parental stress, increasing the difficulty in providing a supportive environment for their children [88] . Parental stress has been associated with an increased risk for childhood obesity in different studies [88] [89] [90] . As discussed above, obesity is the most common comorbidity in severe cases of COVID-19 occurring in children and adolescents [7, 24, 77, 91] and the third most prevalent risk factor among children admitted to ICUs [8] . Particularly noteworthy, the factors involved in worse COVID-19 clinical outcomes include not only obesity itself but also the several comorbidities associated with obesity. [7, 8] . Unfortunately, due to fewer pediatric COVID-19 cases compared to adults, there is a paucity of studies available to fully identify risk factors and understand the disease course in these patients. There are a few studies [8, 24, [91] [92] [93] published on the negative effects of pediatric obesity on COVID-19 clinical outcomes. In a large cohort of hospitalized children affected by COVID-19 and MIS-C, obesity was found to be an independent risk factor for illness severity and length of hospitalization [91] . Obesity had a more negative impact on children hospitalized with acute COVID-19 compared to those affected by MIS-C [91] . Understanding the pathophysiologic interrelationship between pediatric obesity and severe SARS-CoV-2 infection is fundamental to identifying preventive measures and/or clinical interventions [93] . The main factors impairing correct immune system functioning in children with obesity, such as glycemic unbalances, dyslipidemias, proinflammatory state, and respiratory and cardiovascular problems [31, 94] , have been demonstrated to worsen the clinical outcome in severe acute respiratory syndrome coronavirus 2 infection in adults [92, [95] [96] [97] [98] [99] . For example, children and adolescents with obesity typically have insulin resistance and hyperinsulinism, causing many health repercussions, in particular on the cardiovascular system [99] [100] [101] . SARS-CoV-2 was shown to interact with ACE-2 and disrupt pancreatic beta cells' activity, further aggravating hyperinsulinism and its negative consequences [96] . Moreover, children with obesity can present with dyslipidemias, low levels of HDLcholesterol, and high levels of LDL-cholesterol, known to cause endothelial dysfunction and consequent atherosclerosis [102] [103] [104] , factors shown to be related to worse COVID-19 clinics [99, 105] . In adults with obesity arterial stiffness and atherosclerosis, this have been shown to favor SARS-CoV-2 infection of the endothelium and to be associated with chronic oxidative stress [99] . From the cardiovascular point of view, in addition to the increased risk of atherosclerosis development [103, 104] due to metabolic abnormalities, children with obesity may have cardiac anatomical changes, such as left ventricle hypertrophy [106] , due to hypertension [106] , leading to endothelial injuries [103, 104] and promoting endothelial attack by SARS-CoV-2 [31, 99] . In addition, respiratory physiology may be impaired in children with obesity, mainly due to the pressure exerted by abdominal adiposity on the lungs [107, 108] , putting them at higher risk of pulmonary infections [101, 109] , possible complications of COVID-19 [109] , and asthma development [107] , a known risk factor for MIS-C [48] . Childhood obesity was also shown to alter the immune system by proinflammatory state promotion [110] . In adults with obesity, this immune dysregulation has been related to a worse COVID-19 clinical outcome, ascribable to the intense and deregulated inflammatory reaction, called a cytokine storm, that could be enhanced by the silent chronic hyperinflammatory state typical of both adults and children affected by obesity [99, [110] [111] [112] . Specifically, in youths with obesity, an increase in cytotoxic and effector T cells (Th1 and Th7) and M1-phenotype macrophages coupled with decreased levels of T-reg cells and M2-phenotype macrophages have been reported [112] . Among the molecules involved in this immune derangement, there are adipocytokines, including leptin, cytokines, such as TNF-alpha, IL-6, IL-12, Il-1b, MCP-1, and nitric oxide [112] , which have also been correlated with worse COVID-19 clinical outcomes [98, 99, 113] . Furthermore, the assessment of nutritional status as well as the investigation of nutritional effects on COVID-19 course in the pediatric population [114] have highlighted vitamin D deficiency, a well-documented finding in children with obesity [115] , and less commonly, vitamin B12, C, A, E, iron, and folate deficiencies [114] . Another interesting interconnection between obesity and COVID-19 lies in the gut microbiota [116] [117] [118] [119] , a complex ecosystem of bacterial species mainly composed of anaerobic microorganisms, belonging to two main phylogenetic lineages: Firmicutes and Bac-teroidetes [116] . In children and adults with obesity, the ratio between the two lineages may be altered, leading to dysbiosis [116] [117] [118] . In COVID-19 patients, intestinal dysbiosis has been reported [119] . SARS-CoV-2 RNA was found in the feces of infected patients and ACE2 receptors have been shown to also be expressed in the enterocytes of the small intestine [119] . In order to derive conclusions about the role of the microbiome in COVID-19 adults and children, more studies are needed, but these are interesting starting points. To conclude, it is worth mentioning that obesity has also been linked to worse outcomes in other viral diseases, for instance, the H1N1 epidemic [120] in adults, and the influenza virus in children due to impairment of the cellular immune response and inadequate immunity [31, 121] . The deleterious relationship between obesity and COVID-19 is reported in Figure 1 . vitamin D deficiency, a well-documented finding in children with obesity [115] , and less commonly, vitamin B12, C, A, E, iron, and folate deficiencies [114] . Another interesting interconnection between obesity and COVID-19 lies in the gut microbiota [116] [117] [118] [119] , a complex ecosystem of bacterial species mainly composed of anaerobic microorganisms, belonging to two main phylogenetic lineages: Firmicutes and Bacteroidetes [116] . In children and adults with obesity, the ratio between the two lineages may be altered, leading to dysbiosis [116] [117] [118] . In COVID-19 patients, intestinal dysbiosis has been reported [119] . SARS-CoV-2 RNA was found in the feces of infected patients and ACE2 receptors have been shown to also be expressed in the enterocytes of the small intestine [119] . In order to derive conclusions about the role of the microbiome in COVID-19 adults and children, more studies are needed, but these are interesting starting points. To conclude, it is worth mentioning that obesity has also been linked to worse outcomes in other viral diseases, for instance, the H1N1 epidemic [120] in adults, and the influenza virus in children due to impairment of the cellular immune response and inadequate immunity [31, 121] . The deleterious relationship between obesity and COVID-19 is reported in Figure 1 . The roles of nutrients in supporting the function of the immune system are well known and it is easy to appreciate that an adequate and balanced supply of micro and macronutrients is essential if an appropriate immune response is to be achieved [84, 122] . Although COVID-19 infection cannot be prevented by any specific food or dietary supplements, healthy dietary patterns and optimal nutritional status are key factors for immune function response and support [84, 123] , especially in pediatrics [31] . The roles of nutrients in supporting the function of the immune system are well known and it is easy to appreciate that an adequate and balanced supply of micro and macronutrients is essential if an appropriate immune response is to be achieved [84, 122] . Although COVID-19 infection cannot be prevented by any specific food or dietary supplements, healthy dietary patterns and optimal nutritional status are key factors for immune function response and support [84, 123] , especially in pediatrics [31] . Since excessive weight gain has a negative impact on nutritional status and immune response [122] , it is understandable that overweight and obesity are a main concern for a negative impact on the immune system, increasing the severity and morbidity of lower respiratory tract infections [124] including COVID-19 infection [125] . Indeed, childhood obesity is likely associated with higher COVID-19 susceptibility, severity, and worse prognosis [23, 125] . Moreover, obesity-related alterations in pharmacokinetics and pharmacody-namics might reduce the effectiveness of medications [126, 127] , including antivirals and vaccination [124, 128] , leaving children with obesity more vulnerable to diseases, mainly explained by chronic systemic sub-clinical inflammation, obesity-related immune system dampening, and decreased cell-mediated immune responses [129] . Moreover, adiposity is associated with higher levels of local and systemic inflammation markers, such as interleukin-6 and C-reactive protein [23, 28] , which have been positively correlated with COVID-19 susceptibility and severity [28] . Evidence shows that a healthy dietary pattern [130] and adequate nutrition positively impact inflammation and immunity, including response to COVID-19 infection [73, 122, 130, 131] . Zhang and Liu, in a systematic review, showed that some nutrients are fundamental for an adequate response against COVID-19 infection, including vitamins A, C, D, and E, omega 3 fatty acids, as well as zinc and iron [132] . In addition, other micronutrients, such as B vitamins (i.e., B 6 , folate, B 12 ), selenium, and copper, showed a positive impact on immune function [122, 133, 134] . Inadequate intake of micronutrients, as well as subclinical deficiencies, may contribute to COVID-19 spread by reducing resistance to infection and easing reinfection [133] . Obesity has been increasingly recognized as a risk factor for several micronutrient deficiencies (MNDs) resulting from: (i) energy-dense and nutrient-poor diets; (ii) increased requirements; and (iii) pharmacokinetics alterations, including distribution, metabolism, and elimination, that could affect micronutrients metabolism [135, 136] . Data suggest that some micronutrients, such as vitamin D, may be sequestered in the excessive adipose tissue, leading to less bioavailability [135, 137] in children with obesity [138] [139] [140] , aggravated by the absence of outdoor physical activity that stimulates the synthesis of vitamin D [140] . Vitamin D has immunoregulatory properties, regulates the production of chemokines, prevents autoimmune inflammation, and enhances immune cell differentiation [122, 137] . Several studies suggested an association between low levels of vitamin D and worse outcomes in COVID-19 patients [141] , which makes this issue particularly relevant in children with obesity where the prevalence of this deficiency is high [138, 139] . It has been hypothesized that vitamin D deficiency increases infection risk as it seems to have protective effects against respiratory infections and it has been correlated to a higher level of mortality in adult COVID-19 patients [142] . On the other hand, inadequate intake of vitamins A, E, and C, due to low consumption of fruits and vegetables in children and adolescents [143] , may affect the immune response because of their antioxidant role, which can protect the cell membrane against reactive oxygen species, supporting the protective function of macrophages, neutrophils, and natural killer cells [122, 144] . Interestingly, vitamin E supplementation has been shown to increase resistance to infections, including influenza viruses, in animals [145] . Vitamin C supplementation has shown a role in the prevention of respiratory and systemic infection [146] . Vitamin A, beside regenerating mucosal barriers [145] , has a key role in adaptive immunity, and the development of T and B cells [145] . Besides, vitamin A deficiency has been shown to impair the Th2 response and promote the immune response to influenza virus infection [31, 145] . Furthermore, B vitamins are important cofactors and coenzymes in several metabolic pathways, and it has been reported that they also play important roles in the maintenance of immune homeostasis and regulation [122, 147] . Suboptimal plasma levels of these vitamins have been previously reported in pediatrics with a negative impact on nutrition status [148] [149] [150] . In addition, deficiency of B 6 , folate, and B 12 may result in hyperhomocysteinemia, which has been associated with several chronic diseases (e.g., cardiovascular disease, neurodegenerative disease) and inflammation [151, 152] , negatively correlated with COVID-19 outcomes [153] . With regards to iron, children with obesity are at risk for iron deficiency anemia, due to the low nutritional quality and low iron bioavailability of their diet [143] , and anemia has been widely demonstrated in this group [154] . Iron could affect several aspects of the host-virus interactions; viral pathogenesis could be influenced by cellular iron status, since viruses co-opt host cellular processes to replicate using iron-dependent proteins [155] . Iron deficiency might protect against certain microbial infections including malaria [156] and iron supplementation could exacerbate malaria risk in children in endemic areas in the absence of control measures [157, 158] . Moreover, excess iron increases siderophilic bacterial infection risk [159] and gastrointestinal and respiratory infections have been reported in trials of childhood iron supplementation [158] . Despite this, several features of host responses to viral infection could also be affected by iron (e.g., macrophage polarization, lymphocyte proliferation, and cytokine production), potentially influencing either disease susceptibility or course [160] . In SARS-CoV-2 infection, iron deficiency seems to exaggerate the pulmonary response to hypoxic stress consequent to impaired lung function and hypoxia [161, 162] and modulate cytokine production, influencing COVID-19-related inflammatory phenotypes [160] . Additionally, as reported by James et al., acute viral infection can promote an innate immune response, and iron may be withheld from the plasma through elevated hepcidin levels, leading to a functional iron deficiency and anemia of inflammation [160] , with both considered adverse prognostic indicators in severe COVID-19 [163, 164] . In a retrospective analysis of 259 hospitalized adults with COVID-19 in Austria, a higher risk of death (OR: 3.73; 95% CI: 1.74, 8.00) among anemic patients (specifically anemia of inflammation) compared to non-anemic ones was reported [164] . Zinc deficiency is also believed to be present among children with obesity in the same way as iron deficiency, and this has been demonstrated in studies in the pediatric age group [165] . Zinc and some zinc-dependent proteins play a role in antiviral defense and immune regulation in the respiratory tract [163] . A meta-analysis of 13 studies in China showed that pediatric patients with recurrent respiratory tract infection had low zinc levels [166] . Some meta-analysis and systematic review data showed that zinc could be helpful in decreasing the prevalence and incidence of pneumonia in children [154] . In adults, a decreased mortality rate in severe pneumonia was also reported [167] . A recent report by Zhang and Liu [132] suggests that zinc supplementation can ameliorate COVID-19-induced diarrhea and respiratory symptoms (i.e., cough, sore throat, and shortness of breath). In addition, the importance of zinc