key: cord-0718655-3l4mntw2 authors: Plaze, Mario; Attali, David; Petit, Anne-Cécile; Blatzer, Michael; Simon-Loriere, Etienne; Vinckier, Fabien; Cachia, Arnaud; Chrétien, Fabrice; Gaillard, Raphaël title: Repositionnement de la chlorpromazine dans le traitement du COVID-19: étude reCoVery date: 2020-04-29 journal: L'Encephale DOI: 10.1016/j.encep.2020.04.010 sha: e1a1c64711b3be526f7662305d0c0e3d0aa1f7f8 doc_id: 718655 cord_uid: 3l4mntw2 Abstract OBJECTIVES: The ongoing COVID-19 pandemic comprises a total of more than 2 350 000 cases and 160 000 deaths. The interest in anti-coronavirus drug development has been limited so far and effective methods to prevent or treat coronavirus infections in humans are still lacking. Urgent action is needed to fight this fatal coronavirus infection by reducing the number of infected people along with the infection contagiousness and severity. Since the beginning of the COVID-19 outbreak several weeks ago, we observe in GHU PARIS Psychiatrie & Neurosciences (Sainte-Anne hospital, Paris, France) a lower prevalence of symptomatic and severe forms of COVID-19 infections in psychiatric patients (∼4 %) compared to health care professionals (∼14 %). Similar observations have been noted in other psychiatric units in France and abroad. Our hypothesis is that psychiatric patients could be protected from the severe form of COVID-19 by their psychotropic treatments. Chlorpromazine (CPZ) is a phenothiazine derivative widely used in clinical routine in the treatment of acute and chronic psychoses. This first antipsychotic medication has been discovered in 1952 by Jean Delay and Pierre Deniker at Sainte-Anne hospital. In addition to its antipsychotic effects, several in vitro studies have also demonstrated a CPZ antiviral activity via the inhibition of clathrin-mediated endocytosis. Recently, independent studies revealed that CPZ is an anti-MERS-CoV and an anti-SARS-CoV-1 drug. In comparison to other antiviral drugs, the main advantages of CPZ lie in its biodistribution: (i) preclinical and clinical studies have reported a high CPZ concentration in the lungs (20--200 times higher than in plasma), which is critical because of the respiratory tropism of SARS-CoV-2; (ii) CPZ is highly concentrated in saliva (20-60 times higher than in plasma) and could therefore reduce the contagiousness of COVID-19; (iii) CPZ can cross the blood-brain barrier and could therefore prevent the neurological forms of COVID-19. METHODS: In this context, we will test the hypothesis that CPZ could decrease the unfavorable evolution of COVID-19 infection in oxygen-requiring patients without the need for intensive care, but also reduce the contagiousness of SARS-CoV-2. At this end, we designed a pilot, phase III, multicenter, single blind, randomized controlled therapeutic trial. Efficacy of CPZ will be assessed according to clinical, biological and radiological criteria. The main objective is to demonstrate a shorter Time To Response (TTR) to treatment in the CPZ + standard-of-care (CPZ + SOC) group, compared to the SOC group. Response to treatment is defined by a reduction of at least one level of severity on the WHO-Ordinal Scale for Clinical Improvement (WHO-OSCI). The secondary objectives are to demonstrate in the CPZ + SOC group, compared to the SOC group: A) superior clinical improvement; B) a greater decrease in the biological markers of viral attack by SARS-CoV-2 (PCR, viral load); C) a greater decrease in inflammatory markers (e.g. CRP and lymphopenia); D) a greater decrease in parenchymal involvement (chest CT) on the seventh day post-randomization; E) to define the optimal dosage of CPZ and its tolerance; F) to evaluate the biological parameters of response to treatment, in particular the involvement of inflammatory cytokines. Patient recruitment along with the main and secondary objectives are in line with WHO 2020 COVID-19 guidelines. CONCLUSION: This repositioning of CPZ as anti-SARS-CoV-2 activity offers an alternative