key: cord-0699357-17mreeuc authors: Yacouba, Abdourahamane; Olowo-okere, Ahmed; Yunusa, Ismaeel title: Repurposing of antibiotics for clinical management of COVID-19: a narrative review date: 2021-05-21 journal: Ann Clin Microbiol Antimicrob DOI: 10.1186/s12941-021-00444-9 sha: bad87527e224633dfedffcb91ae09202106bc88b doc_id: 699357 cord_uid: 17mreeuc BACKGROUND: Drug repurposing otherwise known as drug repositioning or drug re-profiling is a time-tested approach in drug discovery through which new medical uses are being established for already known drugs. Antibiotics are among the pharmacological agents being investigated for potential anti-SARS-COV-2 activities. The antibiotics are used either to resolve bacterial infections co-existing with COVID-19 infections or exploitation of their potential antiviral activities. Herein, we aimed to review the various antibiotics that have been repositioned for the management of COVID-19. METHODS: This literature review was conducted from a methodical search on PubMed and Web of Science regarding antibiotics used in patients with COVID-19 up to July 5, 2020. RESULTS: Macrolide and specifically azithromycin is the most common antibiotic used in the clinical management of COVID-19. The other antibiotics used in COVID-19 includes teicoplanin, clarithromycin, doxycycline, tetracyclines, levofloxacin, moxifloxacin, ciprofloxacin, and cefuroxime. In patients with COVID-19, antibiotics are used for their immune-modulating, anti-inflammatory, and antiviral properties. The precise antiviral mechanism of most of these antibiotics has not been determined. Moreover, the use of some of these antibiotics against SARS-CoV-2 infection remains highly controversial and not widely accepted. CONCLUSION: The heavy use of antibiotics during the COVID-19 pandemic would likely worsen antibiotic resistance crisis. Consequently, antibiotic stewardship should be strengthened in order to prevent the impacts of COVID-19 on the antibiotic resistance crisis. In December 2019, a pneumonia like disease of unknown cause emerged in Wuhan, an emerging business hub located in the Hubei province of China [1] . The disease was caused by a highly transmissible, hitherto undescribed beta-coronavirus, the SARS-coronavirus-2 (SARS-CoV-2) [2, 3] . The disease rapidly spread globally prompting the World Health Organisation (WHO) to declare it a global pandemic in March, 2020 [4] . As of 24th November 2020, 59,175,309 laboratory-confirmed COVID-19 cases were reported worldwide, with 1,396,403 deaths [5] . The rising biological, clinical, and socio-economic impacts of this COVID-19 diseases underscore the urgent need for effective resolution of this crisis [6, 7] . Currently, there is no specific vaccine or an approved antiviral for its effective treatment, several strategies are however being explored [3] . Drug repurposing offers a quick and costeffective strategy to achieve this [8] . Drug repurposing otherwise known as drug repositioning or drug re-profiling is a time-tested approach in drug discovery through which new medical uses are being established for already known drugs, including approved, discontinued, shelved 20:37 and experimental drugs [8] . This approach offers considerable advantage over the search for novel molecules. The advantages of drug repurposing have been summarised in a published review article on drug repurposing [8] . This approach has been successful used to brought back several drugs to the market [9] . Zidovudine for example, a well-known antiviral drug active against human immunodeficiency virus (HIV) has been shown to demonstrate in-vitro activity against colistin-resistant and carbapenem-resistant isolates [10] . Similarly, some anti-cancer drugs have been successfully repurposed for treatment of resistant bacterial infections [11] . Other successful examples abound in the literature. Currently, various pharmacological agents are being investigated for potential use in the clinical management of coronavirus diseases [12] [13] [14] [15] . The inclusion of antibiotics in the clinical management of COVID-19 is aimed at achieving either the resolution of any bacterial infections co-existing with the COVID-19 infections or exploitation of its potential antiviral activities. Bacterial co-infection is common feature