key: cord-0685419-0ux4cnno authors: Cleaton, N.; Raizada, S.; Barkham, N.; Venkatachalam, S.; Sheeran, T. P.; Adizie, T.; Sapkota, H.; Singh, B. M.; Bateman, J. title: The impact of COVID-19 on rheumatology patients in a large UK centre using an innovative data collection technique: prevalence and effect of social shielding date: 2021-02-09 journal: Rheumatol Int DOI: 10.1007/s00296-021-04797-4 sha: 9b80737f1787d24fcb51780f4d4f47f8334f1e9a doc_id: 685419 cord_uid: 0ux4cnno OBJECTIVES: We sought to gain insight into the prevalence of COVID-19 and the impact stringent social distancing (shielding) has had on a large cohort of rheumatology (RD) follow-up patients from a single large UK centre. METHODS: We linked COVID-19-related deaths, screening and infection rates to our RD population (1.2.20–1.5.20) and audited active rheumatology follow-up patients through survey data communicated via a linked mobile phone SMS message. We assessed epidemiology, effect of stringent social distancing (shielding) and quality of life (HRQoL) by Short Form 12 (SF12). RESULTS: There were 10,387 active follow-up patients, 7911 had linked mobile numbers. 12/10,387 RD patients died from COVID-19 (0.12%); local population 4131/7,415,149 (0.12%). For patients with mobile phones, 1693/7911 (21%) responded and of these, 1605 completed the SF12. Inflammatory arthritis predominated 1174/1693 (69%); 792/1693 (47%) were shielding. Advice on shielding/distancing was followed by 1372/1693(81%). 61/1693 (4%) reported COVID-19 (24/61 shielding); medication distribution was similar in COVID and non-COVID patients. Mental SF12 (MCS) but not physical (PCS) component scores were lower in COVID (60) vs. non-COVID (1545), mean differences: MCS, − 3.3; 95% CI − 5.2 to − 1.4, P < 0.001; PCS, − 0.4; 95% CI, − 2.1 to 1.3). In 1545 COVID-negative patients, those shielding had lower MCS (− 2.1; 95% CI − 2.8 to − 1.4) and PCS (− 3.1, 95% CI − 3.7 to − 2.5), both P < 0.001. CONCLUSIONS: Our full RD cohort had no excess of COVID deaths compared to the general local population. Our survey data suggest that shielding adversely affects both mental and physical health in RD. These data broaden our understanding of shielding, indicating need for further study. Little is understood about the impact of the COVID-19 pandemic on health and quality of life in patients with rheumatic disease (RD). National public health guidance for high-risk rheumatology patient groups in the United Kingdom (UK) have been developed through a combination of recommendations from the European League Against Rheumatism (EULAR), [1] and the British Society for Rheumatology (BSR). BSR produced a risk-predictor model to identify patients remaining on current immunomodulatory medications who should follow stringent social isolation measures, termed 'shielding' [2] . 'Shielding' rules require that patients remain isolated in their homes, having minimal contact with others, for minimum of 12 weeks [3, 4] . This guidance is under frequent review, with potential extensions. Various methods have been used by rheumatology departments nationwide to distribute these important public health messages. We have recently reported an innovative technique using targeted SMS video messages to allow patients to self-score during the COVID-19 pandemic and self-stratify their own risk to facilitate this process [5] . Understanding the impacts of COVID-19 in RD patients is important for future planning in both the immediate and longer term. Lessons learned from the pandemic are crucial in shaping future response policies and should be shared internationally. While case series [6] , international clinical trials and registry studies are ongoing the wider impacts of COVID-19 on RD patients is poorly understood [7, 8] . In the UK, data are collected by different organisations within the NHS [9] , ONS 2020 [10] , and large GP registry studies [11] . These datasets and repositories of amalgamated data give limited insight into other aspects of the pandemic impact, in particular shielding, on physical and mental health. Primary care datasets lack details of treatments given in secondary care. Large datasets may be prone to error [12] . We sought to gain insight into the prevalence of COVID-19 and the impact stringent social isolation (shielding) has had on a large cohort of rheumatology (RD) follow-up patients. Here, we report the preliminary results assessing the effects of the COVID-19 pandemic on mortality, infection rate, shielding rates and compliance and Health-Related Quality of Life (HRQoL) at a large UK centre. We audited all patients under active follow-up at our centre (Royal Wolverhampton NHS Trust) by linking data from three data sources: our hospital electronic patient record (EPR); regional COVID-19 laboratory test results (1.2.20-1.5.20) ; and the primary and secondary care allcause mortality report for our area (1.2.20-1.5.20) to assess infection rate and mortality. We designed and piloted a 10-min 70-item questionnaire with two Patient Participation Groups, a national charity (Hibbs Lupus Trust), clinicians, and rheumatology nurse specialists as part of our ongoing service evaluation and development and evaluation in the pandemic. We contacted patients using a recently described mobile phone SMS messaging methodology [5] . Patients with a validated mobile telephone number linked to their EPR on 24.4.2020 were sent an SMS message with an embedded link to a web-based survey, generated through SurveyMonkey 2020. The SMS messages were distributed via our SMS provider (Healthcare Communications UK). The message invited patients to participate and on following the link, patients were provided with explanatory information about the service evaluation prior to participating. The questionnaire (supplement 1) asked patients to voluntarily self-report a range of metrics including demographics, diagnosis, and medication [16-questions] ; exposure to COVID, COVID status and symptoms [30]; shielding status and shielding adherence [5] ; and current health [7] . Patients were asked to volunteer their mobile number to enable us to link responses to patients EPR for audit purposes. On completion, patients were offered a validated HRQoL survey using Short Form 12 (SF12) questionnaires [12] , which assess physical (PCS) and mental component scores (MCS) on a 0-100 scale (0-lowest score) [13] . We verified self-reported positive COVID infection status against our EPR and a regional COVID-19 laboratory dataset. Data were analysed using SPSS version-26. This work was given rapid approval as a service evaluation by the Royal Wolverhampton NHS Trust Management Committee, as per national NHS England ethics requirements, is exempt from formal research ethics committee review. Participation was voluntary, and formal consent was not required. This work is compliant with European Union General Data Protection Regulation; no additional consent for sending healthcare SMS messages is required. [14] . On 18.4.20 , there were 10,387 patients in our cohort (mean age 62.3 years (95% CI 62.0, 62.6)). We identified 78/10,387 (1%) who had COVID-19 swab tests by the 1.5.2020. As shown in Table 1 , 35/78 (45%) had positive results and there were 12 (34%) deaths (1 diagnosed post-mortem). Nine of the 12 (75%) deaths had inflammatory arthritis comparable to a recent study reporting 74% of patients to have inflammatory arthritis in this cohort: [15] Of the total 10,387 patients, SMS evaluations were sent to 7911 patients with validated mobile numbers linked to their EPR. Severn days following survey distribution, 1966 (25%) responses had been received; 1693/7910 (21%) were returned with completed clinical data and 1605/1693 (95%) had completed both clinical data and all SF12 questions. Surveys typically took 10 min and 19 s to complete. Respondents were mean 59.4 years (95% CI 58.8, 60.0), 1175 (69%) female and 1589 (94%) Caucasian. The primary diagnosis was inflammatory arthritis: rheumatoid arthritis (RA) 846 (50%), psoriatic arthritis 267 (16%), and ankylosing spondylitis 82 (5%) ( Table 2) . Of the 1693 respondents, 61 (3.6%) of surveyed patients reported being diagnosed with COVID-19: 8 confirmatory swab results; 3 clinical diagnoses with 'false-negative' swabs; 50 with a clinical diagnosis, not swabbed in line with UK policy at that time [16] . These COVID infection cases were verified against data from patients EPR and local pathology results. Severn of the 61 (11.5%) patients were hospitalised, 2 requiring intensive care. Symptoms were frequently reported to last more than 2 weeks (47.5%) and symptom profiles were as expected [17] . The primary diagnosis in these COVID-19 patients was RA (21 [36.1%]), 27 (44.3%) were taking conventional-Disease Modifying Antirheumatic Drugs (c-DMARDs), 14 (23.0%) biologic-DMARDs (b-DMARDs), and 15 (24.6%) were taking glucocorticoids as part of their RD management. Nineteen (31.1%) were not taking any specific rheumatological therapies, none of the surveyed patients reported having had cyclophosphamide within the past 6 months (Table 3) . HRQoL data (SF12) were collected for 1605/1693 survey respondents. There were significantly lower MCS in the COVID-19-infected group (n = 60) compared with noninfected (n = 1545) (mean: 38.9 (95% CI 