and rapid strategy to alleviate the virus propagation and the infection severity and lethality. This CPZ repositioning strategy also avoids numerous developmental and experimental steps, can save precious time to rapidly establish an anti-COVID-19 therapy with well-known, limited and easy to manage side effects. Indeed, CPZ is an FDA-approved drug with an excellent tolerance profile, prescribed for around 70 years, in psychiatry but also in clinical routine in nausea and vomiting of pregnancy, in advanced cancer and also to treat headaches in various neurological conditions. The broad spectrum of CPZ treatment - including antipsychotic, anxiolytic, antiemetic, antiviral, immunomodulatory effects along with inhibition of clathrin-mediated endocytosis and modulation of blood-brain barrier - is in line with the historical French commercial name for CPZ, i.e. LARGACTIL, chosen as a reference to its 'LARGe ACTion' properties. The discovery of those CPZ properties, as for many other molecules in psychiatry, is both the result of serendipity and careful clinical observations. Using this approach, the field of mental illness could provide innovative therapeutic approaches to fight SARS-CoV-2. La pandémie mondiale en cours de COVID-19 a touché environ 2 350 000 personnes et fait plus de 160 000 morts [1] . C'est la troisième et la plus grave Cette hypothèse est cohérente avec les propriétés antivirales connues de plusieurs médicaments psychotropes utilisés couramment en psychiatrie, au premier rang desquels la chlorpromazine. Cette phénothiazine, synthétisée en 1951 par Rhône Poulenc, est utilisée depuis 1952 en psychiatrie depuis que Jean Delay et Pierre Deniker, à l'hôpital Sainte-Anne, ont découvert ses propriétés antipsychotiques [2] . À partir des années 80 ont aussi été découvertes les propriétés antivirales in vitro de cette molécule : contre le virus de la grippe [3] , le VIH [4] , le JC virus [5] , l'encéphalite japonaise [6] , le VHC [7] et les alphavirus (Chikungunya, Semliki Forest Virus [8] ). Action anti-coronavirus de la chlorpromazine En 2014, deux études ont mis en évidence l'intérêt de la chlorpromazine dans l'inhibition in vitro de la réplication virale de coronavirus [9, 10] . Dans la première étude, de Wilde et al. ont montré l'efficacité anti-MERS-CoV, anti-SARS-CoV-1 et anti-coronavirus-229E de 4 molécules, dont la chlorpromazine, parmi les 348 molécules testées in vitro dans cette étude [9] . Les auteurs concluent que la chlorpromazine est l'une des molécules les plus prometteuses pour inhiber les coronavirus chez l'homme. La seconde étude met en évidence l'efficacité de 27 molécules, dont la chlorpromazine, pour inhiber la réplication virale de MERS-CoV et SARS-CoV-1 parmi 290 molécules testées [10] . Plus récemment, Cong et al. confirment l'efficacité de la chlorpromazine pour inhiber la réplication virale du SARS-CoV-1 et du MERS-CoV sur des lignées cellulaires de monocytes dérivés de macrophages humains [11] . L'efficacité de la chlorpromazine s'avère même supérieure à celle du torémifène et de la chloroquine, deux autres molécules testées dans cette étude. Au niveau des mécanismes cellulaires, la chlorpromazine affecte l'endocytose dépendante des clathrines grâce à une interaction avec la dynamine, ce qui empêche l'entrée et l'excrétion des virus par les cellules [12, 13] . Ces mécanismes d'endocytose dépendante des clathrines sont indispensables aux coronavirus pour pénétrer dans la cellule [14] . Très récemment, un article de revue souligne l'intérêt d'une stratégie thérapeutique ciblant la voie de l'endocytose dépendante des clathrines pour inhiber la réplication virale du SARS-CoV-2 [15] . D'autres mécanismes d'action de la chlorpromazine pourraient être impliqués car elle a montré une inhibition de la réplication du MERS-CoV à la fois à des stades précoces et tardifs d'entrée dans la cellule [9] . Au total, la chlorpromazine semble avoir un potentiel d'inhibition large-spectre des coronavirus [9, 10] . Le coronavirus SARS-CoV-2 impliqué dans l'épidémie actuelle de COVID-19 a de nombreuses caractéristiques communes avec la famille des coronavirus [16] et a des similarités phylogénétiques avec le SARS-CoV-1 [17] . Il est donc très probable qu'une molécule ayant montré une efficacité contre les MERS-CoV et SARS-CoV-1 puisse également avoir une activité anti-SARS-CoV-2. Afin de confirmer l'hypothèse de l'action antivirale de la chlorpromazine sur le SARS-CoV-2, une expérimentation préclinique in vitro a débuté en avril 2020 au laboratoire de haute sécurité biologique niveau III de l'Institut Pasteur en collaboration avec le GHU PARIS Psychiatrie & Neurosciences. Intérêt de la chlorpromazine dans la dysrégulation immunitaire du COVID-19 ? Dans les cas sévères de COVID-19, plusieurs éléments suggèrent l'implication d'une dysrégulation du système immunitaire dont les mécanismes ne sont pas élucidés à l'heure actuelle [18] . La recherche de traitements immunomodulateurs, agissant par différents mécanismes et sur différents types cellulaires, est donc d'un intérêt majeur à l'heure actuelle. Dès les années 1990, plusieurs publications ont souligné les effets immunomodulateurs de la chlorpromazine [19] , notamment par augmentation du taux sanguin d'IgM [20] . Chez la souris, il a été montré que la chlorpromazine a un effet protecteur contre le choc septique induit par l'injection d'endotoxines et engendre une baisse conjointe d'IL-2, IL-4, IFN alpha, TNF et GM-CSF, des cytokines pro-inflammatoires, ainsi qu'une augmentation de l'IL-10, une cytokine anti-inflammatoire [21] [22] [23] [24] . En comparaison à d'autres antiviraux, un des avantages de la chlorpromazine réside dans sa biodistribution. D'une part, il a été démontré chez l'animal qu'après une injection unique de chlorpromazine, les plus hautes concentrations de cette molécule (et de ses métabolites) se situent dans les poumons avec des taux de chlorpromazine 20 à 200 fois plus élevés dans les poumons que dans le sang [25, 26] . Cette donnée a été confirmée chez l'humain au cours d'une étude post-mortem chez des patients souffrant de schizophrénie et traités par chlorpromazine jusqu'à leur décès [27] . Au vu du tropisme respiratoire du SARS-CoV-2 [28] , la forte distribution pulmonaire de la chlorpromazine pourrait ainsi être un atout de cette molécule aux propriétés antivirales. D'autre part, la chlorpromazine est également fortement concentrée dans la salive avec, chez l'humain, des concentrations salivaires 20 à 60 fois plus élevées que dans le plasma [29] . Ces fortes concentrations de chlorpromazine dans les glandes salivaires pourraient diminuer la charge virale salivaire et donc réduire la contagiosité du SARS-CoV-2. Enfin, la chlorpromazine, de par sa nature lipophile, peut traverser la barrière hémato-encéphalique [30] et pourrait donc avoir un effet thérapeutique sur les formes neurologiques décrites du COVID-19 [31] . Cette distribution cérébrale, connue de longue date et expliquant son action antipsychotique et ses effets secondaires, a été documentée dès les années 60 à l'aide de marquage isotopique chez l'animal puis chez l'humain [32, 33] : la chlorpromazine est détectée au sein du tissu cérébral 15 minutes après une injection intraveineuse unique, dans différentes zones telles que le cortex, le noyau caudé, le putamen et le thalamus. Lors d'une administration chronique chez le rat, les concentrations cérébrales de chlorpromazine sont jusqu'à 25 fois plus élevées que les concentrations plasmatiques [34, 35] . La crise sanitaire actuelle oblige à rechercher dans l'urgence des molécules potentiellement utiles pour réduire la contagiosité, la sévérité et la létalité de cette infection. Le repositionnement de molécules existantes et approuvées comme médicaments est une stratégie alternative à la découverte de nouvelles molécules puisqu'elle permet d'éliminer de nombreuses étapes de développement en déployant une thérapeutique dont les effets secondaires