in the clinical course and effectiveness of drugs in adult patients with COVID-19 has been reported [168] [169] [170] . It should be noted that, in addition to its immunological role, zinc also participates in insulin and leptin metabolism, which can aggravate metabolic dysregulations in children affected by obesity, contributing to an inadequate inflammatory response [171] . An additional role in the immunomodulation can be also attributed to omega-3 fatty acids, which are essential lipids for humans [31] . Eicosapentaenoic (EPA) and docosahexaenoic (DHA) fatty acids are potent immunomodulators as they decrease the activity of specific nuclear transcription factors, leading to a decrease in proinflammatory molecules, such as TNF-α and IL-1β [172] . Moreover, competing with arachidonic acid (omega-6) for the metabolism of cyclooxygenase, prostaglandins and leukotrienes modulate production [173] . The immunomodulation ability depends on the omega-3/omega-6 ratio, and it was shown that a ratio of 1:15 to 1:50, typical of Western diets and found in adults [174] and children [175] , has proinflammatory effects [174] . This inadequate proportion of omega-3/omega-6 impairs modulation of the immune response with a consequent risk of exacerbation of inflammatory reaction effects [31, 174] . Lastly, a growing body of evidence suggests that the gut microbiota should be considered [176, 177] , since gut dysbiosis is common in subjects with both over and under nutrition, and diet has been shown to induce alterations of its composition [178] . Dysbiosis may contribute to the increased risk of infections affecting immune system modulation [23] so may be involved in the severity of COVID-19 infection [179, 180] . The COVID-19 pandemic indirectly affected nutritional status via several containment measures (i.e., lockdown, social isolation, school closure), contributing further to the obesogenic environment [181, 182] . For this reason, several studies assessed the impact of the COVID-19 pandemic on dietary habits and lifestyle among adults, children, and adolescents [64, 69, 181, 182] at risk of increased overweight and obesity [73, 182] . Pietrobelli A et al. carried out a survey during 3 weeks of home confinement in Italy including 41 children (aged 6-18 years) with obesity [64] . It showed that intakes of potato chip, red meat, and sugar drinks increased significantly during the lockdown (p-value range: 0.005 to <0.001), while time spent in sports activities decreased by 2.3 (±4.6 SD) h/week (p = 0.003) and screen time increased by 4.8 (±2.4 SD) h/day (p < 0.001) [64] . At the same time, an international survey conducted in Italy, Spain, Chile, Colombia, and Brazil among 820 adolescents (aged 10 to 19 years) reported a significant increase in the consumption of fried foods and desserts (p < 0.001, p < 0.0001, respectively) during COVID-19 containment measures with lower adherence to a healthy dietary pattern [69] . Another Italian survey conducted by Di Rienzo et al. [183] during social confinement included 3533 respondents (aged 12 to 86 years). They reported an increase in junk food consumption and a lower adherence to the Mediterranean diet (MD) in the population group aged 12-17 years compared to the group aged 18-30 [183] . However, there are also findings reporting increased adherence to the MD pyramid for fruit, legumes, fish, and sweets, while cereals, nuts, and dairy intake decreased during the COVID-19 lockdown [184] . The overall findings suggested that COVID-19 led to changes in dietary habits towards an unhealthy dietary pattern and lifestyle, with individual differences probably depending on personal and familial socioeconomic status as suggested by Maffoni S. et al. [181] . During the pandemic, families have experienced the stress of increased job losses, furloughs, loss of at least one wage, and limitation of financial resources to devote to healthy food [182, 183] . Moreover, the social distancing measures influenced the whole food production and distribution system by disrupting agricultural production, transportation, and sale of nutritious, fresh, and affordable foods, forcing families to rely on nutrient-poor alternatives [182, 185] . Data suggest that families bought more shelf-stable less expensive, ultra-processed, and calorie-dense comfort foods [182] . On the other hand, several surveys carried out during lockdowns in Western countries have also pointed out that the negative effect of the COVID-19 pandemic may also explicate with the increasing sedentary lifestyles at pediatric age [62] . As COVID-19 spread, many countries employed restrictive policies (e.g., school closure) to slow the transmission and ease the healthcare system burden, affecting physical activity [73, 186] and outdoor gatherings for leisure activities. School closure had harmful social and health consequences for children, and remote learning has been associated with weight gain, especially in overweight children [187, 188] , who found themselves suffering food insecurity, increased consumption of comfort food, reduced physical activity, and increased screen time both for online learning and leisure time activities, with a negative impact both on nutritional status and mental health and wellbeing [62] . Interestingly, changes in nutrition during lockdown were also described in adolescents affected by eating disorders [189] . For instance, patients with bulimia nervosa and binge eating disorder reported increased binge eating behaviors [190, 191] with consequent weight gain [191] . Lastly, an interesting point, still not well addressed, is maternal nutrition, both in obese/overweight women and lean BMI pregnant women, during the COVID-19 pandemic. It has been shown that emotional eating occurred in a significant number of pregnant women during COVID-19 and was related to an excessive gestational weight gain [192] , mediated by augmented intake of certain foods, such as cereals and oil, and decreases in others, such as fish and seafood [192] . Importantly, excessive gestational weight gain is considered one of the main contributors to fetal adiposity development and consequent high birth weight and increased risk of overweight and its consequences later in childhood [193] . In addition, maternal obesity has been found to be a risk factor for the increased susceptibility of pregnant women to severe COVID-19 disease [194] , further highlighting the relevance of nutritional status in response to infections [194] . Overall, a qualitatively unhealthy diet, characterized by a high intake of saturated fats and refined carbohydrates including simple sugars and a low content of fiber, vitamins and minerals, and unsaturated fatty acids on the other, might expose children to nutritional inadequacies or deficiencies, thus increasing the risk of weight gain, obesity, and comorbidities, which are in turn associated with negative COVID-19 outcomes [195] . Obesity and COVID-19, as seen, are pandemics that negatively affect children and adolescents' well-being [62] , influencing each other in a deleterious way, both at the physiological and at the psychological level. The COVID-19 pandemic dramatically affected daily life for children and adolescents. Lockdown measures have had an impact on dietary behavior, inducing an increase in snacking and an increase in processed food consumption. Unhealthy dietary habits associated with a markable decrease in physical activity levels and an increase in sedentary behavior have been associated with weight gain, especially in overweight children. Furthermore, obesity is the most common comorbidity in severe cases of COVID-19 also in pediatrics; immune dysregulation, metabolic unbalance, inadequate nutritional status, and dysbiosis may be key factors in the interconnection between obesity and COVID-19. Active surveillance of patients is mandatory to define the long-term impact of obesity and COVID-19. Improved access to healthy foods and nutrition counselling to support this population could be useful to prevent the negative consequences of COVID-19 on the health and lifestyle of children with obesity and to prevent the most common comorbidities associated with obesity that could worsen the clinical COVID-19 picture. Biochemical and molecular studies could be useful to create predictive models for dedicated health monitoring, preventative measures, and precision medicine for children. The introduction of telemedicine as innovative access to health care could be a prerequisite for closer patient monitoring to guarantee a systematic assessment of their health and biopsychosocial needs. The authors declare no conflict of interest. COVID-19: A Global Challenge with Old History, Epidemiology and Progress So Far Physical Activity Levels across COVID-19 Outbreak in Youngsters of Northwestern Lombardy Epidemiology of COVID-19 Among Children in China COVID-19 Trends Among Persons Aged 0-24 Years-United States Characterisation of COVID-19 Pandemic in Paediatric Age Group: A Systematic Review and Meta-Analysis The Disproportionate Impact of COVID-19 on Racial and Ethnic Minorities in the United States Evaluation of Predictors of Severe-moderate COVID-19 Infections at Children: A Review of 292 Children Characteristics and Outcomes of Children with Coronavirus Disease 2019 (COVID-19) Infection Admitted to US and Canadian Pediatric Intensive Care Units An Introduction to Writing Narrative and Systematic Reviews-Tasks, Tips and Traps for Aspiring Authors Clinical Features and Prognostic Factors of Pediatric SARS-CoV-2 Infection: Results from an Italian Multicenter Study Susceptibility to SARS-CoV-2 Infection Among Children and Adolescents Compared with Adults: A Systematic Review and Meta-Analysis Ethnicity and COVID-19 in Children with Comorbidities Racial and Ethnic Disparities in COVID-19-Related Infections, Hospitalizations, and Deaths: A Systematic Review COVID-19 Epidemic: Disease Characteristics in Children Coronavirus Disease 2019 (COVID-19) in Children and/or Adolescents: A Meta-Analysis A Systematic Review and Meta-Analysis of Children with Coronavirus Disease 2019 (COVID-19) Clinical Characteristics of COVID-19 in Children: A Systematic Review Pericarditis as the Main Clinical Manifestation of COVID-19 in Adolescents Treatment and Outcomes of Paediatric COVID-19: A Systematic Review and Meta-Analysis Clinical Characteristics and Outcomes of Hospitalized and Critically Ill Children and Adolescents with Coronavirus Disease 2019 at a Tertiary Care Medical