in Covid-19 diseases [16] . As much as 94.2% patients with confirmed cases of COVID-19 diseases in China have been found to be co-infected with one or more other pathogens [17] . In another study, 51.35% of paediatric patients with COVID-19 diseases were also co-infected with other pathogens [18] . The prominent use of antibiotics in the clinical management of COVID-19 diseases is therefore not out of place. In this article, we aimed to review the various antibiotics that have been repositioned for clinical management of COVID-19 diseases. This review focuses on the current state of knowledge regarding the repurposing of antibiotics in terms of their modes of action, antiviral efficacy, and the advances to-date in their development as antiviral agents for clinical use. A methodical search of PubMed and Web of Science was conducted to identify articles published up till July 5, 2020 that involved studies on repurposing of antibiotics for clinical management of COVID-19 diseases. The following 'Medical Subject Headings' (MeSH) terms and text words were used to search articles in Pub-Med: (Drug Repurposing or Drug Re-profiling or Drug re-positioning) AND (Antibiotics.mp.) OR (Anti-Bacterial Agents) OR (Antimicrobial agents.mp. or Anti-Infective Agents) AND (Coronavirus disease) OR (COVID 19.mp.) OR (SARS-coronavirus-2 diseases.mp.) The following keywords were used to search articles in Web of Science: ("Drug Repurposing" or "Drug Re-profiling" or "Drug re-positioning") AND ("Antibiotics" OR "Anti-Bacterial Agents") AND ("COVID-19" OR "corona virus disease" OR "SARS-coronavirus disease"). In addition, Google Scholar was also searched for articles with the appropriate keywords. References of identified were also searched. Collected data related to the use of antibiotics in COVID-19 (up to July 5, 2020) are summarised in Table 1 . Figure 1 shows the scheme of potential targets of repurposed antibiotics against SARS-CoV-2. Macrolides are a class of broad-spectrum antibiotics of large molecular size, including among others erythromycin, clarithromycin, and azithromycin [19] . Macrolides have generally a good tolerability profile [19] . Drugs in this class are used primarily to treat both local and systemic infections, including infections of the skin, eyes, respiratory tract, gastrointestinal tract, and genital tract [19] . In addition to their antibacterial activities, numerous macrolides antibiotics have been shown to possess considerable antiviral activities [20] [21] [22] [23] [24] . Among the antibiotics used against COVID-19, azithromycin is the most frequently used. Azithromycin is a broad-spectrum, macrolide antibiotic [25] . It has aa long half-life and excellent tissue penetration [25] . Numerous studies have previously reported the antiviral activity of azithromycin against Ebola virus and Zika virus [20] [21] [22] . In the management of COVID-19, azithromycin is used alone or in combination with hydroxychloroquine [26] [27] [28] [29] . It is recommended for use at the early stage of the disease especially before the on-set of complications [30, 31] . Studies have however shown that the efficacy of azithromycin alone or in combination with hydroxychloroquine in COVID-19 remain highly controversial and not widely accepted [28, 32] . The mechanism through which azithromycin exerts its antiviral activity is still unknown. Nevertheless, numerous mechanisms have been proposed. It has been proposed that azithromycin may inhibit acidification of endosome during viral replication and infection (Table 1 ) [33] . As a weak base, azithromycin accumulates in endosomal vesicles, increasing the pH level. Endosomal acidification and cleavage processes are required for the viral replication and infection. Another possible target for azithromycin is the un-coating step during viral infection [34] . This step in the virus life cycle also requires acidic environment. Furthermore, based on their anti-inflammatory and immunomodulatory effects, azithromycin has been proposed as option for patients with virus infections and inflammatory basis [34] . Azithromycin reduces the production of pro-inflammatory cytokines such as interleukins-8 (IL-8), IL-6, tumor necrotic factor alpha (TNF-α), matrix metalloproteinases (MMPs) [35] . It also reduces oxidative