36.9, 40.9) vs. mean: 42.2 (95% CI 41.8, 42.6); mean difference: − 3.3; 95% CI − 5.2, − 1.4, P < 0.001), but no difference in PCS (− 0.4; − 2.1, 1.3) ( Table 2) . When examining HRQoL in the cohort of patients without COVID-19 (1545), the 'shielding' group had significantly lower mental (− 2.1; − 2.9, − 1.4, P < 0.001) and physical health (− 2.2; − 3.8, − 2.5; P < 0.001) than those not shielding. Patients adhered well to shielding ( Table 2) . There were no differences in MCS between patients on c-DMARDs and b-DMARDs (0.6; 0.1, 2.4). There were small differences in MCS between non-inflammatory and ARD patients (1.2; 0.1, 2.4, P = 0.035), and BAME and Caucasian patients (1.5; 0.1, 3.0, P = 0.044). There were no differences in PCS between medication, diagnosis, or ethnic groups (NI vs. ARD: 0.3; − 0.7, 1.2, P = 0.602. b-DMARD vs. c-DMARD: − 0.1; − 1.0, 0.9. BAME vs. Caucasian: − 0.8; − 2.3, 0.8) ( Table 2 ). As shown in Table 4 , 662/792 (84%) in the shielding group and 710/901 (79%) in the non-shielding group report following shielding or distancing advice. Of the The impact of COVID-19 on patients with RD is poorly understood, while prevalence data and impacts of RD medication on COVID-19 rates are emerging the effects of public health policy in these group, such as stringent social isolation (shielding) is not understood. These data present a unique overview of both specific and wider effects of COVID-19 in a large cohort from a single-centre UK rheumatology cohort. Our approach gives more detail on RD patients than are available from the majority of current datasets. Patients who had suffered COVID-19 were found to have significantly worse mental health score, while physical health scores were similar in COVID and non-COVID groups. In contrast, patients 'shielding' with RD had both lower physical and mental health scores (Table 2) , while association does not prove causation these results, in keeping with other studies, suggests that shielding may have adverse effects on mental health [18] , as well as negatively impacting patients RD symptom profile [19] . These differences were not seen in other proxy-markers of RD disease severity, such as biologic therapy (Table 2 ) and a large proportion of our questionnaire responses (46.8%) were from 'high risk' patients. This requires further exploration. Mortality from COVID-19 up to 1.5.20 for our cohort, 0.12%, was similar to regional reported COVID-19 mortality, reported as 0.12% [10] , in keeping with recent reports suggesting rheumatology patients taking immunomodulatory medications are at no increased risk of life-threatening complications associated with COVID-19 [8, 20] . These preliminary results show that 39% of COVID-19 patients in our survey were 'shielding', although some cases will have been caused by exposures before shielding introduction 22.03.20, this raises questions on the need for shielding need in RD patients. There are several limitations to this study. At the time of the survey, no routine community COVID-19 testing was occurring, with testing reserved for secondary care [16] . However, patients may suffer few symptoms and not be diagnosed. We are aware of some patients with COVID-19 who were admitted to other hospitals outside our catchment area. Thus, our estimates of infection rates may be subject to error. We were not able to capture swab-negative COVID-19 patients (estimated to be 29%) [21] not responding to our survey. There were missing mobile numbers across all age groups, which has the potential to introduce bias. Patients without access to smartphone or internet technology are excluded; which is perhaps more likely in the elderly and more vulnerable groups in our population due to poorer healthcare and digital literacy, itself associated with social deprivation [22, 23] . The response rate, while consistent with other surveys is relatively low, particularly from the BAME population, and further exploration is required [5, 24] . Despite these limitations, these data contribute to this knowledge. While other studies assess either secondary or primary care datasets, that have limited cross-communication [11] , all deaths in our study are captured via hospital EPR and linked primary care records, exemplified by a community case diagnosed post-mortem. The methodology used in this study is accepted among this population, illustrating the potential role of this methodology during a public health emergency. Mortality within our rheumatology population, encompassing inflammatory and non-inflammatory disease patients, is not raised when compared to local overall COVID-19 mortality. Shielding patients were found to have significantly worse mental health scores compared to non-shielding patients. This association needs further exploration and an evaluation of the impacts of shielding on infection rates, mortality rates, and analysis of HRQoL scores over the pandemic is required. These data could be used internationally in shaping public health policy and rheumatology services moving forward. Our approach to patient-reported symptoms and behaviour has high acceptability among our population. The rapid response, and ease of communication, adds weight to use of SMS technology to support other National approaches including contact tracing could be adopted in future when distributing important information to patients quickly [25] . Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors. Requests for access to data should be made to the corresponding author. Code availability Quality of Life scores were determined using the validated short form 12 scoring system. Data were analysed using SPSS version-26. Conflict of interest The authors declare no competing interests. Ethical approval This work was given rapid approval in lieu of the COVID-19 pandemic by the Royal Wolverhampton NHS Trust Management Committee (25.4 .2020) as a service evaluation. As per NHS England ethics requirements, it is exempt from formal NHS Research Ethics Committee review. This work is compliant with European Union General Data Protection Regulation; no additional consent for sending healthcare SMS messages is required." (Reference) This ethical statement is included on the submitted title page and embedded in the "Methods" section of the main text. Patients and a national charity (the Hibbs Lupus Trust) were involved in the design, content, piloting and acceptability of our questionnaire and methodology, as described in the "Methods" section of the paper. Patients were approached at the point of data collection; patients received SMS message inviting them to participate by following the link and completing the survey-participation was completely voluntary. A briefing page prior to completing the survey (supplement 1) informed participants what the service evaluation entailed, following reading this patients were asked whether they gave consent to continue; if patients opted not to continue, no further contact was made. Policy statement on COVID-19 COVID-19 (Coronavirus)-update for members Identifying rheumatic disease patients at high risk and requiring shielding during the COVID19 pandemic Guidance on shielding and protecting people defined on medical grounds as extremely vulnerable from COVID-19 Rapid distribution of information by SMS-embedded video link to patients during a pandemic Covid-19 in immune-mediated inflammatory diseases-case series from New York A real-time dashboard of clinical trials for COVID-19 Characteristics associated with hospitalisation for COVID-19 in people with rheumatic disease: data from the COVID-19 global rheumatology alliance physician-reported registry Weekly Coronavirus Disease 2019 (COVID-19) Surveillance Report. Summary of COVID-19 surveillance systems. assets.publishing.service.gov.uk COVID-19-daily-announced-deaths-24 The OpenSAFELY Collaborative (2020) OpenSAFELY: factors associated with COVID-19-related hospital death in the linked electronic health records of 17 million adult NHS patients RETRACTED: Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis Comparison of the MOS Short Form-12 (SF12) Health status questionnaire with the SF36 in patients with rheumatoid arthritis Mobile messaging with patients How do we plan outpatient rheumatology services? an electronic casemix service evaluation of more than 1000 consecutive new and follow-up clinics slots Coronavirus (COVID-19): getting tested Features of 16,749 hospitalised UK patients with COVID-19 using the ISARIC WHO clinical characterisation protocol Does social distancing during the lock down due to Covid-19 outbreak in mumbai affect quality of life? Depression and the risk of rheumatoid arthritis Montecucco C (2020) Clinical course of COVID-19 in a series of patients with chronic arthritis treated with immunosuppressive targeted therapies Falsenegative results of initial rt-pcr assays for covid-19: a systematic review Digital inclusion: an analysis of social disadvantage and the information society Effect of social deprivation on disease severity and outcome in patients with rheumatoid arthritis SMS versus telephone interviews for epidemiological data collection: feasibility study estimating influenza vaccination coverage in the Swedish population Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations