key: cord-0726593-8igah5sm authors: Malla, Pravanjan; Liao, Hao-Ping; Liu, Chi-Hsien; Wu, Wei-Chi; Sreearunothai, Paiboon title: Voltammetric biosensor for coronavirus spike protein using magnetic bead and screen-printed electrode for point-of-care diagnostics date: 2022-04-01 journal: Mikrochim Acta DOI: 10.1007/s00604-022-05288-4 sha: af566c57ae1e077c0885ccfc3772f36c6875f105 doc_id: 726593 cord_uid: 8igah5sm The rapid spread of the novel human coronavirus 2019 (COVID-19) and its morbidity have created an urgent need for rapid and sensitive diagnostics. The real-time polymerase chain reaction is the gold standard for detecting the coronavirus in various types of biological specimens. However, this technique is time consuming, labor intensive, and expensive. Screen-printed electrodes (SPEs) can be used as point-of-care devices because of their low cost, sensitivity, selectivity, and ability to be miniaturized. The ability to detect the spike protein of COVID-19 in serum, urine, and saliva was developed using SPE aided by magnetic beads (MBs) and a portable potentiostat. The antibody-peroxidase-loaded MBs were the captured and catalytic units for the electrochemical assays. The MBs enable simple washing and homogenous deposition on the working electrode using a magnet. The assembly of the immunological MBs and the electrochemical system increases the measuring sensitivity and speed. The physical and electrochemical properties of the layer-by-layer modified MBs were systematically characterized. The performance of these immunosensors was evaluated using spike protein in the range 3.12–200 ng mL(−1). We achieved a limit of detection of 0.20, 0.31, and 0.54 ng mL(−1) in human saliva, urine, and serum, respectively. A facile electrochemical method to detect COVID-19 spike protein was developed for quick point-of-care testing. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00604-022-05288-4. The rapid spread of the novel human coronavirus 2019 (COVID-19) and its morbidity have created an urgent need for rapid and sensitive diagnostics. Conventional methods for virus detection include lateral flow strips, enzyme-linked immunosorbent assay, and polymerase chain reaction (PCR) [1] . Among these techniques, PCR is the gold standard for detecting coronaviruses from various types of biological specimens. The main drawbacks of thermal cyclers include long analysis time, expensive instrument setup, and the need for skilled personnel [2] . Various virus detection methods, including electrochemical biosensors, fluorescence biosensors, surface-enhanced Raman scattering-based biosensors, colorimetric biosensors, chemiluminescence biosensors, surface plasmon resonance-based biosensors, and magnetic biosensors, have been developed for SARS-CoV-2 [3] . Among these detection principles, electrochemical biosensors can consist of potentiometric, amperometric, conductometric, voltammetric, polarographic, impedimetric, capacitive, or piezoelectric elements [4] . Moreover, biosensors incorporated with different recognition elements such as imprinted Pravanjan Malla and Hao-Ping Liao contributed equally to this work. MB-NH 2 and MB-COOH (U-108, U-118) were purchased from TAN Bead (Taoyuan, Taiwan). Hydroquinone (HQ), glutaraldehyde, sodium phosphate dibasic, sodium phosphate monobasic, 3-aminophenyl boronic acid hemi sulfate salt (APBA, 95%), polyethylene glycol (PEG, mw:3350), dextran sulfate (DS), glucose, bovine serum albumin (BSA), vitamin C, and human serum were from Sigma-Aldrich (MO, USA). DMEM was purchased from Elabscience (TX, USA). Urea was from J.T. Baker (Leicestershire, UK) and γ-cyclodextrin (γ-CD) was from Wako (Tokyo, Japan). DNase was from Worthington Co. (Lakewood, USA), and RNase was from GenMark (Taipei, Taiwan). Biotinylated detection antibody for SARS-COV-2 spike protein (S2) (Lot#0,918,201,221), streptavidin-HRP (Lot#G01152188), standard spike protein (Lot#C07152088), and ELISA kit were obtained from RayBio (GA, USA). Hydrogen peroxide (H 2 O 2 , 30%) was from Fluka (MI, USA). All other chemicals were of extra pure analytical grade and used without further purification. Phosphate buffer solution (0.1 M and pH 7.0) was the diluent to study the reactions. Water was freshly prepared using the ultrapure water system (Sartorius Lab instruments GmbH & Co, Gottingen, Germany). SPEs containing a counter, working, and Ag reference electrodes were from Zensor (TE-100, Taichung, Taiwan). The morphology and size of modified MBs were characterized using a scanning electron microscope (SEM, HITACHI S-4700, Tokyo, Japan), transmission electron microscope (TEM, JM-1011, JEOL, Tokyo, Japan), and ZetaSizer® Nano ZS 90 (Malvern, Worcestershire, UK). The carboncoated copper grid was used to load the nanomaterials for TEM analysis. Thermal decomposition of modified MBs was analyzed using Q50 Analyzer (TA Instruments, DE, USA) in a nitrogen environment at various heating rates. The electrochemical properties of the SPE were analyzed using a portable electrochemical simulator (Zensor, ECAS-100). All the UV spectra were recorded by a microplate reader (SpectroStar, BMG, Ortenberg, Germany). A 100 µL aliquot of the MB-NH 2 was transferred into a 1.5 mL Eppendorf tube. The MBs were washed twice with 1 mL of 0.1 M phosphate buffer solution for 10 min, and the supernatant was discarded. Amine groups of MBs were activated by 60 min continuous vortex in 100 µL of glutaraldehyde (4 ×) solution. Then APBA was captured onto the activated beads for 60 min at 25 °C under continuous vortex. Separately, 100 × biotin antibody and 100 × of streptavidin-HRP were mixed in a tube and incubated for 45 min at 4 °C. The MB/APBA were washed twice with 0.1 M phosphate buffer solution, then 100 µL Ab-HRP solution was added to the MB/APBA and incubated for 30 min at 25 °C to form MB/APBA/Ab-HRP. Then, the MB/APBA/Ab-HRP was further blocked in 5% glucose (GLU) for 30 min. Subsequently, the MB/APBA/Ab-HRP/GLU was washed twice with 1 mL of 0.1 M phosphate buffer solution (pH 7.0). After the wash and separation, 100 µL spike protein in serum was added to MB/APBA/Ab-HRP/GLU and incubated for 30 min at room temperature. The fabrication of the MB-based immunosensor is outlined in Fig. 1 . First, an SPE was cleaned by sonication with DDW (10 s), and a neodymium magnet on the backside of the SPE was used to attract MB/APBA/Ab-HRP/GLU on the working electrode. Five microliters of modified MB (MB/ APBA/Ab-HRP/GLU) was added to the SPE. The solution of 5.0/5.0 mM H 2 O 2 /HQ solution (95 μL) was added to the SPE surface and waited for 5 s for SWV measurement. SWV measurement of HRP signal on SPE was obtained by applying a potential range of -0.4 ~ 0.2 V in a H 2 O 2 /HQ solution as previously described [16] . To optimize measurement, operation factors such as concentrations of antibody, HRP, H 2 O 2 /HQ, incubation time of antibody, reaction time of MBs were evaluated. Only one parameter was varied, and the other parameters were fixed. The SWV signal was obtained using 10 ng mL −1 serum spiked protein in this experiment. Each signal was repeated three times (n = 3). Based on the signal/blank (S/B) ratio, the optimal parameters were selected. The S/B ratio was calculated using the previous definition [17, 18] : S∕B ratio = ΔI 10 ∕ΔI 0 ΔI 0 = I PBS − I HS ΔI 10 = I PBS − I HS+spike protein Fig. 1 Schematic illustration for spike protein detection using the MB-based electrochemical immunosensor. MB/APBA/Ab-HRP/ GLU/SP was synthesized using layer-by-layer modification. Ab-HRP was prepared by incubating a biotinylated antibody with streptavidin-HRP. 3-Aminophenyl boronic acid: APBA, glucose: GLU, spike pro-tein: SP. Ab-HRP binds preferentially to APBA on MB. Unbound APBA was blocked by GLU. Spike protein binds to Ab-HRP to form the immune complex, which can impede the substrate H 2 O 2 and electron mediator HQ from reaching HRP's active site and electrode, and thus decrease in electrochemical signal where I PBS is the signal of MBs treated with phosphate buffer solution, I HS is the signal of MBs treated in human serum without spike protein, I HS + spike protein is the signal of MBs treated with 10 ng mL −1 spike protein in human serum. The SWV signals of MBs were obtained using the 5.0 mM H 2 O 2 /5.0 mM HQ solution. The principle of the S/B calculation was demonstrated in Fig. S1 . Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to study the different steps of immobilization, whereas the quantitative measurements were done using SWV. CV was cycled from − 0.5 to 0.6 V with a scan rate of 50 mV s −1 . SWV was recorded from 200 to − 400 mV with the increment time of 5 ms, amplitude of 75 mV, sample width of 6 ms, and pulse period of 100 ms. EIS was run with amplitude 100 mV, frequency range 1 ~ 1000 Hz, and initial potential 20 mV. The real and imaginary components from impedance data of EIS were plotted as Nyquist plots. A semicircle in the Nyquist plot corresponds to the electron-transfer process, and the diameter of the semicircle is equal to the resistance of charge transfer (Rct). The EIS data of the modified MBs were also regressed by software (Zsimpwin) using the resistor-capacitor-resistor equivalent circuit to obtain the resistance and capacitance of the MB-loaded electrode. Histogram of charge transfer resistance and peak current of different MBs were studied. Assays were performed in triplicate, and the error bar represented the standard deviation of the measurement. The Ks by the CV method was evaluated using the Nicholson method as described previously [17] . In order to understand spike protein capture by the immobilized antibody on MBs, the association constant (Ka) for the binding between spike protein and the antibody was determined using EIS and the Langmuir isotherm assumptions such as monolayer adsorption and equal binding energy for all binding sites. θ represents the occupied ratio of antibody binding sites, and Ka is related to the equilibrium adsorption between spike protein and antibody on MBs. The Ka and θ were calculated using the Rct data from EIS as described previously [17] . In this study, all data are reported as means ± standard deviations (SD) in three repeats. The mean and SD of measurements were calculated using Microsoft Excel to evaluate the reproducibility. The data are expressed as mean ± standard deviation from three repeats. To predict the limit of detection (LOD) and recovery rate (%), the following formulas were used [19] : where SD is the standard deviation of the lowest concentration of spike protein and m is the slope of the calibration curve. The detection mechanism and fabrication steps of the developed MB-based immunosensor for the detection of COVID-19 spike protein are demonstrated in Fig. 1 . Layer-by-layer modified MBs are used to fasten the assay through simultaneous capture and concentration of the targets with the aid of a magnet. The APBA modified MBs (MB/APBA) can immobilize Ab-HRP via diol-boronic ester bond to prepare the MB/APBA/Ab-HRP and then glucose treatment to obtain MB/APBA/Ab-HRP/GLU. HRP is one of the most extensively studied and commonly used enzymes for the construction of H 2 O 2 biosensors. Generally, direct transfer of an electron between HRP and an electrode is difficult because the active sites of HRP are deeply buried in a thick protein shell and because the large distance between the active sites and the electrode surface will slow down the electron transfer. Electron transfer via a mediator like HQ, however, is more effective for establishing an electrical connection between the redox centers and the electrode [20] . In this work, H 2 O 2 was a substrate reduced by Ab-HRP, and HQ was used as a mediator for electron transduction. Previously, chorionic gonadotrophin has been proved to decrease the catalytic activity of the Ab-HRP on the detection probe and reduce the current signal on the immunosensor [21] . In another paper, when the antigen of parathyroid hormone increased, the catalytic activity (Kcat) of Ab-HRP on SPCE decreased, and the signal current decreased [17] . These papers suggest the mechanism as follows. When the concentration of antigen increased, the thickness of immunocomplexes on MBs increased. The non-electroactive complex was a blocking layer against the mass transfer of H 2 O 2 to HRP sites and also impeded the transfer of the electron mediator HQ to the electrode. EIS is an effective method for probing the features of an electrode using an impedance signal. We also found an increase in the Rct values after the formation of immuno-complexes on MBs when an increase in spike protein concentrations. This could be ascribed to the formation of the antigen-antibody complex, which could increase the impedance and hinder the transfer of electrons to the electrode. This explained the spike protein concentration was inversely proportional to the current signal. The morphology of modified MBs was investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM) imaging. Figure 2 (A-D) shows microscale images of the original MBs and modified MBs with a 1.0 µm scale bar. All images were obtained with 15 kV voltage. MBs are typically sphere shape, as seen in Fig. 2 (A); MB/APBA has an aggregated cloud-like structure, as in Fig. 2(B) , and MB/APBA/Ab-HRP have expanded clusters, possibly from the interaction of Ab-HRP with increased size, as shown in Fig. 2 (C). An aggregated globular structure was observed in Fig. 2 (D). In addition, the various sizes of the MBs were characterized using a Zeta sizer. An increase in size from 978 to 1041 nm was indicated the conjugation of APBA on the MB surface. Similarly, after immobilizing Ab-HRP, the size increased to 1535 nm and finally reached 2674 nm after adsorption of spike protein (Table S1) . To select MBs, we performed a test with two kinds of MB, one containing the NH 2 group and the other containing the COOH group. We evaluated HRP adsorption using two kinds of MBs modified by APBA. The crosslinkers tested for MB-NH 2 and MB-COOH were glutaraldehyde and EDC/NHC, respectively. We measured the APBA remaining in the solution using UV absorbance at 233 nm. By using the APBA standard as a reference, the concentration of APBA was evaluated and plotted, as in Fig. S2(A) . To confirm the effect of correct orientation, glutaraldehyde is used as a cross-linker to conjugate Ab-HRP to magnetic beads without APBA. The MB-NH 2 was directly activated using a glutaraldehyde solution to form MB-NH 2 /GA. The Ab-HRP was added to the MB-GA and incubated for 30 min, and a TMB assay was used to evaluate the HRP activity of the MBs. Figure S2 (B) shows the comparison of the calibration curve of MB with and without the APBA layer. MB-NH 2 /GA/APBA/Ab-HRP had higher activity (slope) than MB-NH 2 /GA/Ab-HRP. The APBA can covalently bond to 1,2-and 1,3-diols of the carbohydrate moiety of glycoproteins that can immobilize the Ab-HRP on the MBs. Previously, antibodies were immobilized using their lysine, arginine, and glutamine residues by random conjugation of glutaraldehyde on electrode surfaces, resulting in unsatisfactory activity in antigen targeting [22] . The immobilization of the oriented antibody with the proper targeting activity has been achieved using APBA [23] . Owing to the oriented immobilization of Ab-HRP via boronic acid groups on MB, more activity of the Ab-HRP was preserved in this study. Glutaraldehyde randomly conjugates the Ab-HRP using the amino-acid residues with the amines on MB-NH 2 , resulting in the decrease of HRP activity. The presence of APBA on the MB surface help to preserve more Ab-HRP activity, as shown in Fig. S2(B) . can maintain the correct antibody orientation and improve antibody targeting efficiency [26] . Therefore, we adopted APBA as a ligand to the immobilized antibody on MB to maintain the correct orientation of antibodies. The thermal decomposition of MBs was analyzed under a nitrogen atmosphere and a heating rate of 10 °C min −1 . The TGA result is shown in Fig. 3(A) . There are two major endothermic procedures, found at 334 and 380 °C, respectively. The first weight loss region ranging from 61 to 271 °C is responsible for 2% weight loss. The first weight-loss region shall be named as the thermal release of crystal water in MB-APBA. Second weight loss indicates high decomposition temperature, this weight loss region is regarded as the destruction and decomposition of the APBA layer under thermal effect. On the other hand, the TGA analysis of MB-NH 2 showed only one decomposition process, starting at 280 °C. For a further understanding, the magnetic properties of our MB were measured using SQUID. The magnetization curve of MB and MB/APBA were measured and compared in Fig. 3(B) . EIS has been performed to characterize the stepwise fabrication procedures of this immunosensor, and the effect of electrode modification can be reflected on Rct as reported by Ren et al. [27] . Impedance results during the MB modification are shown in Fig. 4(A) . In Fig. 4(B) , the MB-free electrode shows the lowest value of Rct (1238 Ω). After conjugating MB-NH 2 with APBA, the Rct value increased to 3316 Ω. Then, there was a significant increase in the Rct value after the antibody was immobilized on the MB surface. After blocking with glucose, the MB/APBA/Ab-HRP/GLU had the highest Rct. The solution resistance and the doublelayer capacitance were similar after layer-by-layer modification on MBs, suggesting these parameters were not affected by the APBA conjugation and antibody immobilization [10, 28] . However, Rct values were significantly influenced by the binding of spike protein on MBs. The hindrance to the electron transfer process, blocking of a redox reaction, and the hamper of electron tunneling to the electrode attributed to the increasing thickness of the immuno-complex formed on MB surfaces [29] . EIS is a non-destructive and label-free measurement for the immuno-complex by applying the small amplitude perturbation to collect the impedance information of the electrode. Thus, Rct results confirmed the successful fabrication of the immunosensor. The kinetic parameters of modified MBs, such as electron transfer rate constant (Ks, cm s −1 ), were compared after modification ( Fig. S4 and Table S2 ). The oxidation and reduction peak currents in CV from different electrode surfaces can be theoretically attributed to electron transfer rates (Ks) and Rct. The MB-free SPE had higher Ks; upon modification, the values of the Ks decreased. MB-NH 2 has a Ks value of 0.19 cm s −1 , and upon coating with APBA, the Ks value decreases slightly to 0.18 cm s −1 . After Ab-HRP was immobilized, there was a significant decrease in Ks (0.17 cm s −1 ). Finally, after glucose blocking the value decreased to 0.13 cm s −1 as in Fig. S4(B) . The reduction of electron transfer rate after the layer-by-layer modification was observed. The antibody, as a sensing element, must have a strong immobilization on the MBs with a good homogenous orientation to detect spike protein efficiently. Moreover, the modified MBs must be stable enough to bear the modification condition and the electrochemical assay. For HRP optimization, various dilution from 50 to 200 × was tested. The delta current (ΔI) rose as HRP folds increased to 100 × and then decreased. One 100--fold dilution had the highest S/B ratio, as shown in Fig. S5(A) . Based on the S/B ratio, 100 × HRP was selected as the optimized HRP fold. Similarly, for antibody dilution, different antibody folds (50 to 200 × were chosen) and an optimized HRP fold (100 ×) were selected for this test. The delta current gradually decreased as the antibody fold increased, as noted in Fig. S5(B) . The optimized condition for the antibody fold was 100 × as it had the highest S/B ratio. The effects of incubation time and H 2 O 2 /HQ concentration were investigated for sensitive electrochemical detection of COVID-19 spike protein. Given the incubation time of the antibody, immobilization plays a key role in binding with the spike protein. To improve the total assay time, the incubation times of Ab-HRP were tested. To optimize incubation time, 10, 20, 30 , and 60 min were tested. The optimized Ab-HRP fold was selected for this test. The SWV signal indicated that 30 min had the highest S/B ratio, as seen in Fig. S5(C) . The optimization process led to an incubation period of 30 min for the 100 × dilution HRP and 100 × Ab concentration. Similarly, to optimize the H 2 O 2 /HQ concentration, 2.5/2.5, 5/5, 10/10, and 20/20 mM were tested. The delta current (ΔI) was increased with H 2 O 2 /HQ concentration, as seen in Fig. S5(D) . The highest S/B ratio occurred at 5/5 mM of H 2 O 2 /HQ. Therefore, it was selected for further testing. Previously, boronic acid-functionalized MB (BA-MB) has been reported to isolate immunoglobulin G synthesized by recombinant cells [30] . Glucose has the BA binding ability via the cis-diol linkage and affects the antibody purification by BA-MB. Borlido et al. also demonstrate that glucose can compete the BA on MB with the glycoproteins [31] . Using this concept, we first immobilized the Ab-HRP and sequentially blocked the free APBA binding sites using the optimized glucose concentration to avoid the nonspecific binding from the samples. The blocking process is very crucial for immunosensor preparation because it protects the immobilized antibodies and avoids nonspecific binding of impurities on electrodes. Therefore, six blocking agents were added to the MB surface and evaluated for their ability to prevent nonspecific binding. The chemicals tested included 5% dextran sulfate, bovine serum albumin, phosphate buffer solution, gamma-cyclodextrin, glucose, polyethylene glycol. Based on experimental data, the S/B ratio of glucose was higher than BSA shown in Fig. S6 . Therefore, glucose was chosen to block the free APBA on the MB surface. The optimized parameters are summarized in Table 1 . In addition, other related parameters, such as the APBA concentration and the incubation time of the spike protein, were tested using a HRP activity assay. The optimized APBA concentration on MBs was 0.1%, and the incubation time of spike protein was found to be 30 min (Fig. S7) . The analytical performance of the MB-based immunosensor was investigated by SWV. The dose-effect of spike protein ranging from 3.12 to 200 ng mL −1 was evaluated. We investigated the sensor's ability to detect the spike protein of SARS-CoV-2 added in human saliva, urine, and serum. The SWV spectra of saliva, urine, and serum samples are shown in Fig. 5(A, B, C) , and their standard curves are shown in Fig. 5(D, E, F) . The current signal decreased with increasing doses of spike protein because higher concentrations of antigen decreased the current signal of the HRP-labeled antibody. This was because the antigen occupied the limited binding sites of antibody-HRP to form an immunocomplex. The current was inversely proportional to the concentration of spike protein, and there was a linear dependence on spike protein concentrations in the range of 3.12 to 200 ng mL −1 . This yielded sensitivities of 4.44, 2.49, and 0.84 µA ng −1 mL and LODs of 0.20, 0.31, and 0.54 ng mL −1 in human saliva, urine, and serum, respectively. The dose-dependent SWV signals could be explained by Rct results. The thickness of immuno-complexes on MBs increased when the spike protein increased. The inert complex hindered the H 2 O 2 /HQ reaction with HRP and also reduced the electron transfer of the redox mediator to the SPE. Previous reports also demonstrate the targets of immunosensors decrease the activity of the HRP-labelled antibody on the immunosensor and reduce the current signal [21] . A detailed comparison of LOD is shown in Table S3 . The data and recovery of SWV, ELISA, and EIS are summarized in Table 2 . The developed MBs can also be applied to the colorimetric assay. In the absence of spike protein, the TMB was converted by MB/ APBA/Ab-HRP/GLU and became blue. The dose-effect of spike protein on EIS is shown in Fig. 6(A) . The Rct value increases with an increase in the dose of the spike protein. The linear relationship between the concentration of spike protein and the Rct value is shown in Fig. 6(B) . Based on the equation, we evaluated the association constant (Ka) and found it to be 4.11 ng −1 mL. To study the selectivity of the fabricated immunosensors, human serum spiked with 10 ng mL −1 of spike protein was evaluated in the presence of potentially interfering compounds in serum such as vitamin C, serum albumin, urea, RNase, DNase, trypsin, immunoglobulin, and cell culture medium (DMEM). Spike protein (10 ng mL −1 ) was used as the positive control for the SWV method. Spike protein had the highest S/B ratio (control). In the presence of an interferent, the MB-based immunosensor still showed a similar current response. Urea and DNase would reduce the signal currents and S/B ratios. The other interferents did not significantly affect the spike protein detection of MB-based immunosensor (Fig. 7) . The developed MBs were stored at 4 °C for 49 days to evaluate their storage stability. MB/APBA was treated by Ab-HRP and 5% glucose to freshly prepare MB/APBA/Ab-HRP/GLU. The storage stability of modified MB was evaluated based on the S/B ratio and SWV signal in Fig. 8(A) . After 49 days of storage of MB/APBA, the S/B ratio was 3.66, which indicated it has great sensing ability. For MB/ APBA/Ab-HRP/GLU, the S/B ratio on Day 1 was 3.44, and after 49 days of storage, it declined to 2.85. The activity and targeting of antibody-peroxidase on MBs could be retained after 49 days of storage, as shown in Fig. 8(B) . More than 80% of the S/B ratio had been maintained as compared with freshly prepared MBs. This suggests that the antibodyimmobilized MBs had good stability. A comparison of the published immunosensors to this study is summarized in Table 3 . These reported immunosensors adopted the EIS, DPV, SWV, and CV methods to quantify the targets on SARS-CoV-2. For example, Eissa and Zourob integrated sample collection and detection into a single platform using diazonium-modified SPEs for nucleocapsid detection. They achieved a limit of detection of 0.8 pg mL −1 for SARS-CoV-2, and there was no significant cross-reactivity against the influenza antigen [32] . SPEs coated with graphene oxide and gold nanostars can detect the viral spike protein, with a superior limit of detection of 1.68 × 10 −22 μg mL −1 [33] . In these papers, nanomaterials such as MBs and gold nanoparticles are used to amplify the electrochemical signal using different mechanisms, including a large active surface, extraordinary electron-transfer ability, and multivalent affinity with the enzyme and antibody. Very recently, an electrochemical assay was developed for Nucleocapsid protein using primary antibody-labeled MB to capture antigen and secondary antibody-labeled phosphatase to detect antigen and generate enzymatic product naphthol [34] . The carbon black modified SPE then converted the naphthol to the current signal. This novel device of Fabiani et al. provides low LOD and rapid analysis. However, two antibodies and several wash steps were needed as compared to the single antibody and simultaneous detection in the present study. Our proposed MB-based immunosensor could detect spike protein using the SWV and EIS methods with a fast procedure and acceptable sensitivity. However, these following challenges still need to be carefully investigated in future studies. This developed method is limited to the viremia stage, where viruses enter the bloodstream and have access to the rest of the body. Because the clinical samples contain proteins, cells, and biomolecules that can interfere with the selectivity and sensitivity of the developed biosensors, the evaluation using in patient's samples from nasopharyngeal swabs can prove the clinical application of this system. Finally, the antibody used in this study has the limits of being heat sensitive and unstable to long-term storage, which will need further improvement. We developed a magneto immunosensor for detecting the SARS-CoV-2 spike protein in three body fluids by combining MB-based SPEs and a portable potentiostat. The sensitive and reliable detection was achieved in a label-free format by monitoring the change in the SWV current upon binding with the spike protein. This MB can detect spike protein by electrochemical methods with good stability and reproducibility. This portable device can also be used to confirm the conventional analysis of spike protein by lateral flow and ELISA-like methods. This platform's advantages include low-cost MBs, disposable electrodes, label-free detection, and facile assay in contrast to the expensive PCR instruments. We demonstrated rapid electrochemical analysis of spike protein with an acceptable sensitivity, which has the potential to be used for point-of-care diagnostics. Point-ofcare diagnostics of covid-19: from current work to future perspectives Point-of-use rapid detection of SARS-CoV-2: nanotechnology-enabled solutions for the covid-19 pandemic Point-of-care diagnostics for infectious diseases: from methods to devices Ultrasensitive detection of pathogenic viruses with electrochemical biosensor: state of the art Dengue virus: a review on advances in detection and trends -from conventional methods to novel biosensors Electroanalytical overview: utilising micro-and nano-dimensional sized materials in electrochemical-based biosensing platforms Colorimetric and electrochemical detection of SARS-CoV-2 spike antigen with a gold nanoparticle-based biosensor Electrochemical sensing of SARS-CoV-2 amplicons with PCB electrodes Electrochemical immunosensor based on binary nanoparticles decorated rGO-TEPA as magnetic capture and Au@PtNPs as probe for CEA detection Impedimetric determination of cortisol using screen-printed electrode with aptamer-modified magnetic beads Screen-printed graphene/ carbon electrodes on paper substrates as impedance sensors for detection of coronavirus in nasopharyngeal fluid samples Voltammetric-based immunosensor for the detection of SARS-CoV-2 nucleocapsid antigen Electrochemical immunosensor with Cu(2)O nanocube coating for detection of SARS-CoV-2 spike protein Multiplexed magnetic beads-assisted amperometric bioplatforms for global detection of methylations in nucleic acids Aptamer-functionalised magnetic particles for highly selective detection of urinary albumin in clinical samples of diabetic nephropathy and other kidney tract disease Electrochemical immunoassay for serum parathyroid hormone using screenprinted carbon electrode and magnetic beads Electrochemical immunosensor for serum parathyroid hormone using voltammetric techniques and a portable simulator Electrochemical genosensor for Klotho detection based on aliphatic and aromatic thiols selfassembled monolayers Abdelkader AM (2022) Cubically cage-shaped mesoporous ordered silica for simultaneous visual detection and removal of uranium ions from contaminated seawater Hydrogen peroxide biosensors based on horseradish peroxidase and hemoglobin A gold nanoparticles/solgel composite architecture for encapsulation of immunoconjugate for reagentless electrochemical immunoassay Selective electrochemical sensing of glycated hemoglobin (HbA1c) on thiophene-3-boronic acid self-assembled monolayer covered gold electrodes Fabrication of oriented antibody-conjugated magnetic nanoprobes and their immunoaffinity application Electrochemical biosensors for pathogen detection Reagentless impedimetric sensors based on aminophenylboronic acids Antibody orientation on biosensor surfaces: a minireview Dualreadout proximity hybridization-regulated and photothermally amplified protein analysis based on MXene nanosheets Controlled antibody orientation on Fe3O4 nanoparticles and CdTe quantum dots enhanced sensitivity of a sandwich-structured electrogenerated chemiluminescence immunosensor for the determination of human serum albumin Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges Potential of boronic acid functionalized magnetic particles in the adsorption of human antibodies under mammalian cell culture conditions Fishing human monoclonal antibodies from a CHO cell supernatant with boronic acid magnetic particles Development of a low-cost cottontipped electrochemical immunosensor for the detection of SARS-CoV-2 Ultra-sensitive viral glycoprotein detection NanoSystem toward accurate tracing SARS-CoV-2 in biological/non-biological media Magnetic beads combined with carbon black-based screen-printed electrodes for COVID-19: a reliable and miniaturized electrochemical immunosensor for SARS-CoV-2 detection in saliva Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations We express gratitude to the Ministry of Science and Technology (MOST 110-2221-E-182-024), Chang Gung University (BMRP 758), and Chang Gung Memorial Hospital (CMRPD 2J0162, 2H0073) for funding and supporting this research. The authors thank the Instrumentation Center and Microscopy Center @CGU for technical assistance. The online version contains supplementary material available at https:// doi. org/ 10. 1007/ s00604-022-05288-4. The authors declare no competing interests.