stress, and modulate T-helper functions [35] . Because of the comparable mode of action of azithromycin and clarithromycin, clarithromycin was the second macrolide antibiotic proposed for the treatment of COVID-19 patients [23, 24] . However, subtle differences exist in the pharmacodynamics, pharmacokinetics, drug interaction, and safety of the two drugs [36] . Studies have demonstrated the antiviral properties of clarithromycin in seasonal influenza virus infection [23, 24] . A recent study has shown that clarithromycin in combination with chloroquine significantly improved clinical condition of a patient with SARS-coronavirus-2 infections and the patient tested negative by rRT-PCR test in less than 14 days [37] . Similar to azithromycin, the exact antiviral mechanism of clarithromycin has also not been determined. It has however been suggested that clarithromycin "suppresses infection-related inflammation and reduces vascular hyper-permeability by suppressing the induction of monocyte chemoattractant protein-1 (MCP-1) and matrix metalloproteinases-9 (MMP-9)" [24] . Glycopeptides are a group of large molecular weight antibiotics that inhibit transglycosylation and transpeptidation, the later stage of bacterial cell-wall peptidoglycan biosynthesis [38] . This class includes vancomycin and teicoplanin [38] . They are the last-line antibiotic for treatment of severe infections caused by multidrug resistant Gram-positive pathogens, particularly methicillin-resistant Staphylococcus aureus (MRSA) and Enterococci. In addition to their antibacterial properties, glycopeptides and specifically teicoplanin have been shown to exhibit significant antiviral activities [39] . Previously, the antiviral activity of teicoplanin against Ebola virus, SARS-CoV, and MERS-CoV has been established. This has been suggested to be due to inhibition of entry of the viral particles into the cells [39, 40] . The potential activity of teicoplanin against SARS-CoV-2 was first postulated by Baron et al. [41] . In another study, teicoplanin at a dose of 6 mg/kg every 24 h for 10 days was found to be effective and safe for the treatment of 2019-nCoV virus infection [42] . The precise anti-viral mechanism of teicoplanin has also not been determined. It has however been suggested that teicoplanin potently block the entry of SARS-CoV-2 through the inhibition of the enzymatic activity of cathepsin L [43] . Based on this, the authors recommended the use of teicoplanin in both prophylaxis and therapeutic management of patients with SARS-CoV-2 infection [43] . Tetracyclines are broad spectrum bacteriostatic and lipophilic antibiotics with high tissue penetration in the lungs [44] . These drugs exerts their activity by binding to bacterial ribosomes and interact with conserved region of bacterial 16S ribosomal RNA (rRNA) leading to inhibition of bacterial protein synthesis, by preventing the association of aminoacyl-tRNA with the bacterial ribosome [44] . Tetracyclines antibiotics have high activity against Grampositive and -negative bacteria, spirochetes, obligate intracellular bacteria, as well as protozoan parasites [44] . In addition to this, tetracyclines have a number of nonantibiotic effects including substantial antiviral activities [45] [46] [47] . The antiviral activity of doxycycline was first described by Sturtz [47] . This has been further confirmed by other researchers [45, 46, 48, 49] . The antiviral effects of doxycycline may be due to up-regulation of zinc finger antiviral protein (ZAP), preventing the accumulation of viral RNA in the cytoplasm [50, 51] . Doxycycline as a senolytic drug could inhibit protein synthesis, senescenceassociated secretory phenotype, viral replication, and prevent lung fibrosis [52] . Doxycycline may also exert anti-inflammatory effect in patients with viral infection by inhibiting pro-inflammatory cytokines, including IL-6 and tumor necrosis factor (TNF)-α [53] . The commonest morbid complication of SARS-CoV2-induced pneumonia are the hyper-inflammation and cytokine storm [54, 55] . Moreover, a computational model revealed that doxycycline is a potential drug candidate for SARS-CoV-2, by inhibiting the SARS-CoV-2 main proteinase (Mpro), also known as 3-chymotrypsin like protease (3CLpro) [56] . This 3CLpro plays important roles in proteolytic