key: cord-0689620-b3pjultb authors: Arias-Carrasco, Raúl; Giddaluru, Jeevan; Cardozo, Lucas E.; Martins, Felipe; Maracaja-Coutinho, Vinicius; Nakaya, Helder I. title: OUTBREAK: a user-friendly georeferencing online tool for disease surveillance date: 2021-07-08 journal: Biol Res DOI: 10.1186/s40659-021-00343-5 sha: 9998d89cd632757ef4939b558da077bebeb2df35 doc_id: 689620 cord_uid: b3pjultb The current COVID-19 pandemic has already claimed more than 3.7 million victims and it will cause more deaths in the coming months. Tools that track the number and locations of cases are critical for surveillance and help in making policy decisions for controlling the outbreak. However, the current surveillance web-based dashboards run on proprietary platforms, which are often expensive and require specific computational knowledge. We developed a user-friendly web tool, named OUTBREAK, that facilitates epidemic surveillance by showing in an animated graph the timeline and geolocations of cases of an outbreak. It permits even non-specialist users to input data most conveniently and track outbreaks in real-time. We applied our tool to visualize the SARS 2003, MERS, and COVID19 epidemics, and provided them as examples on the website. Through the zoom feature, it is also possible to visualize cases at city and even neighborhood levels. We made the tool freely available at https://outbreak.sysbio.tools/. OUTBREAK has the potential to guide and help health authorities to intervene and minimize the effects of outbreaks. Effective epidemiological surveillance is essential to ensure a timely and adequate response to infectious disease outbreaks. Communicable disease surveillance provides requisite information to monitor, evaluate, and model the preventive and control measures. The primary goal of the process is to monitor the spread of an ongoing infectious disease outbreak and geographically detect disease hotspots. Moreover, it assists in tracking emerging diseases that pose a threat to public health across the globe. Integrated disease surveillance enables health authorities to (i) identify populations at risk, (ii) implement prevention and control strategies, (iii) detect unusual disease patterns, and (iv) contain the re-emergence or emergence of communicable diseases [1] . The coronavirus epidemics (SARS, MERS-CoV) and the COVID-19 pandemic have displayed the capacity of an infectious disease to spread rapidly. The SARS epidemic (2003) (2004) infected over 8000 people in 17 countries with a mortality rate of 9.6% [2] . Later in 2012, MERS-CoV infected 2519 subjects with a mortality rate of 34.3% in 27 countries [3] . As of June 2021, the SARS-COV-2 pandemic has already claimed more than 3.7 million lives worldwide, and more deaths are projected in the coming months [4] . Coronaviruses spread through direct human contact and objects contaminated by respiratory droplets exhaled by the infected persons [5] . The high infection rate of SARS-COV-2 [6] caused a large proportion of the population to be infected and caused a country's health system to collapse, such as what happened to Italy in 2020 [7] . In such a scenario, tools that can track the numbers and pinpoint the location of cases become critical to implementing effective policies by the governments to control the spread of the disease [8, 9] . The current COVID-19 pandemic led several research teams to develop web-based dashboards that display surveillance datasets generated across the globe. Examples include COVID-19-Map (https:// coron avirus. jhu. edu/ map. html) by the Johns Hopkins University [10] , COVID-19 Surveillance Dashboard (http:// nssac. bii. virgi nia. edu/ covid-19/ dashb oard/) by the University of Virginia, the World Health Organization's (WHO) dashboard (https:// who. maps. arcgis. com/ apps/ opsda shboa rd/ index. html), and COVID-19 local dashboards from Bing-Microsoft (https:// www. bing. com/ covid) and Google (https:// news. google. com/ covid 19/ map). HealthMap (https:// healt hmap. org/ en/), operated since 2006, developed by Harvard University and Boston Children's Hospital, also tracks other infectious diseases such as influenza, dengue, tuberculosis, and measles. Although most of these dashboards use open-source data, they run on Esri Arc-GIS web services which are often expensive or hard to build since it demands a specific knowledge of GIS-based software and programs. In addition, these dashboards are limited to monitor only from a spatial epidemiological perspective and usually lack a time axis to track the evolution of an outbreak. Moreover, these dashboards do not allow the user to input data, restricting non-GIS specialists to utilize the dashboard features for their research or decision-making, who usually lack access to such software or services. To overcome these issues, we developed a new web-based tool that allows the user to input epidemiological data in a user-friendly way to track, study and visualize the outbreaks in real-time. OUTBREAK facilitates epidemic surveillance by visualizing user-defined geographical coordinates (geolocations of cases) on an interactive map and generating an animated timeline graph (case numbers). The tool is available for access through a website at https:// outbr eak. sysbio. tools/, where even non-specialists can input data in the most convenient way. It accommodates worldwide epidemic surveillance i.e. continent, country, regions, state, municipality, and street. For example, we generated visualizations showing the evolution of the 2003 SARS epidemic (https:// outbr eak. sysbio. tools/ anima tion/ SARS_ 2003), the ongoing COVID-19 pandemic with infected and death cases, and another with deaths and vaccines data from January 1, 2020, to May 31, 2021 (https:// outbr eak. sysbio. tools/ anima tion/ COVID 19 and https:// outbr eak. sysbio. tools/ anima tion/ COVID 19vax, respectively). OUTBREAK online tool is freely available under MIT license at https:// outbr eak. sysbio. tools/. The software includes a text and video tutorial with a detailed description of how to use it. OUTBREAK uses Flask, a Pythonbased web framework on the server-side [11] . The user interface is built using JavaScript through the React.js (reactjs.org) library on a Node.js environment [12] . The interactive map for georeferencing is implemented using the MapBox service provided by the "react-map-gl" suite. An up-to-date version of the tool is available for downloading at Docker Hub (https:// hub. docker. com/r/ integ rativ ebioi nform atics/ outbr eak) together with the information on how to install and run the