sont connus et que les médecins savent déjà manier. La chlorpromazine, largement utilisée en psychiatrie, bénéficie d'un excellent profil de tolérance : ses effets indésirables sont connus -effets anticholinergiques (sédation, bouche sèche, constipation, rétention urinaire), allongement du QT et rarement des syndromes malins -et faciles à prendre en charge. Les indications psychiatriques qui possèdent l'AMM sont les « états psychotiques aigus » et « chroniques » ainsi que les « états d'agitation et d'agressivité au cours des états psychotiques aigus et chroniques ». La seule indication non psychiatrique qui possède l'AMM est la « préparation à l'anesthésie » et « l'anesthésie potentialisée », mais la chlorpromazine est également utilisée en routine clinique sur des populations de patients fragiles : les nausées et vomissements pharmacorésistants chez la femme enceinte [36] et en oncologie pour les patients souffrant de cancers à un stade avancé [37] ; ainsi que pour diverses indications neurologiques, dans le traitement des céphalées [38, 39] . La question de la posologie de chlorpromazine qui serait requise pour obtenir un effet anti-SARS-CoV-2 chez l'homme n'est pas connue, premièrement parce qu'il est difficile d'estimer les posologies efficaces in vivo à partir de doses efficaces in vitro, et deuxièmement parce qu'il n'existe pas de données chez l'animal sur l'effet anti-coronavirus de la chlorpromazine. Cependant, il est important de noter que les doses efficaces pour inhiber in vitro la réplication virale des coronavirus MERS-CoV et SARS-CoV-1 étaient des doses non toxiques pour les cellules [9] [10] [11] . De plus, une étude réalisée in vivo chez l'animal a pu montrer une efficacité antivirale (contre les adénovirus) de la chlorpromazine à des doses utilisées chez l'humain [40] . Enfin, l'observation de la faible prévalence de SARS-CoV-2 chez nos patients souffrant de troubles psychiatriques suggère une dose efficace chez l'homme de l'ordre de celle utilisée à visée antipsychotique. Étude pilote sur l'efficacité de la chlorpromazine dans le COVID-19 Objectifs de l'étude reCoVery En intégrant tous ces éléments, notre hypothèse est que la chlorpromazine pourrait diminuer l'évolution défavorable de l'infection COVID-19 lorsqu'elle est administrée dès l'apparition de signes respiratoires et réduire la contagiosité du SARS-CoV-2. Pour tester cette hypothèse, nous avons mis en place le projet de recherche reCoVery (repurposing of chlorpromazine in CoVid-19 treatment), un essai thérapeutique pilote de phase III multicentrique, randomisé, contrôlé et en simple insu. La population étudiée concerne les patients souffrant de COVID-19 chez qui une hospitalisation est requise pour prendre en charge des symptômes respiratoires. Les patients nécessitant ou ayant nécessité des soins réanimatoires avec ventilation mécanique ne seront pas inclus dans cette étude. En effet, les mécanismes d'action de la chlorpromazine ciblent l'entrée du virus dans la cellule, bloquant la réplication virale au stade précoce de l'infection, ce qui laisse présager une plus grande efficacité de cette molécule en début de maladie. De plus, la réduction de la prévalence des formes symptomatiques et virulentes de cette infection chez nos patients, en comparaison aux soignants, renforce l'hypothèse d'une efficacité de la chlorpromazine plus probable aux stades précoces de la maladie. Les patients seront randomisés à l'inclusion entre le groupe traitement standard (standard-of-care, SOC) seul et le groupe chlorpromazine en association avec le traitement standard (CPZ + SOC). Les patients du groupe CPZ + SOC recevront jusqu'à 300 mg par jour de CPZ jusqu'à ce que les critères de guérison soient remplis (définis par l'avis du 16 mars 2020 du Haut Conseil de la Santé Publique, [41] ), dans une limite de 21 jours maximum. L'objectif principal de l'étude reCoVery est de démontrer un délai de réponse au traitement (« Time To Response », TTR) plus court dans le groupe