processing of viral polyproteins, essentially in the replication of RNA viruses, including SARS coronavirus [57] . In another computational study, eravacycline, a synthetic halogenated tetracycline class antibiotic was found as the "second-best repurposed drug candidate" for SARS-CoV-2 main protease [58] . Fluoroquinolones are a class of broad-spectrum synthetic antibiotics. Fluoroquinolones inhibited the activities of prokaryotic DNA gyrase-topoisomerase II and topoisomerase IV, which are essential for DNA replication and transcription [59] . This class of antibiotics has high activity against Gram-negative and Gram-positive bacteria, mycobacteria, and anaerobes bacteria [59] . In addition to their antibacterial effects, the potential antiviral property of fluoroquinolones against both DNA and RNA viruses is also well documented [60] [61] [62] [63] . Studies have demonstrated the potential action of fluoroquinolones for the treatment of SARS-CoV-2 associated pneumonia and called for randomized clinical trials of respiratory fluoroquinolones such as ciprofloxacin, moxifloxacin and levofloxacin [64, 65] . Interestingly, these drugs were also recommended in the treatment of community-acquired pneumonia in COVID-19 patients [66] . As a chemical derivative of quinoline, the prodrome of chloroquine, the antimalarial drug which has been proven effective in COVID-19 patients [12, 26] , fluoroquinolones may exert antiviral activity in the treatment of SARS-CoV-2 infection. Ciprofloxacin and moxifloxacin may bind to SARS-CoV-2 3CLpro which is involved in the inhibition of SARS-CoV-2 replication [65] . Furthermore, fluoroquinolones also have immune-modulatory activity leading to attenuation of cytokines response, essential for the infamous cytokines storm syndrome [67, 68] . Aminoglycosides are one of the oldest classes of antibiotics. Aminoglycosides exert antibacterial activity by binding specifically to the aminoacyl site of 16S ribosomal RNA (rRNA) within the 30S ribosomal subunit and interfere with protein synthesis [69] . Aminoglycosides have relatively high frequency of nephrotoxicity and ototoxicity [70] . Gentamycin, tobramycin, and amikacin are the most prescribed aminoglycosides in clinical practice [70] . These bactericidal antibiotics have high activity against Gram-positive and Gram-negative bacteria and mycobacteria [70] . Additionally, aminoglycosides have a number of proven non-antibacterial therapeutic uses including antiviral properties [71, 72] . According to Chalichem et al., the effectiveness of aminoglycosides against SARS-CoV-2 may be due to production of retrocyclins, a functional peptide produced from human theta defensins, which inhibits cellular fusion and aggregation of SARS-CoV-2 [73] . Humans defensins exert a well-documented antiviral activity against both enveloped and non-enveloped viruses [74] [75] [76] [77] [78] . Unfortunately, the adverse impact of SARS-CoV-2 infection on olfaction [79] counteract with the wellknown ototoxicity associated with the use of aminoglycosides. Consequently, the clinical use of aminoglycosides in the management of patients with SARS-CoV-2 infection was discouraged [79] . Cephalosporins in combination with beta-lactamase inhibitors are commonly used in elderly patients with community-acquired pneumonia [80] . Cefuroxime is a second-generation cephalosporin antibiotic with broad spectrum activity. It generally has good tolerability and safety profiles and it is used to treat respiratory and genitourinary tract infections, and Lyme disease. In a recent review, the authors have shown in-silico evidence of the potential action of cefuroxime against three SARS-CoV-2 proteins, including main protease, RNA-dependent RNA polymerase, and angiotensinconverting enzyme 2 (ACE2)-Spike complex [81] . However, no in-vitro or human clinical trial has been conducted to establish the proprieties of this finding. Antibiotic repurposing is one of the therapeutic strategies being employed in the clinical management of COVID-19. This is aimed at either the resolution of any bacterial infections co-existing with the COVID-19 infections or exploitation of its potential antiviral properties. Though some of these antibiotics have shown promising results, their use remains highly controversial and not widely