Center SARS-COV-2 Infection in Children and Newborns: A Systematic Review COVID-19 in Children: Clinical Approach and Management Severe COVID-19 Infection and Pediatric Comorbidities: A Systematic Review and Meta-Analysis Clinical Features, and Disease Severity in Patients with Coronavirus Disease 2019 (COVID-19) in a Children's Hospital in Obesity Is Associated with Severe Forms of COVID-19 High Prevalence of Obesity in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Requiring Invasive Mechanical Ventilation Adipokine Dysregulation and Adipose Tissue Inflammation in Human Obesity Association of Inflammatory Markers with the Severity of COVID-19: A Meta-Analysis COVID-19 and the Role of Chronic Inflammation in Patients with Obesity Obesity and COVID-19: Molecular Mechanisms Linking Both Pandemics Ued, F.d.V. COVID-19 and Obesity in Childhood and Adolescence: A Clinical Review We Need to Look at the Comorbidities of Obesity during Childhood and Adolescence Obesity Predisposes to the Risk of Higher Mortality in Young COVID-19 Patients Obesity Could Shift Severe COVID-19 Disease to Younger Ages COVID-19 Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection in Children and Adolescents: A Systematic Review of Critically Unwell Children and the Association with Underlying Comorbidities COVID-19 and Diabetes: A Collision and Collusion of Two Diseases COVID-19 in Children and Adolescents with EndocrineConditions The Severity of COVID-19 in Children on Immunosuppressive Medication Autoimmune and Inflammatory Diseases Following COVID-19 Hyperinflammatory Shock in Children during COVID-19 Pandemic Multi-System Inflammatory Syndrome in Children (MIS-C) Following SARS-CoV-2 Infection: Review of Clinical Presentation, Hypothetical Pathogenesis, and Proposed Management Multisystem Inflammatory Syndrome in Children Associated with Severe Acute Respiratory Syndrome Coronavirus 2 Infection (MIS-C): A Multi-Institutional Study from New York City Characteristics and Outcomes of US Children and Adolescents with Multisystem Inflammatory Syndrome in Children (MIS-C) Compared with Severe Acute COVID-19 Childhood Multisystem Inflammatory Syndrome Associated with COVID-19 (MIS-C): A Diagnostic and Treatment Guidance from the Rheumatology Study Group of the Italian Society of Pediatrics Spectrum of Imaging Findings at Chest Radiography, US, CT, and MRI in Multisystem Inflammatory Syndrome in Children Associated with COVID-19 Paediatric Inflammatory Multisystem Syndrome: Temporally Associated with SARS-CoV-2 (PIMS-TS): Cardiac Features, Management and Short-Term Outcomes at a UK Tertiary Paediatric Hospital Intensive Care Admissions of Children with Paediatric Inflammatory Multisystem Syndrome Temporally Associated with SARS-CoV-2 (PIMS-TS) in the UK: A Multicentre Observational Study Acute Myocardial Injury: A Novel Clinical Pattern in Children with COVID-19 Toxic Shock-like Syndrome and COVID-19: Multisystem Inflammatory Syndrome in Children (MIS-C) Multi-System Inflammatory Syndrome in Children & Adolescents (MIS-C): A Systematic Review of Clinical Features and Presentation Multisystem Inflammatory Syndrome in Children: An International Survey Factors Linked to Severe Outcomes in Multisystem Inflammatory Syndrome in Children (MIS-C) in the USA: A Retrospective Surveillance Study Impaired Glucose-Insulin Metabolism in Multisystem Inflammatory Syndrome Related to SARS-CoV-2 in Children Stress Hyperglycemia: An Essential Survival Response! Crit. Care Type 2 Diabetes Is Associated with Increased Risk of Critical Respiratory Illness in Patients COVID-19 in a Community Hospital Prevalence of SARS-CoV-2 Antibodies in Children and Adults with Type 1 Diabetes Report: Insulin-Dependent Diabetes Mellitus and Diabetic Keto-Acidosis in a Child With COVID-19 Multisystem Inflammatory Syndrome in Children Related to COVID-19: A Systematic Review COVID-19: A Multidisciplinary Review. Front Covid-19 and the Cardiovascular System: A Comprehensive Review When Pandemics Collide: The Impact of COVID-19 on Childhood Obesity Obesity and Activity Patterns before and during COVID-19 Lockdown among Youths in China Effects of COVID-19 Lockdown on Lifestyle Behaviors in Children with Obesity Living in Verona, Italy: A Longitudinal Study Dietary Choices and Habits during COVID-19 Lockdown: Experience from Poland Pediatric BMI Changes during COVID-19 Pandemic: An Electronic Health Record-Based Retrospective Cohort Study Obesity in Children and Adolescents during COVID-19 Pandemic The Impact of Lockdown During the COVID-19 Outbreak on Dietary Habits in Various Population Groups: A Scoping Review Covid-19 Confinement and Changes of Adolescent's Dietary Trends in Italy Food Insecurity, the Home Food Environment, and Parent Feeding Practices in the Era of COVID-19 Nutrition amid the COVID-19 Pandemic: A Multi-Level Framework for Action Early Effects of the COVID-19 Pandemic on Physical Activity and Sedentary Behavior in Children Living in the U.S. BMC Public Health Special Attention to Diet and Physical Activity in Children and Adolescents with Obesity during the Coronavirus Disease-2019 Pandemic. Front Changes of Physical Activity and Ultra-Processed Food Consumption in Adolescents from Different Countries during COVID-19 