software locally. OUTBREAK's input file consists of geographical (latitude and longitude) and temporal (date) information. Users are required to provide this information in a tabdelimited (.txt) file format. The file needs at least four columns with fixed column names as Label, Latitude, Longitude, and Date; representing respectively the row identifier (first column), geographical coordinates (second, third columns) and temporal information (fourth column). The optional columns include the color, size, and number of occurrences for each point (as shown in Table 1 ). The user can upload the file on the default (Run) page (Fig. 1A) , along with a fill-in form with the title and a brief description, later displayed on the interactive map (Fig. 1B) . The optional columns help in differentiating the points of interest on the interactive map. For instance, in the example visualization of the COVID-19 pandemic, the reported cases are represented in orange, whereas the associated deaths in red (Fig. 1B) . Upon file submission, users can select a date range on the calendar component to visualize the evolution of an outbreak in a particular period (Fig. 2A) . The user can generate animations by hitting the "play" button at the bottom-left of the page (Figs. 1B and 2B) . It is possible to change the speed of animation and share it on social media websites. Two dynamic graphs generated on the bottom-right of the page represent the number of cases per day and the cumulative number of cases, respectively. Both graphs dynamically change according to the period previously specified in the calendar. The graph boxes can be dragged and dropped to facilitate inspection of the interactive map. An example demonstration of these features using SARS 2003 and COVID-19 data is shown in Fig. 2C . The names of user-defined colors for representing data on the interactive map. One color to be assigned to each set of data Size of the points displayed on the interactive map Epidemiologists and decision-makers may need to classify the cases by multiple criteria such as incoming cases, ethnicity, sex, and age, among others, to implement comprehensive disease surveillance. For such classification purposes, OUTBREAK enables the users to apply different colors for each variable of interest (Fig. 3) . Finally, the zoom-in feature allows deeper surveillance of an outbreak in the place of interest at different levels, such as neighborhood, street, and even at a single building level (Fig. 3) . To demonstrate the above features, we used the car incidents dataset from the San Francisco Open Data Portal (https:// datasf. org/ opend ata/) as a hypothetical epidemic, where each type of incident is shown in a different color (https:// outbr eak. sysbio. tools/ anima tion/ EXAMP LE). OUTBREAK is a web-based tool that permits easy surveillance of any epidemiological data. The tool enables the user to monitor epidemic data at various geographical levels -global, country, city, neighborhood, street, or a building. Moreover, the tool allows viewing the change in daily and cumulative case numbers in a graphical format. The input file needs to consist of only geographical coordinates (in decimal degrees format) and dates (dd/ mm/yyyy) to generate the graphics. Besides epidemic surveillance, other potential applications include animal migration and population studies. In summary, OUTBREAK aims to enable user-friendly interactive and dynamic maps that can help in the spatial and temporal exploration of an epidemic. We hope this tool will guide the health authorities and decision-makers in making effective interventions to minimize the undesirable impacts of the current and future outbreaks. Abbreviation WHO: World Health Organization. Zoom and color features. Example of surveillance of a hypothetical epidemic in San Francisco using OUTBREAK, using the car incidents dataset from the San Francisco Open Data Portal (https:// datasf. org/ opend ata/). Some key features of the tool are illustrated, such as the use of different colors to show the studied cases, and zoom-feature to investigate particular cases and retrieve the information at a neighborhood, street or even at a single building level Global infectious disease surveillance Responding to global infectious disease outbreaks: lessons from SARS on the role of risk perception, communication and management Risks of death and severe disease in patients with middle east respiratory syndrome coronavirus World Health Organization. Coronavirus disease 2019 (COVID-19) Situation Report-123. Geneva: World Health Organization The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: what lessons have we learned? Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia Critical care utilization for the COVID-19 Outbreak in Lombardy, Italy: early experience and forecast during an • fast, convenient online submission • thorough peer review by experienced researchers in your field • rapid publication on acceptance • support for research data, including large and complex data types • gold Open Access which fosters wider collaboration and increased citations maximum visibility for your research: over 100M website views per year • At BMC, research is always in progress. Learn more biomedcentral.com/submissions Ready to submit your research Ready to submit your research ? Visualization and analytics tools for infectious disease epidemiology: a systematic review Visualization and simulation of disease outbreaks: spatiallyexplicit applications using disease surveillance data. 26th Annual Esri International User Conference An interactive web-based dashboard to track COVID-19 in real time Efficient way of web development using Python and Flask Nodejs: using javascript to build high-performance network programs Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations We would like to thank Lucas Fleig for his technical assistance in the development of the tool. of São Paulo, Av. Prof. Lúcio Martins Rodrigues, 370, Block C, 4th Floor, São Paulo, SP CEP 05508-020, Brazil. 3 Authors' contributions RAC, JG, LEC and FM wrote the tool's scripts and developed the web server. RAC, JG, LEC, FM, VMC and HIN wrote and reviewed the manuscript. VMC and HN conceived and supervised the research. All authors read and approved the final manuscript. The datasets generated and analysed during the current study are available in the OUTBREAK website at https:// outbr eak. sysbio. tools/ under MIT license. Ethics approval and consent to participate Not applicable. Not applicable. The authors declare that they have no competing interests.