accepted. Moreover, the precise antiviral mechanism of most of these antibiotics has not yet been determined. Considering the positive association between heavy antibiotic use and worsening of antibiotic resistance crisis, efforts should be made to strengthen antibiotic stewardship at both national and sub-national levels so as to reduce the long and short impact of antibiotic use in COVID-19 on the antibiotic resistance crisis. Also, data are needed to increase the body of evidence and the clinicians' confidence in the use of antibiotics for COVID-19 diseases. A novel coronavirus from patients with pneumonia in China Novel coronavirus: where we are and what we know A review of coronavirus disease-2019 (COVID-19) WHO Director-General's opening remarks at the media briefing on COVID-19-11 Johns Hopkins Coronavirus Resource Center Al-jabir A. The socio-economic implications of the coronavirus pandemic (COVID-19): a review Coronavirus outbreak in Nigeria: burden and socio-medical response during the first 100 days Expert opinion on drug discovery challenges and opportunities with drug repurposing: finding strategies to find alternative uses of therapeutics Drug repositioning: a brief overview Zidovudine: a salvage therapy for mcr-1 plasmid-mediated colistin-resistant bacterial infections? To cite this version: HAL Id: hal-01858892 Repurposing of anticancer drugs for the treatment of bacterial infections Efficacy of chloroquine and hydroxychloroquine in the treatment of COVID-19 Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial Compassionate use of remdesivir for patients with severe Covid-19 Interferon-α2b treatment for COVID-19 Co-infections in people with COVID-19: a systematic review and meta-analysis Co-infection with respiratory pathogens among COVID-2019 cases Coinfection and other clinical characteristics of COVID-19 in children The new macrolide antibiotics: azithromycin, clarithromycin, dirithromycin, and roxithromycin Evaluation of ebola virus inhibitors for drug repurposing Azithromycin protects against Zika virus Infection by upregulating virus-induced type I and III interferon responses Azithromycin shows anti-Zika virus activity in human glial cells Efficacy of clarithromycin against H5N1 and H7N9 avian influenza a virus infection in cynomolgus monkeys Clarithromycin suppresses induction of monocyte chemoattractant Page 20:37 protein-1 and matrix metalloproteinase-9 and improves pathological changes in the lungs and heart of mice infected with influenza A virus Pharmacokinetic and in vivo studies with azithromycin (CP-62,993), a new macrolide with an extended half-life and excellent tissue distribution Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: a pilot observational study COVID-19 and (hydroxy)chloroquine-azithromycin combination: should we take the risk for our patients? Should azithromycin be used to treat COVID-19? A rapid review. BJGP Open Macrolide treatment for COVID-19: will this be the way forward? Early treatment of COVID-19 patients with hydroxychloroquine and azithromycin: a retrospective analysis of 1061 cases in Marseille, France Azithromycin and COVID-19 prompt early use at first signs of this infection in adults and children an approach worthy of consideration In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect Azithromycin, a lysosomotropic antibiotic, has distinct effects on fluid-phase and receptor-mediated endocytosis, but does not impair phagocytosis in J774 macrophages Macrolides and viral infections: focus on azithromycin in COVID-19 pathology Azithromycin modulates immune response of human monocyte-derived dendritic cells and CD4+ T cells Erythromycin, clarithromycin, and azithromycin: are the differences real? Successful recovery of COVID-19 pneumonia in a patient from Colombia after receiving chloroquine and clarithromycin Glycopeptide and lipoglycopeptide antibiotics Glycopeptide antibiotics potently inhibit cathepsin L in the late endosome/lysosome and block the entry of ebola virus, middle east respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus (SARS-CoV) Teicoplanin inhibits ebola pseudovirus infection in cell culture Teicoplanin: an alternative drug for the treatment of COVID-19? Is teicoplanin a complementary treatment option for COVID-19? The question remains