Pandemic: An Observational Study Screen Time for Children and Adolescents during the Coronavirus Disease Association between Sleep Duration and Body Composition in Girls Ten to Eighteen Years of Age: A Population-Based Study Impact of Carers' Smoking Status on Childhood Obesity in the Growing up in Ireland Cohort Study Physical Activity in the Prevention of Childhood Obesity: The Position of the European Childhood Obesity Group and the European Academy of Pediatrics Educating the Student Body: Taking Physical Activity and Physical Education to School Projecting the Impact of the Coronavirus Disease-2019 Pandemic on Childhood Obesity in the United States: A Microsimulation Model Children's Obesity Prevalence Grows Only during Summer Vacations: Obesity Grows Only during Summer Accelerated Weight Gain Among Children During Summer Versus School Year and Related Racial/Ethnic Disparities: A Systematic Review School Year Versus Summer Differences in Child Weight Gain: A Narrative Review COVID-19-Related School Closings and Risk of Weight Gain Among Children COVID-19 Related Anxiety in Children and Adolescents with Severe Obesity: A Mixed-methods Study Stress and Paediatric Obesity: What We Know and Where to Go: Stress and Paediatric Obesity Depression, Anxiety, and Severity of Obesity in Adolescents: Is Emotional Eating the Link? Challenges and Burden of the Coronavirus 2019 (COVID-19) Pandemic for Child and Adolescent Mental Health: A Narrative Review to Highlight Clinical and Research Needs in the Acute Phase and the Long Return to Normality Do Stressed Mothers Have Heavier Children? A Meta-Analysis on the Relationship between Maternal Stress and Child Body Mass Index: Maternal Stress and Child Obesity Parent-Perceived Stress and Its Association with Children's Weight and Obesity-Related Behaviors The Impact of Obesity on Disease Severity and Outcomes Among Hospitalized Children with COVID-19 Obesity and COVID-19: An Italian Snapshot Obesity as a Risk Factor for Severe Illness From COVID-19 in the Pediatric Population Treatment and Prevention of Pediatric Obesity: Consensus Position Statement of the Italian Society for Pediatric Endocrinology and Diabetology and the Italian Society of Pediatrics Analysis of Early Data from Obesity Is a Risk Factor for Severe COVID-19 Infection: Multiple Potential Mechanisms Obesity-A Risk Factor for Increased COVID-19 Prevalence Obesity and COVID-19: A Fatal Alliance Obesity and COVID-19: Immune and Metabolic Derangement as a Possible Link to Adverse Clinical Outcomes Overweight and Obesity in Children and Adolescents Infection Risk and COVID-19. Mol. Metab. 2020, 39, 101044 Metabolic Syndrome in Children and Adolescents: Diagnostic Criteria, Therapeutic Options and Perspectives Ultrasonographic Evaluation of the Common Carotid Intima-Media Complex in Healthy and Overweight/Obese Children Markers of Subclinical Atherosclerosis in Schoolchildren with Obesity and Metabolic Syndrome Endothelial Dysfunction in COVID-19: Current Findings and Therapeutic Implications Evaluation of Echocardiography as a Marker of Cardiovascular Risk in Obese Children and Adolescents Association of Pediatric Obesity and Asthma, Pulmonary Physiology, Metabolic Dysregulation, and Atopy; and the Role of Weight Management Lung Function, Obesity and Physical Fitness in Young Children: The EXAMIN YOUTH Study Incidence of Co-Infections and Superinfections in Hospitalized Patients with COVID-19: A Retrospective Cohort Study Association of Childhood Obesity and the Immune System: A Systematic Review of Reviews Insights on Obesity in Children and Adults: Individualizing Management Childhood Obesity: Immune Response and Nutritional Approaches Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes Evaluation of Nutritional Status in Pediatric Patients Diagnosed with Covid-19 Infection Consequence or Cause of Obesity? Medicina Childhood Obesity and Firmicutes/Bacteroidetes Ratio in the Gut Microbiota: A Systematic Review Gut Microbiota and Pediatric Obesity/Non-Alcoholic Fatty Liver Disease Gut Microbiota and Covid-19-Possible Link and Implications Impact of Obesity in Patients Infected With 2009 Influenza A(H1N1) Obesity Impairs the Adaptive Immune Response to Influenza Virus Nutrition, Immunity and COVID-19 The Impact of Pediatric Obesity on Hospitalized Children with Lower Respiratory Tract Infections in the United States Obesity and COVID-19: A Perspective from the European Association for the Study of Obesity on Immunological Perturbations, Therapeutic Challenges, and Opportunities in Obesity Comprehensive Guidance for Antibiotic Dosing in Obese Adults Effect of Increased BMI and Obesity on the Outcome of COVID-19 Adult Patients: A Systematic Review and Meta-Analysis Interaction of Obesity and Infections: Interaction of Obesity and Infections Body Mass Index and the Risk of Infection-From Underweight to Obesity Defining a Healthy Diet: Evidence for the Role of Contemporary Dietary Patterns in Health and Disease Coronavirus Disease (COVID-19-SARS-CoV-2) and Nutrition: Is Infection in Italy Suggesting a Connection? Front Potential Interventions for Novel Coronavirus in China: A Systematic Review ESPEN Expert Statements and Practical Guidance for Nutritional Management of Individuals with SARS-CoV-2 Infection COVID-19 and Nutrition: The Need for Initiatives to Promote Healthy Eating and Prevent Obesity in Childhood Overfed but Undernourished: Recognizing Nutritional Inadequacies/Deficiencies in Patients with Overweight or Obesity Malnutrition in Obesity before and after Bariatric Surgery The Controversial Role of Vitamin D as an Antioxidant: Results from Randomised Controlled Trials Prevalence of Hypovitaminosis D and Predictors of Vitamin D Status in Italian Healthy Adolescents Considerations for Obesity, Vitamin D, and Physical Activity Amid the COVID-19 Pandemic Prevalence of Hypovitaminosis D and Associated Factors in Obese Spanish Children Potential Pathophysiological Mechanisms Leading to Increased COVID-19 Susceptibility and Severity in Obesity The Role of Vitamin D in the Prevention of Coronavirus Disease Food Types in the Diet and the Nutrient Intake of Obese and Non-Obese Children Role of Vitamin A in the Immune System The Role of Vitamin e in Human Health and Some Diseases Vitamin C and Immune Function Metabolism of Dietary and Microbial Vitamin B Family in the Regulation of Host Immunity Biomarkers of vitamin status in obese school children Vitamin B12 in Obese Adolescents with Clinical Features of Insulin Resistance Low Serum Vitamin B-12 and Folate Concentrations and Low Thiamin and Riboflavin Intakes Are Inversely Associated with Greater Adiposity in Mexican American Children Is There a Possible Association in the Elderly? A Narrative Review Excessive Vitamin B12 and Poor Outcome in COVID-19 Pneumonia Zinc Supplementation for the Prevention of Pneumonia in Children Aged 2 Months to 59 Months Iron Metabolism and the Innate Immune Response to Infection. Microbes Infect Iron Deficiency Protects Against Severe Plasmodium Falciparum Malaria and Death in Young Children Oral Iron Supplements for Children in Malaria-Endemic Areas Reducing Anaemia in Low Income Countries: Control of Infection Is Essential Iron Homeostasis in Host Defence and Inflammation The Role of Nutrition in COVID-19 Susceptibility and Severity of Disease: A Systematic Review Clinical Iron Deficiency Disturbs Normal Human Responses to Hypoxia Iron Homeostasis and Pulmonary Hypertension: A Review Zinc and Respiratory Viral Infections: Important Trace Element in Anti-Viral Response and Immune Regulation Prevalence and Predictive Value of Anemia and Dysregulated Iron Homeostasis in Patients with COVID-19 Infection Zinc and Its Relation to Insulin Resistance in Children Analysis of Zn, Cu and Fe in the Hair of Chinese Children with Recurrent Respiratory Tract Infection. Scand Efficacy of Zinc given as an Adjunct to the Treatment of Severe Pneumonia: A Meta-Analysis of Randomized, Double-Blind and Placebo-Controlled Trials The Relation Between Trace Element Status (Zinc, Copper, Magnesium) and Clinical Outcomes in COVID-19 Infection During Pregnancy Prediction of Survival Odds in COVID-19 by Zinc COVID-19: Poor Outcomes in Patients with Zinc Deficiency Leptin: Metabolic Control and Regulation Polyunsaturated Fatty Acids and Inflammation: PUFA and Inflammation Importance of Maintaining a Low Omega-6/Omega-3 Ratio for Reducing Inflammation An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity Nutrition and Immune System in Children with Simple Obesity Differences in Gut Microbiota Composition between Obese and Lean Children: A Cross-Sectional Study The Microbiota of the Gut in Preschool Children with Normal and Excessive Body Weight Dietary Effects on Human Gut Microbiome Diversity Detectable SARS-CoV-2 Viral RNA in Feces of Three Children during Recovery Period of COVID-19 Pneumonia Nutrition in the Actual COVID-19 Pandemic. A Narrative Review Lifestyle Changes and Body Mass Index during COVID-19 Pandemic Lockdown: An Italian Online-Survey Child Malnutrition and COVID-19: The Time to Act Is Now Eating Habits and Lifestyle Changes during COVID-19 Lockdown: An Italian Survey Kolčić, I. Have Lifestyle Habits and Psychological Well-Being Changed among Adolescents and Medical Students Due to COVID-19 Lockdown in Croatia? COVID-19 and the Crisis in Food Systems: Symptoms, Causes, and Potential Solutions A Hidden Side of the COVID-19 Pandemic in Children: The Double Burden of Undernutrition and Overnutrition COVID-19-Related School Closing Aggravate Obesity and Glucose Intolerance in Pediatric Patients with A Model Linking Video Gaming, Sleep Quality, Sweet Drinks Consumption and Obesity among Children and Youth: Video Gaming, Sleep, Sweet Drinks and Obesity COVID-19 and Eating Disorder and Mental Health Concerns in Patients with Eating Disorders Early Impact of COVID-19 on Individuals with Self-reported Eating Disorders: A Survey of~1,000 Individuals in the United States and the Netherlands Weight Gain in a Sample of Patients Affected by Overweight/Obesity with and without a Psychiatric Diagnosis during the Covid-19 Lockdown Emotional Eating in Pregnant Women during the COVID-19 Pandemic and Its Association with Dietary Intake and Gestational Weight Gain Brown Adipose Tissue: New Challenges for Prevention of Childhood Obesity. A Narrative Review Impact of Maternal Nutrition in Viral Infections during Pregnancy The Impact of Nutrition on COVID-19 Susceptibility and Long-Term Consequences