CPZ + SOC par rapport au groupe SOC. La réponse au traitement est définie par la réduction d'au moins un niveau de sévérité à la World Health Organization Ordinal Scale for Clinical Improvement (WHO-OSCI, [42] ). Les objectifs secondaires sont de démontrer dans le groupe CPZ + SOC, par rapport au groupe SOC : -A. une amélioration clinique supérieure, -B. une diminution supérieure des marqueurs biologiques de l'atteinte virale par le SARS-CoV-2 (PCR, charge virale), -C. une diminution supérieure des marqueurs inflammatoires (tels que la CRP et la lymphopénie), -D. une diminution supérieure de l'atteinte parenchymateuse (TDM thoracique) au septième jour post-randomisation ; -E. de définir la posologie optimale de CPZ et sa tolérance, -F. d'évaluer les paramètres biologiques de réponse au traitement, notamment l'implication des cytokines inflammatoires. L'étude reCoVery et ses objectifs sont conformes aux recommandations de l'OMS pour mener des études pilotes dans la prise en charge thérapeutique du COVID-19 (42) . Le bénéfice attendu pour les personnes se prêtant à la recherche est une diminution de l'évolution défavorable de l'infection COVID-19, c'est-à-dire une diminution de la durée de la maladie, de la durée des soins hospitaliers, de la durée de l'oxygénothérapie, du recours à la ventilation mécanique ou à la ventilation non invasive, et de la mortalité. Un autre bénéfice possible est la diminution de l'anxiété fréquemment associée à la dyspnée du COVID-19. Les risques prévisibles pour les personnes se prêtant à la recherche sont les effets indésirables bien connus de la chlorpromazine. Ces risques seront limités par une surveillance hospitalière durant toute la durée de délivrance du traitement par chlorpromazine ainsi qu'une surveillance spécifique de ses effets indésirables potentiellement graves : dosages réguliers des CPK pour dépister un syndrome malin des neuroleptiques, examens cliniques quotidiens, ECG réguliers. Aussi, comme mentionné plus haut, la chlorpromazine est déjà utilisée à des posologies élevées dans des indications nonpsychiatriques et parfois chez des populations fragiles, notamment dans le traitement des vomissements pharmacorésistants en cancérologie ou hématologie et chez des patients avec sepsis et parfois défaillance d'organes [37] . Les posologies utilisées peuvent alors être de 12,5 mg à 100 mg IVSE toutes les quatre heures [37] . Enfin, il est important de noter que la chlorpromazine n'étant pas un dépresseur respiratoire, ce médicament n'est pas contre-indiqué chez les patients souffrant d'une insuffisance respiratoire sévère, contrairement à d'autres anxiolytiques comme les benzodiazépines. L'originalité de l'étude reCoVery repose sur le repositionnement de la chlorpromazine -molécule découverte il y a 68 ans, largement utilisée en psychiatrie et avec un excellent profil de tolérance -dans le traitement de la pandémie actuelle de COVID-19 pour laquelle il n'existe à ce jour aucun traitement de référence. Le bénéfice thérapeutique potentiel de la chlorpromazine contre le COVID-19 repose à la fois sur l'observation dans plusieurs unités psychiatriques d'une faible propagation des formes symptomatiques de COVID-19 parmi les patients et sur des arguments virologiques. La chlorpromazine, dont le nom commercial, Largactil, lui a été donné en référence à sa 'large action', présente en effet de nombreuses propriétés : antipsychotique, anxiolytique, antiémétique, antiviral, inhibition de l'endocytose dépendante des clathrines, modulateur du fonctionnement de la barrière hémato-encéphalique, effets immunomodulateurs… La chlorpromazine a déjà démontré son effet antiviral in vitro contre le SARS-CoV-1 et le MERS-CoV, deux coronavirus proches du SARS-CoV-2. Les effets immunomodulateurs de la chlorpromazine pourraient aussi ouvrir des perspectives quant à son éventuel intérêt dans les formes sévères de COVID-19. La découverte des propriétés de la chlorpromazine, comme pour bien d'autres molécules en psychiatrie, est à la fois le fruit de la sérendipité et d'observations cliniques attentives. C'est ainsi que le domaine de la maladie mentale pourrait apporter des pistes thérapeutiques innovantes dans la lutte contre le SARS-CoV-2. Les auteurs déclarent ne pas avoir de liens d'intérêts. European Centre for Disease Prevention and Control Influence of chlorpromazine on the replication of influenza virus in chick embryo cells Inhibition of HIV infection of H9 cells by chlorpromazine derivatives JC virus enters human glial cells by clathrin-dependent receptormediated endocytosis Interference in Japanese encephalitis virus infection of Vero cells by a cationic amphiphilic drug, chlorpromazine Hepatitis C virus entry depends on clathrin-mediated endocytosis Inhibitors of alphavirus entry and replication identified with a stable Chikungunya replicon cell line and virus-based assays Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection MERS-CoV pathogenesis and antiviral efficacy of licensed drugs in human monocyte-derived antigen-presenting cells Phenothiazine-derived antipsychotic drugs inhibit dynamin and clathrin-mediated endocytosis Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation Coronavirus Cell Entry Occurs through the Endo-/Lysosomal Pathway in a Proteolysis-Dependent Manner Targeting the Endocytic Pathway and Autophagy Process as a Novel Therapeutic Strategy in COVID-19 Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan A Novel Coronavirus from Patients with Pneumonia in China Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure Effects of antipsychotic drugs on cytokine networks Chlorpromazine-induced immunopathy: progressive increase in serum IgM Pharmacological activities of chlorpromazine involved in the inhibition of tumour necrosis factor production in vivo in mice Protective effect of chlorpromazine on endotoxin toxicity and TNF production in glucocorticoid-sensitive and glucocorticoid-resistant models of endotoxic shock Chlorpromazine specifically inhibits peripheral and brain TNF production, and up-regulates IL-10 production, in mice Chlorpromazine amplifies macrophage-dependent IL-10 production in vivo Distribution of chlorpromazine and imipramine in adipose and other tissues of rats Rat tissue concentrations of chlorimipramine, chlorpromazine and their N-demethylated metabolites after a single oral dose of the parent compounds Distribution of chlorpromazine metabolites in selected organs of psychiatric patients chronically dosed up to the time of death Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: an observational study. The Lancet Microbe Test dose response in schizophrenia: chlorpromazine blood and saliva levels Repurposing some older drugs that cross the blood-brain barrier and have potential anticancer activity to provide new treatment options for glioblastoma Nervous system involvement after infection with COVID-19 and other coronaviruses Brain distribution and kinetics of 11C-chlorpromazine in schizophrenics: positron emission tomography studies The distribution of 35S-chlorpromazine in mice studied by whole body autoradiography Drug distribution between blood and brain as a determinant of antipsychotic drug effects The distribution and metabolism of chlorpromazine in rats and the relationship to effects on cerebral monoamine metabolism Committee on Practice B-O. ACOG Practice Bulletin No. 189: Nausea And Vomiting Of Pregnancy Nausea and Vomiting in Advanced Cancer-The Cleveland Clinic Protocol (TH310) The Acute Treatment of Migraine in Adults: The American Headache Society Evidence Assessment of Migraine Pharmacotherapies Parenteral Treatment of Episodic Tension-Type Headache: A Systematic Review Chlorpromazine and apigenin reduce adenovirus replication and decrease replication associated toxicity Coronavirus SARS-CoV-2 : critères cliniques de sortie d'isolement des patients infectés. Paris: Haut Conseil de la Santé Publique WHO | Coronavirus disease (COVID-2019) R&D. WHO