Teicoplanin potently blocks the cell entry of 2019-nCoV Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance Inhibitory effect of doxycycline against dengue virus replication in vitro Study the antiviral activity of some derivatives of tetracycline and non-steroid anti inflammatory drugs towards dengue virus Antimurine retroviral effect of doxycycline A study of the clinical activity of a gel combining monocaprin and doxycycline: a novel treatment for herpes labialis Antiviral activity of doxycycline against vesicular stomatitis virus in vitro Expression of the zinc-finger antiviral protein inhibits alphavirus replication The short form of the zinc finger antiviral protein inhibits influenza a virus protein expression and is antagonized by the virus-encoded NS1 COVID-19 and chronological aging: senolytics and other anti-aging drugs for the treatment or prevention of corona virus infection? Dengue patients treated with doxycycline showed lower mortality associated to a reduction in IL-6 and TNF levels COVID-19: consider cytokine storm syndromes and immunosuppression Urgent avenues in the treatment of COVID-19: targeting downstream inflammation to prevent catastrophic syndrome Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods Potential antivirals and antiviral strategies against SARS coronavirus infections Fast identification of possible drug treatment of coronavirus disease-19 (COVID-19) through computational drug repurposing study Recent updates of fluoroquinolones as antibacterial agents Antiviral, antifungal, and antiparasitic activities of fluoroquinolones optimized for treatment of bacterial infections: a puzzling paradox or a logical consequence of their mode of action? Antiviral activity and inhibition of topoisomerase by ofloxacin, a new quinolone derivative Antiviral properties of quinolonebased drugs Broad-spectrum antiviral activity and mechanism of antiviral action of the fluoroquinolone derivative K-12 Could respiratory fluoroquinolones, levofloxacin and moxifloxacin, prove to be beneficial as an adjunct treatment in COVID-19 Ciprofloxacin and moxifloxacin could interact with SARS-CoV-2 protease: preliminary in silico analysis Treatment of community-acquired pneumonia during the coronavirus disease (COVID-19) pandemic Immunomodulatory effects of quinolones Immunomodulating activity of quinolones: review Aminoglycosides: mechanisms of action and resistance Aminoglycosides: an overview The antibiotic neomycin enhances coxsackievirus plaque formation. mSphere Topical application of aminoglycoside antibiotics enhances host resistance to viral infections in a microbiota-independent manner Aminoglycosides can be a better choice over macrolides in COVID-19 regimen: plausible mechanism for repurposing strategy Human oral defensins antimicrobial peptides: a future promising antimicrobial drug Defensins in viral infection and pathogenesis Towards the application of human defensins as antivirals Reawakening retrocyclins: ancestral human defensins active against HIV-1 Antiviral mechanisms of human defensins Olfactory dysfunction in the COVID-19 outbreak Elderly patients with communityacquired pneumonia: optimal treatment strategies Repurposing cefuroxime for treatment of COVID-19: a scoping review of in silico studies Macrolides and viral infections: focus on azithromycin in COVID-19 pathology Potential use of hydroxychloroquine, ivermectin and azithromycin drugs in fighting COVID-19: trends, scope and relevance In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS-CoV-2 replication. bioRxiv (Cold Spring Harbor Laboratory) Plausible role of combination of chlorpromazine hydrochloride and teicoplanin against COVID-19 Prediction of repurposed drugs for treating lung injury in COVID-19 Therapeutic potential for tetracyclines in the treatment of COVID-19 Doxycycline, a widely used antibiotic in dermatology with a possible anti-inflammatory action against IL-6 in COVID-19 outbreak Dapsone and doxycycline could be potential treatment modalities for COVID-19 Doxycycline as a potential partner of COVID-19 therapies Further aspects of doxycycline therapy in COVID-19. Dermatol Ther Doxycycline: from ocular rosacea to COVID-19 anosmia. New insight into the coronavirus outbreak Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations